Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.045
Filter
1.
Food Res Int ; 188: 114531, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823850

ABSTRACT

Different emulsion gel systems are widely applied to deliver functional ingredients. The effects and mechanisms of ultrasound-assisted emulsification (UAE) treatment and carboxymethyl cellulose (CMC) modifying the curcumin delivery properties and in vitro digestibility of the myofibrillar protein (MP)-soybean oil emulsion gels were investigated. The rheological properties, droplet size, protein and CMC distribution, ultrastructure, surface hydrophobicity, sulfhydryl groups, and zeta potential of emulsion gels were also measured. Results indicate that UAE treatment and CMC addition both improved curcumin encapsulation and protection efficiency in MP emulsion gel, especially for the UAE combined with CMC (UAE-CMC) treatment which encapsulation efficiency, protection efficiency, the release rate, and bioaccessibility of curcumin increased from 86.75 % to 97.67 %, 44.85 % to 68.85 %, 18.44 % to 41.78 %, and 28.68 % to 44.93 % respectively. The protein digestibility during the gastric stage was decreased after the CMC addition and UAE treatment, and the protein digestibility during the intestinal stage was reduced after the CMC addition. The fatty acid release rate was increased after CMC addition and UAE treatment. Apparent viscosity, storage modulus, and loss modulus were decreased after CMC addition while increased after UAE and UAE-CMC treatment especially the storage modulus increased from 0.26 Pa to 41 Pa after UAE-CMC treatment. The oil size was decreased, the protein and CMC concentration around the oil was increased, and a denser and uniform emulsion gel network structure was formed after UAE treatment. The surface hydrophobicity, free SH groups, and absolute zeta potential were increased after UAE treatment. The UAE-CMC treatment could strengthen the MP emulsion gel structure and decrease the oil size to increase the curcumin delivery properties, and hydrophobic and electrostatic interaction might be essential forces to maintain the emulsion gel.


Subject(s)
Carboxymethylcellulose Sodium , Curcumin , Digestion , Emulsions , Gels , Hydrophobic and Hydrophilic Interactions , Rheology , Curcumin/chemistry , Emulsions/chemistry , Carboxymethylcellulose Sodium/chemistry , Gels/chemistry , Muscle Proteins , Soybean Oil/chemistry , Viscosity , Particle Size , Myofibrils/chemistry , Myofibrils/metabolism , Ultrasonic Waves
2.
Food Res Int ; 188: 114440, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823857

ABSTRACT

The emulsification activity of myosin plays a significant role in affecting quality of emulsified meat products. High-density lipoprotein (HDL) possesses strong emulsification activity and stability due to its structural characteristics, suggesting potential for its utilization in developing functional emulsified meat products. In order to explore the effect of HDL addition on emulsification stability, rheological properties and structural features of myosin (MS) emulsions, HDL-MS emulsion was prepared by mixing soybean oil with isolated HDL and MS, with pH adjustments ranging from 3.0 to 11.0. The results found that emulsification activity and stability in two emulsion groups consistently improved as pH increased. Under identical pH, HDL-MS emulsion exhibited superior emulsification behavior as compared to MS emulsion. The HDL-MS emulsion under pH of 7.0-11.0 formed a viscoelastic protein layer at the interface, adsorbing more proteins and retarding oil droplet diffusion, leading to enhanced oxidative stability, compared to the MS emulsion. Raman spectroscopy analysis showed more flexible conformational changes in the HDL-MS emulsion. Microstructural observations corroborated these findings, showing a more uniform distribution of droplet sizes in the HDL-MS emulsion with smaller particle sizes. Overall, these determinations suggested that the addition of HDL enhanced the emulsification behavior of MS emulsions, and the composite emulsions demonstrated heightened responsiveness under alkaline conditions. This establishes a theoretical basis for the practical utilization of HDL in emulsified meat products.


Subject(s)
Emulsions , Lipoproteins, HDL , Myosins , Rheology , Emulsions/chemistry , Hydrogen-Ion Concentration , Lipoproteins, HDL/chemistry , Myosins/chemistry , Meat Products/analysis , Particle Size , Soybean Oil/chemistry , Viscosity , Spectrum Analysis, Raman
3.
Food Res Int ; 188: 114493, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823876

ABSTRACT

In this paper, two emulsion systems with high and low solid fat contents were prepared from 20 % water phase and 80 % oil phase by adjusting the palm oil/palm stearin/soybean oil ratio. Different ultrasonic power and time were used for the pretreatment of emulsion with different solid fat content, and the application characteristics of ultrasonic in W/O emulsions were explored and evaluated. Directly using high-intensity ultrasound to prepare fatty emulsions would weaken the hardness and storage modulus G' of the samples. Although ultrasound reduced the size of fat crystals in emulsions, the interaction between water droplets and fat crystals needs to be considered. After ultrasonic treatment, water droplets were difficult to immobilize on the crystal surface and thus acted as an active filler to stabilize the emulsion together with the fat crystal network. In high solid fat emulsion systems, an increase in ultrasound power (from 100 W to 200 W) could more affect the crystallization behavior of fats than an increase in ultrasound duration (from 30 s to 60 s), and the distribution of crystals and droplets was more uniform. In the low solid fat emulsion system, the texture of the sample after ultrasonic treatment was softer, and the surface was more delicate and smoother. However, the higher ultrasonic intensity (200 W) was not conducive to the preparation of the spread. Although the ultrasound with excessive intensity promoted the formation of small crystals, it would also lead to the aggregation of small crystals. These small crystals cannot form a uniform crystal network, which increases the fluidity of emulsions.


Subject(s)
Crystallization , Emulsions , Palm Oil , Particle Size , Water , Emulsions/chemistry , Water/chemistry , Palm Oil/chemistry , Soybean Oil/chemistry , Ultrasonic Waves , Ultrasonics
4.
Molecules ; 29(9)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38731414

ABSTRACT

Consumers are concerned about employing green processing technologies and natural ingredients in different manufacturing sectors to achieve a "clean label" standard for products and minimize the hazardous impact of chemical ingredients on human health and the environment. In this study, we investigated the effects of gelatinized starch dispersions (GSDs) prepared from six plant sources (indica and japonica rice, wheat, corn, potatoes, and sweet potatoes) on the formulation and stability of oil-in-water (O/W) emulsions. The effect of gelatinization temperature and time conditions of 85-90 °C for 20 min on the interfacial tension of the two phases was observed. Emulsification was performed using a primary homogenization condition of 10,000 rpm for 5 min, followed by high-pressure homogenization at 100 MPa for five cycles. The effects of higher oil weight fractions (15-25% w/w) and storage stability at different temperatures for four weeks were also evaluated. The interfacial tension of all starch GSDs with soybean oil decreased compared with the interfacial tension between soybean oil and water as a control. The largest interfacial tension reduction was observed for the GSD from indica rice. Microstructural analysis indicated that the GSDs stabilized the O/W emulsion by coating oil droplets. Emulsions formulated using a GSD from indica rice were stable during four weeks of storage with a volume mean diameter (d4,3) of ~1 µm, minimal viscosity change, and a negative ζ-potential.


Subject(s)
Emulsions , Soybean Oil , Starch , Water , Emulsions/chemistry , Starch/chemistry , Water/chemistry , Soybean Oil/chemistry , Oryza/chemistry , Gelatin/chemistry , Temperature , Surface Tension , Particle Size
5.
Molecules ; 29(9)2024 May 01.
Article in English | MEDLINE | ID: mdl-38731587

ABSTRACT

We aimed to obtain the optimal formula for human milk fat substitute (HMFS) through a combination of software and an evaluation model and further verify its practicability through an animal experiment. The results showed that a total of 33 fatty acid (FA) and 63 triglyceride (TAG) molecular species were detected in vegetable oils. Palmitic acid, oleic acid, linoleic acid, 18:1/16:0/18:1, 18:2/16:0/18:2, 18:1/18:1/18:1 and 18:1/18:2/18:1, were the main molecular species among the FAs and TAGs in the vegetable oils. Based on the HMFS evaluation model, the optimal mixed vegetable oil formula was blended with 21.3% palm oil, 2.8% linseed oil, 2.6% soybean oil, 29.9% rapeseed oil and 43.4% maize oil, with the highest score of 83.146. Moreover, there was no difference in the weight, blood routine indices or calcium and magnesium concentrations in the feces of the mice between the homemade mixed vegetable oil (HMVO) group and the commercial mixed vegetable oil (CMVO) group, while nervonic acid (C24:1) and octanoic acid (C8:0) were absorbed easily in the HMVO group. Therefore, these results demonstrate that the mixing of the different vegetable oils was feasible via a combination of computer software and an evaluation model and provided a new way to produce HMFS.


Subject(s)
Fat Substitutes , Fatty Acids , Milk, Human , Plant Oils , Software , Triglycerides , Humans , Animals , Plant Oils/chemistry , Fatty Acids/chemistry , Milk, Human/chemistry , Mice , Triglycerides/chemistry , Fat Substitutes/chemistry , Palm Oil/chemistry , Soybean Oil/chemistry , Linseed Oil/chemistry , Rapeseed Oil/chemistry , Corn Oil/chemistry , Caprylates/chemistry , Palmitic Acid/chemistry , Oleic Acid/chemistry
6.
Food Res Int ; 187: 114452, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38763687

ABSTRACT

The antioxidant activity of the natural phenolic extracts is limited in particular food systems due to the existence of phenolic compounds in glycoside form. Acid hydrolysis post-treatment could be a tool to convert the glycosidic polyphenols in the extracts to aglycones. Therefore, this research investigated the effects of an acid hydrolysis post-treatment on the composition and antioxidant activity of parsley extracts obtained by an ultrasound-assisted extraction method to delay lipid oxidation in a real food system (i.e., soybean oil-in-water emulsion). Acid hydrolysis conditions were varied to maximize total phenolic content (TPC) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity. When extracts were exposed to 0.6 M HCl for 2 h at 80 ℃, TPC was 716.92 ± 24.43 µmol gallic acid equivalent (GAE)/L, and DPPH radical scavenging activity was 66.89 ± 1.63 %. Not only did acid hydrolysis increase the concentrations of individual polyphenols, but it also resulted in the release of new phenolics such as myricetin and gallic acid. The extract's metal chelating and ferric-reducing activity increased significantly after acid hydrolysis. In soybean oil-in-water emulsion containing a TPC of 400 µmol GAE/L, the acid-hydrolyzed extract had an 11-day lag phase for headspace hexanal compared to the 6-day lag phase of unhydrolyzed extract. The findings indicated that the conversion of glycosidic polyphenols to aglycones in phenolic extracts can help extend the shelf-life of emulsion-based foods.


Subject(s)
Antioxidants , Emulsions , Petroselinum , Phenols , Plant Extracts , Plant Leaves , Soybean Oil , Emulsions/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Soybean Oil/chemistry , Phenols/chemistry , Hydrolysis , Antioxidants/pharmacology , Antioxidants/chemistry , Petroselinum/chemistry , Plant Leaves/chemistry , Oxidation-Reduction , Water/chemistry , Lipid Peroxidation/drug effects , Biphenyl Compounds/chemistry , Picrates/chemistry , Polyphenols/chemistry , Polyphenols/pharmacology
7.
Int J Biol Macromol ; 268(Pt 1): 131692, 2024 May.
Article in English | MEDLINE | ID: mdl-38702247

ABSTRACT

Natural bioactive molecules such as phenolic acids and alkaloids play a crucial role in preserving the quality and safety of food products, particularly oils, by preventing oxidation. Berberis integerrima, a rich source of such antioxidants, has been explored in this study for its potential application in soybean oil preservation. Electrospun nanofibers, composed of polyvinyl alcohol and chitosan, were fabricated and loaded with an alcoholic extract of Berberis integerrima. The antioxidant activity of Berberis integerrima was evaluated, and the phenolic compounds contributing to its efficacy were identified and quantified. The physicochemical properties of the polyvinyl alcohol /chitosan/Berberis integerrima nanofibers, including morphology, crystallinity, functional groups, and thermal stability, were characterized. The results revealed that the polyvinyl alcohol/chitosan/Berberis integerrima nanofibers exhibited high antioxidant capacity and improved the stability of Berberis integerrima, indicating their potential as effective and biodegradable materials for food preservation. This study underscores the potential of harnessing natural antioxidants from Berberis integerrima in nanofibers to enhance the quality and safety of soybean oil.


Subject(s)
Antioxidants , Berberis , Chitosan , Nanofibers , Oxidation-Reduction , Soybean Oil , Chitosan/chemistry , Nanofibers/chemistry , Soybean Oil/chemistry , Antioxidants/chemistry , Antioxidants/pharmacology , Berberis/chemistry , Polyvinyl Alcohol/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology
8.
Food Res Int ; 186: 114340, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729695

ABSTRACT

Fruits are essential sources of nutrients in our daily diet; however, their spoilage is often intensified by mechanical damage and the ethylene phytohormone, resulting in significant economic losses and exacerbating hunger issues. To address these challenges, this study presented a straightforward in situ synthesis protocol for producing Z/SOPPU foam, a 3D porous-structured fruit packaging. This innovative packaging material offered advanced ethylene-adsorbing and cushioning capabilities achieved through stirring, heating, and standing treatments. The results demonstrated that the Z/SOPPU foam, with its porous structure, served as an excellent packaging material for fruits, maintaining the intact appearance of tomatoes even after being thrown 72 times from a height of 1.5 m. Additionally, it exhibited desirable hydrophobicity (contact angle of 114.31 ± 0.82°), degradability (2.73 ± 0.88 % per 4 weeks), and efficient ethylene adsorption (adsorption rate of 13.2 ± 1.7 mg/m3/h). These remarkable characteristics could be attributed to the unique 3D micron-porous configuration, consisting of soybean oil polyol polyurethane foam for mechanical strain cushioning and zein for enhanced ethylene adsorption efficiency. Overall, this research offers an effective and original approach to the rational design and fabrication of advanced bio-based fruit packaging.


Subject(s)
Ethylenes , Food Packaging , Fruit , Polyurethanes , Soybean Oil , Zein , Ethylenes/chemistry , Polyurethanes/chemistry , Food Packaging/methods , Porosity , Fruit/chemistry , Soybean Oil/chemistry , Zein/chemistry , Adsorption , Polymers/chemistry , Solanum lycopersicum/chemistry , Hydrophobic and Hydrophilic Interactions
9.
Int J Biol Macromol ; 267(Pt 1): 131483, 2024 May.
Article in English | MEDLINE | ID: mdl-38599426

ABSTRACT

Probiotics are susceptible to diverse conditions during processing, storage, and digestion. Here, shellac (SC), sodium alginate (SA), coconut oil (CO), soybean oil (SO), and trehalose (AL) were used to prepare microcapsules aiming to improve the survival of Lactiplantibacillus plantarum KLDS1.0318 during freeze-drying, storage process, and gastrointestinal digestion. The results showed that for SA/AL/SC/CO and SA/AL/SC/SO, the survival loss decreased by 51.2 % and 51.0 % after a freeze-drying process compared with microcapsules embedded by SA; the viable bacteria count loss decreased by 4.36 and 4.24 log CFU/mL compared with free cell (CON) during storage for 28 d under 33%RH at 25 °C, respectively; while for simulating digestion in vitro, the survival loss decreased by 3.05 and 2.70 log CFU/mL, 0.63 and 0.55 log CFU/mL after digestion at simulated gastric fluid for 120 min and small intestine fluid for 180 min, respectively (P < 0.05). After microcapsules were added to fermented dairy stored at 4 °C for 21 d, the viable bacteria count of SA/AL/SC/CO and SA/AL/SC/SO significantly increased by 2.10 and 1.70 log CFU/mL compared with CON, respectively (P < 0.05). In conclusion, the current study indicated that shellac-based probiotic microcapsules have superior potential to protect and deliver probiotics in food systems.


Subject(s)
Alginates , Capsules , Digestion , Freeze Drying , Microbial Viability , Probiotics , Alginates/chemistry , Microbial Viability/drug effects , Gastrointestinal Tract/microbiology , Trehalose/chemistry , Soybean Oil/chemistry , Coconut Oil/chemistry
10.
Environ Sci Pollut Res Int ; 31(20): 29264-29279, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38573576

ABSTRACT

Guided by efficient utilization of natural plant oil and sulfur as low-cost sorbents, it is desired to tailor the porosity and composition of polysulfides to achieve their optimal applications in the management of aquatic heavy metal pollution. In this study, polysulfides derived from soybean oil and sulfur (PSSs) with improved porosity (10.2-22.9 m2/g) and surface oxygen content (3.1-7.0 wt.%) were prepared with respect to reaction time of 60 min, reaction temperature of 170 °C, and mass ratios of sulfur/soybean oil/NaCl/sodium citrate of 1:1:3:2. The sorption behaviors of PSSs under various hydrochemical conditions such as contact time, pH, ionic strength, coexisting cations and anions, temperature were systematically investigated. PSSs presented a fast sorption kinetic (5.0 h) and obviously improved maximum sorption capacities for Pb(II) (180.5 mg/g), Cu(II) (49.4 mg/g), and Cr(III) (37.0 mg/g) at pH 5.0 and T 298 K, in comparison with polymers made without NaCl/sodium citrate. This study provided a valuable reference for the facile preparation of functional polysulfides as well as a meaningful option for the removal of aquatic heavy metals.


Subject(s)
Copper , Lead , Metals, Heavy , Soybean Oil , Sulfides , Water Pollutants, Chemical , Adsorption , Lead/chemistry , Soybean Oil/chemistry , Copper/chemistry , Sulfides/chemistry , Porosity , Water Pollutants, Chemical/chemistry , Metals, Heavy/chemistry , Chromium/chemistry , Kinetics , Hydrogen-Ion Concentration
11.
Sci Rep ; 14(1): 4064, 2024 02 19.
Article in English | MEDLINE | ID: mdl-38374296

ABSTRACT

The vegetable oil degumming process plays a critical role in refining edible oil. Phospholipids (PL) removal from crude extracted soybean oil (SBO) by the enzymatic degumming process has been investigated in this work. Enzymatic degumming of extracted SBO with microbial phospholipase A1 PLA-1 Quara LowP and Lecitase Ultra enzymes have also been studied comparatively. The main novelty of our work is the use of the enzymatic degumming process on an industrial scale (600 tons a day). Many parameters have been discussed to understand in detail the factors affecting oil losses during the degumming process. The factors such as chemical conditioning (CC) by phosphoric acid 85%, the enzyme dosage mg/kg (feedstock dependent), the enzymatic degumming reaction time, and the characteristics of the plant-processed SBO have been discussed in detail. As a main point, the degummed oil with a phosphorus content of < 10 mg/kg increases yield. Quara LowP and Lecitase Ultra enzymes are not specific for certain phospholipids PL; however, the conversion rate depends on the SBO phospholipid composition. After 4 h, over 99% of Phospholipids were degraded to their lysophospholipid LPL (lysolecithin). The results showed a significant effect of operating parameters and characteristics of different origins of SBO, fatty acids FFA content, Phosphorus content and total divalent metals (Calcium Ca, Magnesium Mg and Iron Fe mg/kg) content on the oil loss. The benefit of using enzymatic degumming of vegetable oils rather than traditional chemical refining is that the enzymatic degumming process reduces total oil loss. This decrease is known as enzymatic yield. The enzymatic degumming also decreases wastewater and used chemicals and running costs; moreover, it enables physical refining by lowering the residue phosphorus to < 10 mg/kg.


Subject(s)
Plant Oils , Soybean Oil , Soybean Oil/chemistry , Plant Oils/chemistry , Phospholipids , Phospholipases A1 , Manufacturing and Industrial Facilities , Phosphorus
12.
Food Chem ; 444: 138642, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38325088

ABSTRACT

Chinese quince (Chaenomeles sinensis) fruit is an underutilized resource, rich in proanthocyanidins with antioxidant ability but poor lipid solubility. In this study, a novel modified oligomeric proanthocyanidin (MOPA) was prepared, which exhibited favorable lipid solubility (354.52 mg/100 g). It showed higher radical scavenging abilities than commercial antioxidant-BHA (butylated hydroxyanisole), both at 0.4-0.5 mg/mL. The addition of MOPA (0.04 %wt.) significantly increased the oxidative stability index of the soybean oil from 5.52 to 8.03 h, which was slightly lower than that of BHA (8.35 h). Analysis of the physicochemical properties and composition of oil during deep-frying showed that MOPA demonstrated significant antioxidant effects and effectively restricted the oil oxidation. This inhibition also delays the formation of heterocyclic amines (HAs) in fried food, thereby reducing the migration of HAs from food to deep-frying oil. Therefore, MOPA is a promising novel liposoluble antioxidant for protecting the quality of deep-frying oil.


Subject(s)
Phenylacetates , Proanthocyanidins , Rosaceae , Antioxidants/chemistry , Soybean Oil/chemistry , China
13.
Int J Biol Macromol ; 263(Pt 1): 130153, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38367778

ABSTRACT

Vegetable oils-based pressure sensitive adhesives (PSAs) are green and sustainable but face unsatisfactory adhesion strengths and are prone to aging during storage and application due to the existence of residual double bonds and massive ester bonds. Nine common antioxidants (tea polyphenol palmitate (TPP), caffeic acid, ferulic acid, gallic acid, butylated hydroxytoluene, tertiary butylhydroquinone, butylated hydroxyanisole, propyl gallate, and tea polyphenols) were grafted into epoxidized soybean oils-PSA (ESO-PSA) system to enhance antiaging properties and adhesion strengths. Results showed ESO-PSAs grafted with caffeic acid, tertiary butylhydroquinone, butylated hydroxyanisole, propyl gallate, tea polyphenols, or TPP didn't occur failure with TPP having best performance. The optimal conditions were ESO reacted with 0.9 % TPP, 70 % rosin ester, and 7.0 % phosphoric acid at 50 °C for 5 min, under which peel strength and loop tack increased to 2.460 N/cm and 1.66 N, respectively, but peel strength residue reduced to 138.09 %, compared with control (0.407 N/cm, 0.43 N, and 1669.99 %). Differential scanning calorimetry and thermogravimetric results showed TPP grafting increased the glass transition temperature of ESO-PSA slightly but improved its thermal stability significantly. Fourier transform infrared spectroscopy and 1H nuclear magnetic resonance results showed TPP, phosphoric acid, and rosin ester all partially participated in the covalently crosslinking polymerization of ESO-PSAs and the rest existed in the network structures in the free form.


Subject(s)
Butylated Hydroxyanisole , Caffeic Acids , Phosphoric Acids , Soybean Oil , Humans , Male , Soybean Oil/chemistry , Butylated Hydroxyanisole/analysis , Propyl Gallate , Polyphenols , Adhesives/chemistry , Prostate-Specific Antigen , Esters , Tea
14.
Nutrients ; 16(3)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38337724

ABSTRACT

Intestinal failure (IF) is characterized by a critical reduction in functional gut mass below the minimum needed for optimal growth in children. It requires parenteral nutrition (PN) and home-PN (HPN), which is challenging in terms of meeting nutritional needs according to age, growth velocity, clinical situation, and rapid changes in fluid and electrolyte requirements. Due to these complex requirements, age-adapted multi-chamber bags (MCBs) are important additions to the nutrition armamentarium. The launch of composite fish oil (FO)-containing intravenous lipid emulsions (ILEs) heralded the development of MCBs containing these ILEs in combination with a crystalline amino acid solution adapted for pediatric use. The safety and efficacy of lipid and amino acid components in this context have been widely documented in numerous published studies. This narrative manuscript includes a review of the articles published in PudMed, Embase, and Google Scholar up to June 2023 for the age groups of term infants to children and adolescents. Preterm infants with their highly specific demands are not included. It aims to offer an overview of the clinical experience regarding the use of a composite FO-based ILE and a developed specific amino acid solution.


Subject(s)
Fish Oils , Parenteral Nutrition, Home , Infant , Humans , Adolescent , Infant, Newborn , Child , Fish Oils/chemistry , Infant, Premature , Fat Emulsions, Intravenous/chemistry , Amino Acids , Soybean Oil/chemistry
15.
Food Res Int ; 177: 113911, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38225148

ABSTRACT

Thermophysical properties of blends composed of soybean oil and fats obtained from fruits and seeds from Brazilian Amazonian region (Murumuru, Tucuma, and Bacuri) were investigated, looking for more sustainable alternatives to the mostly used industrial fats, for applications in product formulation. Fatty acid (FA) and triacylglycerol composition, nutritional indexes, solid fat content (SFC), compatibility, consistency, melting, and crystallization profiles were determined. Soybean oil increased blends' unsaturated FA profile, leading to lower SFC, but higher nutritional quality. Fats' melting profiles were significantly altered with soybean oil addition: temperatures decreased with the increase in oil content. Iso-solids diagrams showed that lipids were compatible, which is a technological advantage. SFC and consistency profiles suggested that tucuma and murumuru fats could be used as hardstocks for lipid products, and bacuri fat could be applied in products such as margarine and spreads. Blends could improve fats' spreadability and other technological properties, which is promising for applications in products formulation.


Subject(s)
Plant Oils , Soybean Oil , Soybean Oil/chemistry , Plant Oils/chemistry , Fats/chemistry , Triglycerides/chemistry , Fatty Acids/chemistry
16.
Macromol Biosci ; 24(5): e2300458, 2024 May.
Article in English | MEDLINE | ID: mdl-38198834

ABSTRACT

This study aims to obtain a cyto-compatible 3D printable bio-resin for the manufacturing of meshes designed from acquired real patients' bone defect to be used in future for guided bone regeneration (GBR), achieving the goal of personalized medicine, decreasing surgical, recovery time, and patient discomfort. To this purpose, a biobased, biocompatible, and photo-curable resin made of acrylated epoxidized soybean oil (AESO) diluted with soybean oil (SO) is developed and 3D printed using a commercial digital light processing (DLP) 3D printer. 3D printed samples show good thermal properties, allowing for thermally-based sterilization process and mechanical properties typical of crosslinked natural oils (i.e., E = 12 MPa, UTS = 1.5 MPa), suitable for the GBR application in the oral surgery. The AESO-SO bio-resin proves to be cytocompatible, allowing for fibroblast cells proliferation (viability at 72 h > 97%), without inducing severe inflammatory response when co-cultured with macrophages, as demonstrated by cytokine antibody arrays, that is anyway resolved in the first 24 h. Moreover, accelerated degradation tests prove that the bio-resin is biodegradable in hydrolytic environments.


Subject(s)
Bone Regeneration , Printing, Three-Dimensional , Soybean Oil , Bone Regeneration/drug effects , Soybean Oil/chemistry , Humans , Oral Surgical Procedures/methods , Animals , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Guided Tissue Regeneration/methods , Mice , Fibroblasts/cytology , Fibroblasts/drug effects , Cell Proliferation/drug effects
17.
Food Chem ; 442: 138478, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38278102

ABSTRACT

The effects of different concentrations of catechin on the stability of myofibrillar protein-soybean oil emulsions and the related mechanisms were investigated. Adding 10 µmol/g catechin had no obvious effects on the emulsion stability and myosin structure, but 50, 100 and 200 µmol/g catechin decreased the emulsion stability. The microstructure observations showed that 10 µmol/g catechin caused a dense and uniform emulsion to form, whereas 50, 100 and 200 µmol/g catechin induced the merging of oil droplets. The addition of 50, 100 and 200 µmol/g catechin caused a decline in both the total sulfhydryl content and surface hydrophobicity, suggesting protein aggregation, which decreased the adsorption capacity of myosin and the elasticity of interfacial film. These results suggested that higher concentrations of catechin were detrimental to the emulsifying properties of myosin and that the dose should be considered when it is used as an antioxidant.


Subject(s)
Catechin , Soybean Oil , Emulsions/chemistry , Soybean Oil/chemistry , Catechin/chemistry , Myosins , Water/chemistry
18.
Int J Biol Macromol ; 254(Pt 2): 127760, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37926316

ABSTRACT

The application of epoxidized soybean oil (ESO) in thermosetting polymers is impeded by its unsatisfactory thermomechanical properties. Here, in order to address the limitation, technical lignin was modified by tung oil anhydride and then used as the hardener to compensate for the inherent flexibility defects of ESO thermosets (TLs). As the lignin content increased, a notable improvement in the activation energy of TLs was observed, attributed to the restraining effect of lignin's rigid structure on segmental relaxation. Concurrently, the tensile strength of TLs increased from 2.8 MPa to 34.0 MPa, concomitant with a decrease in elongation at break from 32.9 % to 8.0 %. Comparative analysis with TL-0 (devoid of lignin) demonstrated substantial enhancements in glass transition temperature, shape fixation ratio, and shape recovery ratio for TL-50 (comprising 50 wt% of lignin), elevating from 16.9 °C, 89.1 %, and 89.5 % to 118.6 °C, 94.0 %, and 99.3 %, respectively. These results unequivocally highlight the favorable dynamic mechanical and shape memory properties conferred upon TLs by lignin addition. While the introduction of lignin adversely affected thermal stability, a notable improvement in char yield (800 °C) was observed. Collectively, these findings underscore the potential of technical lignin as a promising bio-based curing agent for ESO.


Subject(s)
Epoxy Resins , Lignin , Epoxy Resins/chemistry , Soybean Oil/chemistry , Polymers/chemistry
19.
Int J Biol Macromol ; 258(Pt 2): 129037, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38158061

ABSTRACT

The present work systematically investigated the influence of starch silylation on the structures and properties of starch/epoxidized soybean oil-based bioplastics. Silylated starch was synthesized using starch particles (SP-ST) or gelatinized starch (SG-ST) under different silane hydrolysis pHs. Due to the appearance of -NH2 groups and lower OH wavenumbers, SP-ST obtained at pH 5 showed higher silylation degree and stronger hydrogen bond interaction with epoxidized soybean oils (ESO) than that at pH 11. The morphology analysis revealed better interfacial compatibility of ESO and SP-ST. The tensile strength of the samples containing SP-ST increased by 51.91 % than the control, emphasizing the enhanced interaction within the bioplastics. However, tensile strength of the bioplastics with SG-ST decreased by 59.56 % due to their high moisture contents from unreacted silanes. Additionally, the bioplastics with SG-ST exhibited an obvious reduction of thermal stability and an increase in water solubility because of the presence of unreacted APMS. The bioplastic degradation was not prevented by starch silylation except high pH. The bioplastics showed the most desirable tensile properties, thermal stability, and water solubility when starch was surface-modified with silanes hydrolyzed at pH 5. These outcomes made the fabricated bioplastics strong candidates for petroleum-based plastics for packaging applications.


Subject(s)
Soybean Oil , Starch , Soybean Oil/chemistry , Starch/chemistry , Silanes , Water/chemistry
20.
Appl Spectrosc ; 77(12): 1333-1343, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37801483

ABSTRACT

Degumming is an oil refinement process in which the naturally occurring phospholipids in crude vegetable oils are removed. Enzymatic degumming results in higher oil yield and more cost-efficient processing compared to traditional degumming processes using only water or acid. Phospholipase C hydrolyses phospholipids into diglycerides and phosphate groups during degumming. The diglyceride content can therefore be considered a good indicator of the state of the enzymatic reaction. This study investigates the use of near-infrared (NIR) spectroscopy and chemometrics to monitor the degumming process by quantifying diglycerides in soybean oil in both off-line and on-line settings. Fifteen enzymatic degumming lab scale batches originating from a definitive screening design (with varying water, acid, and enzyme dosages) were investigated with the aim to develop a NIR spectroscopy prediction method. By applying tailored preprocessing and variable selection methods, the diglyceride content can be predicted with a root mean square error of prediction of 0.06% (w/w) for the off-line set-up and 0.07% (w/w) for the on-line set-up. The results show that the diglyceride content is a good indicator of the enzyme performance and that NIR spectroscopy is a suitable analytical technique for robust real-time diglyceride quantification.


Subject(s)
Soybean Oil , Spectroscopy, Near-Infrared , Soybean Oil/chemistry , Spectroscopy, Near-Infrared/methods , Diglycerides , Plant Oils/chemistry , Phospholipids , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...