Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 147
Filter
1.
Bone ; 184: 117113, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38703937

ABSTRACT

Ca2+/calmodulin-dependent protein kinase kinase 2 (CaMKK2) is a multi-functional, serine/threonine protein kinase with predominant roles in inflammation, systemic energy metabolism, and bone remodeling. We previously reported that global ablation of CaMKK2 or its systemic pharmacological inhibition led to bone mass accrual in mice by stimulating osteoblasts and inhibiting osteoclasts. However, a direct, cell-intrinsic role for the kinase in the osteoblast lineage has not been established. Here we report that conditional deletion of CaMKK2 from osteoprogenitors, using the Osterix 1 (Osx1) - GFP::Cre (tetracycline-off) mouse line, resulted in increased trabecular bone mass due to an acute stimulation of osteoblast function in male and female mice. The acute simulation of osteoblasts and bone formation following conditional ablation of osteoprogenitor-derived CaMKK2 was sustained only in female mice. Periosteal bone formation at the cortical bone was enhanced only in male conditional knockout mice without altering cortical bone mass or strength. Prolonged deletion of CaMKK2 in early osteoblasts was accompanied by a stimulation of osteoclasts in both sexes, indicating a coupling effect. Notably, alterations in trabecular and cortical bone mass were absent in the doxycycline-removed "Cre-only" Osx1-GFP::Cre mice. Thus, the increase in osteoblast function at the trabecular and cortical bone surfaces following the conditional deletion of CaMKK2 in osteoprogenitors is indicative of a direct but sex-divergent role for the kinase in osteoblasts.


Subject(s)
Calcium-Calmodulin-Dependent Protein Kinase Kinase , Osteoblasts , Sp7 Transcription Factor , Animals , Osteoblasts/metabolism , Female , Calcium-Calmodulin-Dependent Protein Kinase Kinase/metabolism , Male , Sp7 Transcription Factor/metabolism , Sp7 Transcription Factor/genetics , Osteogenesis/physiology , Sex Characteristics , Mice , Mice, Knockout , Osteoclasts/metabolism , Stem Cells/metabolism , Gene Deletion
2.
J Oral Sci ; 66(1): 15-19, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38008425

ABSTRACT

PURPOSE: After tooth extraction, preservation of the alveolar ridge by socket grafting attenuates bone resorption. Runt-related transcription factor 2 (RUNX2) and SP7/Osterix (OSX) are transcription factors playing an important role in osteoblast differentiation. The purpose of this study was to evaluate the effects of carbonate apatite (CO3Ap) on osteoblast-related gene and protein expression after socket grafting. METHODS: Alveolar bone and new bone after CO3Ap grafting were collected at the time of implant placement. Levels of mRNA for RUNX2, SP7/OSX, bone morphogenetic protein 2 (BMP2), BMP7 and platelet derived growth factor B were determined by real-time PCR. Immunostaining was performed using antibodies against RUNX2, SP7/OSX, vimentin and cytokeratin. To evaluate bone resorption rates, cone-beam CT (CBCT) imaging was performed after socket grafting and before implant placement. RESULTS: CBCT imaging showed that the average degree of bone resorption at the CO3Ap graft site was 7.15 ± 3.79%. At the graft sites, levels of SP7/OSX and BMP2 mRNA were significantly increased. Replacement of CO3Ap with osteoid was evident histologically, and in the osteoid osteoblast-like cells were stained for SP7/OSX and vimentin. CONCLUSION: These results show that gene expression of both SP7/OSX and BMP2 can be induced by CO3Ap, suggesting that increased expression of SP7/OSX and vimentin may be involved in the BMP pathway.


Subject(s)
Apatites , Bone Morphogenetic Protein 2 , Bone Resorption , Humans , Bone Morphogenetic Protein 2/genetics , Bone Morphogenetic Protein 2/metabolism , Core Binding Factor Alpha 1 Subunit/metabolism , Vimentin/genetics , Vimentin/metabolism , Vimentin/pharmacology , Cell Differentiation , Osteoblasts/metabolism , Alveolar Process/surgery , RNA, Messenger/metabolism , Bone Resorption/metabolism , Gene Expression , Sp7 Transcription Factor/genetics , Sp7 Transcription Factor/metabolism , Sp7 Transcription Factor/pharmacology
3.
Int J Mol Sci ; 24(20)2023 Oct 17.
Article in English | MEDLINE | ID: mdl-37894935

ABSTRACT

Deubiquitinases (DUBs) are essential for bone remodeling by regulating the differentiation of osteoblast and osteoclast. USP17 encodes for a deubiquitinating enzyme, specifically known as ubiquitin-specific protease 17, which plays a critical role in regulating protein stability and cellular signaling pathways. However, the role of USP17 during osteoblast differentiation has not been elusive. In this study, we initially investigated whether USP17 could regulate the differentiation of osteoblasts. Moreover, USP17 overexpression experiments were conducted to assess the impact on osteoblast differentiation induced by bone morphogenetic protein 4 (BMP4). The positive effect was confirmed through alkaline phosphatase (ALP) expression and activity studies since ALP is a representative marker of osteoblast differentiation. To confirm this effect, Usp17 knockdown was performed, and its impact on BMP4-induced osteoblast differentiation was examined. As expected, knockdown of Usp17 led to the suppression of both ALP expression and activity. Mechanistically, it was observed that USP17 interacted with Osterix (Osx), which is a key transcription factor involved in osteoblast differentiation. Furthermore, overexpression of USP17 led to an increase in Osx protein levels. Thus, to investigate whether this effect was due to the intrinsic function of USP17 in deubiquitination, protein stabilization experiments and ubiquitination analysis were conducted. An increase in Osx protein levels was attributed to an enhancement in protein stabilization via USP17-mediated deubiquitination. In conclusion, USP17 participates in the deubiquitination of Osx, contributing to its protein stabilization, and ultimately promoting the differentiation of osteoblasts.


Subject(s)
Osteoblasts , Osteogenesis , Sp7 Transcription Factor/genetics , Sp7 Transcription Factor/metabolism , Osteogenesis/genetics , Osteoblasts/metabolism , Cell Differentiation/genetics , Protein Stability , Deubiquitinating Enzymes/genetics , Deubiquitinating Enzymes/metabolism
4.
Cell Tissue Res ; 393(2): 265-279, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37247031

ABSTRACT

Osteoblast differentiation is regulated by various transcription factors, signaling molecules, and posttranslational modifiers. The histone acetyltransferase Mof (Kat8) is involved in distinct physiological processes. However, the exact role of Mof in osteoblast differentiation and growth remains unknown. Herein, we demonstrated that Mof expression with histone H4K16 acetylation increased during osteoblast differentiation. Inhibition of Mof by siRNA knockdown or small molecule inhibitor, MG149 which is a potent histone acetyltransferase inhibitor, reduced the expression level and transactivation potential of osteogenic key markers, Runx2 and Osterix, thus inhibiting osteoblast differentiation. Besides, Mof overexpression also enhanced the protein levels of Runx2 and Osterix. Mof could directly bind the promoter region of Runx2/Osterix to potentiate their mRNA levels, possibly through Mof-mediated H4K16ac to facilitate the activation of transcriptional programs. Importantly, Mof physically interacts with Runx2/Osterix for the stimulation of osteoblast differentiation. Yet, Mof knockdown showed indistinguishable effect on cell proliferation or apoptosis in MSCs and preosteoblast cells. Taken together, our results uncover Mof functioning as a novel regulator of osteoblast differentiation via the promotional effects on Runx2/Osterix and rationalize Mof as a potential therapeutic target, like possible application of inhibitor MG149 for the treatment of osteosarcoma or developing specific Mof activator to ameliorate osteoporosis.


Subject(s)
Osteogenesis , Transcription Factors , Cell Differentiation , Core Binding Factor Alpha 1 Subunit/genetics , Core Binding Factor Alpha 1 Subunit/metabolism , Histone Acetyltransferases/metabolism , Osteoblasts , Sp7 Transcription Factor/genetics , Sp7 Transcription Factor/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Animals , Mice
5.
Curr Osteoporos Rep ; 21(2): 241-252, 2023 04.
Article in English | MEDLINE | ID: mdl-36881265

ABSTRACT

PURPOSE OF REVIEW: The purpose of this review is to summarize the different roles of the transcription factor SP7 in regulating bone formation and remodeling, discuss current studies in investigating the causal relationship between SP7 mutations and human skeletal disease, and highlight potential therapeutic treatments that targeting SP7 and the gene networks that it controls. RECENT FINDINGS: Cell-type and stage-specific functions of SP7 have been identified during bone formation and remodeling. Normal bone development regulated by SP7 is strongly associated with human bone health. Dysfunction of SP7 results in common or rare skeletal diseases, including osteoporosis and osteogenesis imperfecta with different inheritance patterns. SP7-associated signaling pathways, SP7-dependent target genes, and epigenetic regulations of SP7 serve as new therapeutic targets in the treatment of skeletal disorders. This review addresses the importance of SP7-regulated bone development in studying bone health and skeletal disease. Recent advances in whole genome and exome sequencing, GWAS, multi-omics, and CRISPR-mediated activation and inhibition have provided the approaches to investigate the gene-regulatory networks controlled by SP7 in bone and the therapeutic targets to treat skeletal disease.


Subject(s)
Osteogenesis Imperfecta , Osteogenesis , Humans , Osteogenesis/genetics , Osteogenesis Imperfecta/genetics , Bone and Bones , Mutation , Signal Transduction/genetics , Sp7 Transcription Factor/genetics
6.
Int J Mol Sci ; 24(5)2023 Feb 21.
Article in English | MEDLINE | ID: mdl-36901736

ABSTRACT

Epigenetic modifications are critical for cell differentiation and growth. As a regulator of H3K9 methylation, Setdb1 is implicated in osteoblast proliferation and differentiation. The activity and nucleus localization of Setdb1 are regulated by its binding partner, Atf7ip. However, whether Atf7ip is involved in the regulation of osteoblast differentiation remains largely unclear. In the present study, we found that Atf7ip expression was upregulated during the osteogenesis of primary bone marrow stromal cells and MC3T3-E1 cells, and was induced in PTH-treated cells. The overexpression of Atf7ip impaired osteoblast differentiation in MC3T3-E1 cells regardless of PTH treatment, as measured by the expression of osteoblast differentiation markers, Alp-positive cells, Alp activity, and calcium deposition. Conversely, the depletion of Atf7ip in MC3T3-E1 cells promoted osteoblast differentiation. Compared with the control mice, animals with Atf7ip deletion in the osteoblasts (Oc-Cre;Atf7ipf/f) showed more bone formation and a significant increase in the bone trabeculae microarchitecture, as reflected by µ-CT and bone histomorphometry. Mechanistically, Atf7ip contributed to the nucleus localization of Setdb1 in MC3T3-E1, but did not affect Setdb1 expression. Atf7ip negatively regulated Sp7 expression, and through specific siRNA, Sp7 knockdown attenuated the enhancing role of Atf7ip deletion in osteoblast differentiation. Through these data, we identified Atf7ip as a novel negative regulator of osteogenesis, possibly via its epigenetic regulation of Sp7 expression, and demonstrated that Atf7ip inhibition is a potential therapeutic measure for enhancing bone formation.


Subject(s)
Epigenesis, Genetic , Osteogenesis , Animals , Mice , Osteogenesis/genetics , Sp7 Transcription Factor/genetics , Cell Differentiation/genetics , Osteoblasts/metabolism , Repressor Proteins/genetics
7.
Int J Mol Sci ; 23(10)2022 May 18.
Article in English | MEDLINE | ID: mdl-35628456

ABSTRACT

Osteoblast differentiation is a tightly regulated process in which key transcription factors (TFs) and their target genes constitute gene regulatory networks (GRNs) under the control of osteogenic signaling pathways. Among these TFs, Sp7 works as an osteoblast determinant critical for osteoblast differentiation. Following the identification of Sp7 and a large number of its functional studies, recent genome-scale analyses have made a major contribution to the identification of a "non-canonical" mode of Sp7 action as well as "canonical" ones. The analyses have not only confirmed known Sp7 targets but have also uncovered its additional targets and upstream factors. In addition, biochemical analyses have demonstrated that Sp7 actions are regulated by chemical modifications and protein-protein interaction with other transcriptional regulators. Sp7 is also involved in chondrocyte differentiation and osteocyte biology as well as postnatal bone metabolism. The critical role of SP7 in the skeleton is supported by its relevance to human skeletal diseases. This review aims to overview the Sp7 actions in skeletal development and maintenance, particularly focusing on recent advances in our understanding of how Sp7 functions in the skeleton under physiological and pathological conditions.


Subject(s)
Bone Diseases , Musculoskeletal System , Osteoblasts , Sp7 Transcription Factor , Bone Diseases/genetics , Humans , Musculoskeletal System/metabolism , Osteoblasts/metabolism , Osteogenesis/genetics , Skeleton/metabolism , Sp7 Transcription Factor/genetics
8.
Int J Mol Sci ; 23(8)2022 Apr 13.
Article in English | MEDLINE | ID: mdl-35457117

ABSTRACT

Yin Yang 2 (YY2) is a paralog of YY1, a well-known multifunctional transcription factor containing a C-terminal zinc finger domain. Although the role of YY1 in various biological processes, such as the cell cycle, cell differentiation and tissue development, is well established, the function of YY2 has not been fully determined. In this study, we investigated the functional role of YY2 during osteoblast differentiation. YY2 overexpression and knockdown increased and decreased osteoblast differentiation, respectively, in BMP4-induced C2C12 cells. Mechanistically, YY2 overexpression increased the mRNA and protein levels of Osterix (Osx), whereas YY2 knockdown had the opposite effect. To investigate whether YY2 regulates Osx transcription, the effect of YY2 overexpression and knockdown on Osx promoter activity was evaluated. YY2 overexpression significantly increased Osx promoter activity in a dose-dependent manner, whereas YY2 knockdown had the opposite effect. Furthermore, vectors containing deletion and point mutations were constructed to specify the regulation site. Both the Y1 and Y2 sites were responsible for YY2-mediated Osx promoter activation. These results indicate that YY2 is a positive regulator of osteoblast differentiation that functions by upregulating the promoter activity of Osx, a representative osteogenic transcription factor in C2C12 cells.


Subject(s)
Osteogenesis , Yin-Yang , Cell Differentiation/genetics , Osteoblasts/metabolism , Osteogenesis/genetics , Sp7 Transcription Factor/genetics , Sp7 Transcription Factor/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
9.
Bone ; 160: 116400, 2022 07.
Article in English | MEDLINE | ID: mdl-35367406

ABSTRACT

Mutations in SP7 (encoding osterix) have been identified as a rare cause of recessive osteogenesis imperfecta ('OI type XII') and in one case of dominant juvenile Paget's disease. We present the first description of young adult siblings with OI due to a unique heterozygous mutation in SP7. The phenotype was characterized by fragility fractures (primarily of the long bone diaphyses), poor healing, scoliosis, and dental malocclusion. Both siblings had very low cortical volumetric bone mineral density on peripheral quantitative computed tomography of the radius (z-scores -6.6 and - 6.7 at the diaphysis), porous cortices, and thin cortices at the radial metaphysis. Histomorphometry demonstrated thin cortices and low bone turnover with reduced osteoblast function. Both siblings were heterozygous for a missense variant affecting a highly conserved zinc finger domain of osterix (c.1019A > C; p.Glu340Ala) on DNA sequencing. Co-transfection of plasmids carrying the SP7 mutation with DLX5 and a luciferase reporter demonstrated that this variant impacted gene function (reduced transcription co-activation compared to wild-type SP7). The low cortical density and cortical porosity seen in our patients are consistent with previous reports of individuals with SP7 mutations. However, the low bone turnover in our patients contrasts with the high turnover state seen in previously reported patients with SP7 mutations. This report indicates that dominant variants in SP7 can give rise to OI. The predominant feature, low cortical density, is common in patients with other SP7 mutations, however other features appear to depend on the specific variant.


Subject(s)
Osteitis Deformans , Osteogenesis Imperfecta , Bone Density/genetics , Bone Remodeling , Bone and Bones , Heterozygote , Humans , Mutation , Osteogenesis Imperfecta/diagnostic imaging , Osteogenesis Imperfecta/genetics , Sp7 Transcription Factor/genetics
10.
Nat Commun ; 13(1): 700, 2022 02 04.
Article in English | MEDLINE | ID: mdl-35121733

ABSTRACT

SP7/Osterix is a transcription factor critical for osteoblast maturation and bone formation. Homozygous loss-of-function mutations in SP7 cause osteogenesis imperfecta type XII, but neomorphic (gain-of-new-function) mutations of SP7 have not been reported in humans. Here we describe a de novo dominant neomorphic missense variant (c.926 C > G:p.S309W) in SP7 in a patient with craniosynostosis, cranial hyperostosis, and long bone fragility. Histomorphometry shows increased osteoblasts but decreased bone mineralization. Mice with the corresponding variant also show a complex skeletal phenotype distinct from that of Sp7-null mice. The mutation alters the binding specificity of SP7 from AT-rich motifs to a GC-consensus sequence (typical of other SP family members) and produces an aberrant gene expression profile, including increased expression of Col1a1 and endogenous Sp7, but decreased expression of genes involved in matrix mineralization. Our study identifies a pathogenic mechanism in which a mutation in a transcription factor shifts DNA binding specificity and provides important in vivo evidence that the affinity of SP7 for AT-rich motifs, unique among SP proteins, is critical for normal osteoblast differentiation.


Subject(s)
Bone Diseases/genetics , Bone and Bones/metabolism , Gene Expression Regulation , Mutation , Sp7 Transcription Factor/genetics , Animals , Bone Diseases/metabolism , Cell Differentiation/genetics , Cell Line , Cells, Cultured , Child , HEK293 Cells , Humans , In Situ Hybridization , Male , Mice, Inbred C57BL , Mice, Knockout , Osteoblasts/cytology , Osteoblasts/metabolism , Sp7 Transcription Factor/metabolism , X-Ray Microtomography
11.
FASEB J ; 36(2): e22115, 2022 02.
Article in English | MEDLINE | ID: mdl-35032415

ABSTRACT

Bone loss is a hallmark of inflammatory bone diseases caused by aberrantly activated osteoclasts (OCLs). Studies have shown that OCLs exhibit various phenotypes and functions due to variations in the source(s) of precursor cells, cytokine expressions, and microenvironment-dependent factors. During these conditions, inflammatory osteoclasts (iOCLs) lose their immune-suppressive effect relative to OCLs under physiological conditions. This induces TNF α-producing CD4+ T cells in an antigen-dependent manner and finally leads to cascade amplification of iOCLs. OCL-derived exosomes have been reported to regulate OCL formation and inhibit the osteoblast activity. However, the specific function and mechanism of iOCL-derived exosomes on osteoblast have not been studied yet. In the present study, we compare the osteoblast promoting activities of iOCL-derived exosomes and OCL-derived exosomes. We found that iOCLs exosomes specifically target osteoblasts through ephrinA2/EphA2. Mechanistically, the lncRNA LIOCE is enriched in iOCL exosomes and promotes the osteoblast activity after being incorporated into osteoblasts. Furthermore, our results revealed that exosomal lncRNA LIOCE stabilizes osteogenic transcription factor Osterix by interacting and reducing the ubiquitination level of Osterix. This study demonstrated that the bone loss is alleviated in the inflammatory osteolysis mice model after injection of iOCL exosomes encapsulating lncRNA LIOCE. The role of exosomes encapsulating lncRNA LIOCE in promoting bone formation was well established in the rat bone repair model. Our results indicate that iOCL-derived exosomal lncRNA LIOCE promotes bone formation by upregulating Osx expression, and thus, the exosomes encapsulating lncRNA LIOCE may be an effective strategy to increase bone formation in osteoporosis and other bone metabolic disorders.


Subject(s)
Exosomes/genetics , Inflammation/genetics , Osteoblasts/physiology , Osteoclasts/physiology , Osteogenesis/genetics , RNA, Long Noncoding/genetics , Sp7 Transcription Factor/genetics , 3T3 Cells , Animals , Cell Differentiation/genetics , Cell Line , HEK293 Cells , Humans , Male , Mice , Mice, Inbred C57BL , Osteolysis/genetics , Osteoporosis/genetics , Rats , Transcription Factors/genetics , Ubiquitination/genetics , Up-Regulation/genetics
12.
Biochem Biophys Res Commun ; 587: 9-15, 2022 01 08.
Article in English | MEDLINE | ID: mdl-34861472

ABSTRACT

OBJECTIVE: The role of circadian clock in cementogenesis is unclear. This study examines the role of REV-ERBs, one of circadian clock proteins, in proliferation, migration and mineralization of cementoblasts to fill the gap in knowledge. METHODS: Expression pattern of REV-ERBα in cementoblasts was investigated in vivo and in vitro. CCK-8 assay, scratch wound healing assay, alkaline phosphatase (ALP) and alizarin red S (ARS) staining were performed to evaluate the effects of REV-ERBs activation by SR9009 on proliferation, migration and mineralization of OCCM-30, an immortalized cementoblast cell line. Furthermore, mineralization related markers including osterix (OSX), ALP, bone sialoprotein (BSP) and osteocalcin (OCN) were evaluated. RESULTS: Strong expression of REV-ERBα was found in cellular cementum around tooth apex. Rev-erbα mRNA oscillated periodically in OCCM-30 and declined after mineralization induction. REV-ERBs activation by SR9009 inhibited proliferation but promoted migration of OCCM-30 in vitro. Results of ALP and ARS staining suggested that REV-ERBs activation negatively regulated mineralization of OCCM-30. Mechanically, REV-ERBs activation attenuated the expression of OSX and its downstream targets including ALP, BSP and OCN. CONCLUSIONS: REV-ERBs are involved in cementogenesis and negatively regulate mineralization of cementoblasts via inhibiting OSX expression. Our study provides a potential target regarding periodontal and cementum regeneration.


Subject(s)
Biological Clocks/genetics , Calcification, Physiologic/genetics , Dental Cementum/metabolism , Nuclear Receptor Subfamily 1, Group D, Member 1/genetics , Alkaline Phosphatase/genetics , Alkaline Phosphatase/metabolism , Animals , Cell Differentiation/drug effects , Cell Line, Transformed , Cell Proliferation/drug effects , Cementogenesis/drug effects , Cementogenesis/genetics , Dental Cementum/cytology , Dental Cementum/drug effects , Female , Gene Expression Regulation , Humans , Integrin-Binding Sialoprotein/genetics , Integrin-Binding Sialoprotein/metabolism , Mice , Mice, Inbred C57BL , Nuclear Receptor Subfamily 1, Group D, Member 1/metabolism , Osteocalcin/genetics , Osteocalcin/metabolism , Pyrrolidines/pharmacology , Signal Transduction , Sp7 Transcription Factor/genetics , Sp7 Transcription Factor/metabolism , Thiophenes/pharmacology
13.
J Craniofac Surg ; 33(3): 956-961, 2022 May 01.
Article in English | MEDLINE | ID: mdl-34456284

ABSTRACT

OBJECTIVES: To investigate whether and how the long noncoding RNA (lncRNA) metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) sponges microRNA-96 (miR-96) to achieve the osteogenic differentiation of human bone marrow-derived mesenchymal stem cells (hBMSCs). METHODS: Protein levels were detected by Western blot. Mineralized bone matrix formation was studied by alizarin red staining. Metastasis-associated lung adenocarcinoma transcript 1, miR-96, and osteogenesis-related Messenger RNA expression was assessed by Quantitative Real-time Polymerase Chain Reaction (qRT-PCR). The interactions between miR-96 and osterix (Osx), MALAT1, and miR-96 were determined by luciferase reporter assay. RESULTS: The expression of MALAT1 was upregulated whereas that of miR-96 was downregulated in osteogenic hBMSCs. In addition, the expression of MALAT1 significantly decreased whereas that of miR-96 increased in the hBMSCs of osteoporosis (OP) patients. qRT-PCR and alizarin red staining assays showed that MALAT1 silencing or miR-96 overexpression inhibits hBMSC osteogenic differentiation and vice versa. overexpression of miR-96 reversed the promotive effect of MALAT1 on the osteogenic differentiation of hBMSCs. Dual luciferase report assay verified that miR-96 is a regulatory target of MALAT1 and that Osx is a gene target of miR-96. CONCLUSIONS: Taken together, the results demonstrate that MALAT1 promotes the osteogenic differentiation of hBMSCs by regulating the miR-96/Osx axis. Our study provides novel mechanistic insights into the critical role of lncRNA MALAT1 as a microRNA sponge in OP patients and sheds new light on lncRNA-directed diagnostics and therapeutics in OP.


Subject(s)
Mesenchymal Stem Cells , MicroRNAs , Osteoblasts , Osteoporosis , RNA, Long Noncoding , Sp7 Transcription Factor , Bone Marrow , Cell Differentiation/genetics , Cells, Cultured , Humans , Mesenchymal Stem Cells/cytology , MicroRNAs/genetics , Osteoblasts/cytology , Osteogenesis/genetics , RNA, Long Noncoding/genetics , Sp7 Transcription Factor/genetics
14.
Nat Commun ; 12(1): 6271, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34725346

ABSTRACT

Some osteoblasts embed within bone matrix, change shape, and become dendrite-bearing osteocytes. The circuitry that drives dendrite formation during "osteocytogenesis" is poorly understood. Here we show that deletion of Sp7 in osteoblasts and osteocytes causes defects in osteocyte dendrites. Profiling of Sp7 target genes and binding sites reveals unexpected repurposing of this transcription factor to drive dendrite formation. Osteocrin is a Sp7 target gene that promotes osteocyte dendrite formation and rescues defects in Sp7-deficient mice. Single-cell RNA-sequencing demonstrates defects in osteocyte maturation in the absence of Sp7. Sp7-dependent osteocyte gene networks are associated with human skeletal diseases. Moreover, humans with a SP7R316C mutation show defective osteocyte morphology. Sp7-dependent genes that mark osteocytes are enriched in neurons, highlighting shared features between osteocytic and neuronal connectivity. These findings reveal a role for Sp7 and its target gene Osteocrin in osteocytogenesis, revealing that pathways that control osteocyte development influence human bone diseases.


Subject(s)
Bone Diseases/metabolism , Dendrites/metabolism , Muscle Proteins/metabolism , Osteocytes/metabolism , Sp7 Transcription Factor/metabolism , Transcription Factors/metabolism , Adolescent , Animals , Bone Diseases/genetics , Bone Diseases/physiopathology , Female , Gene Expression Regulation , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Muscle Proteins/genetics , Mutation , Sp7 Transcription Factor/genetics , Transcription Factors/genetics
15.
Commun Biol ; 4(1): 1258, 2021 11 03.
Article in English | MEDLINE | ID: mdl-34732852

ABSTRACT

Endochondral ossification is regulated by transcription factors that include SRY-box transcription factor 9, runt-related protein 2 (Runx2), and Osterix. However, the sequential and harmonious regulation of the multiple steps of endochondral ossification is unclear. This study identified zinc finger homeodomain 4 (Zfhx4) as a crucial transcriptional partner of Osterix. We found that Zfhx4 was highly expressed in cartilage and that Zfhx4 deficient mice had reduced expression of matrix metallopeptidase 13 and inhibited calcification of cartilage matrices. These phenotypes were very similar to impaired chondrogenesis in Osterix deficient mice. Coimmunoprecipitation and immunofluorescence indicated a physical interaction between Zfhx4 and Osterix. Notably, Zfhx4 and Osterix double mutant mice showed more severe phenotype than Zfhx4 deficient mice. Additionally, Zfhx4 interacted with Runx2 that functions upstream of Osterix. Our findings suggest that Zfhx4 coordinates the transcriptional network of Osterix and, consequently, endochondral ossification.


Subject(s)
Homeodomain Proteins/genetics , Osteogenesis/genetics , Sp7 Transcription Factor/genetics , Animals , Homeodomain Proteins/metabolism , Mice , Sp7 Transcription Factor/metabolism
16.
Biochem Biophys Res Commun ; 581: 89-95, 2021 12 03.
Article in English | MEDLINE | ID: mdl-34662808

ABSTRACT

Tooth development involves the coordinated transcriptional regulation of extracellular matrix proteins produced by ameloblasts and odontoblasts. In this study, whole-genome ChIP-seq analysis was applied to identify the transcriptional regulatory gene targets of Sp6 in mesenchymal cells of the developing tooth. Bioinformatic analysis of a pool of Sp6 target peaks identified the consensus nine nucleotide binding DNA motif CTg/aTAATTA. Consistent with these findings, a number of enamel and dentin matrix genes including amelogenin (Amelx), ameloblastin (Ambn), enamelin (Enam) and dental sialophosphoprotein (Dspp), were identified to contain Sp6 target sequences. Sp6 peaks were also found in other important tooth genes including transcription factors (Dlx2, Dlx3, Dlx4, Dlx5, Sp6, Sp7, Pitx2, and Msx2) and extracellular matrix-related proteins (Col1a2, Col11a2, Halpn1). Unsupervised UMAP clustering of tooth single cell RNA-seq data confirmed the presence of Sp6 transcripts co-expressed with many of the identified target genes within ameloblasts and odontoblasts. Lastly, transcriptional reporter assays using promoter fragments from the Hapln1 and Sp6 gene itself revealed that Sp6 co-expression enhanced gene transcriptional activity. Taken together these results highlight that Sp6 is a major regulator of multiple extracellular matrix genes in the developing tooth.


Subject(s)
Ameloblasts/metabolism , Gene Expression Regulation, Developmental , Gene Regulatory Networks , Kruppel-Like Transcription Factors/genetics , Molar/metabolism , Odontoblasts/metabolism , Odontogenesis/genetics , Ameloblasts/cytology , Amelogenin/genetics , Amelogenin/metabolism , Animals , Animals, Newborn , Collagen Type I/genetics , Collagen Type I/metabolism , Dental Enamel Proteins/genetics , Dental Enamel Proteins/metabolism , Extracellular Matrix Proteins/genetics , Extracellular Matrix Proteins/metabolism , Kruppel-Like Transcription Factors/metabolism , Mice , Mice, Inbred C57BL , Molar/cytology , Molar/growth & development , Odontoblasts/cytology , Promoter Regions, Genetic , Proteoglycans/genetics , Proteoglycans/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Sequence Analysis, RNA , Signal Transduction , Single-Cell Analysis , Sp7 Transcription Factor/genetics , Sp7 Transcription Factor/metabolism
17.
Biosci Trends ; 15(4): 240-248, 2021 Sep 22.
Article in English | MEDLINE | ID: mdl-34248133

ABSTRACT

Circulating inflammatory factors affect osteoblast and osteoclast formation and activity in osteoporosis. Estrogen affects the migration of Th17 cells via the C-C chemokine receptor type 6 (CCR6) and C-C chemokine ligand 20 (CCL20) signaling pathways to modulate bone metabolism; however, it is unclear whether and how CCR6 modulates bone homeostasis. In the present study, CCR6 knockout (CCR6-/-) mice were selected to investigate the effects of CCR6 in the regulation of homeostasis of osteoblasts and osteoclasts. Primary osteoblasts were isolated from the calvarium of newborn CCR6-/- or wild-type mice, followed by osteoblastic differentiation culture in vitro. CCR6 deletion reduced osteoblast activity in terms of alkaline phosphatase (ALP) activity and inhibited osteoblast mineralization according to the results of Alizarin Red S staining, whereas it did not affect the proliferation of osteoblasts. CCR6 deletion inhibited Osterix mRNA expression in osteoblasts during the late stage of mineralization in vitro, while it did not affect mRNA expression levels of runt-related transcription factor 2 (Runx2) and Collagen-1. The ratio of osteoprotegerin (OPG) /receptor activator of nuclear factor κ-Β ligand (RANKL) mRNA level in osteoblasts was decreased by CCR6 deficiency in the culture treated with 1,25(OH)2D3/PGE2, while there was no effect observed in the normal culture environment. The results provide novel insights, such as that CCR6 deletion suppresses osteoblast differentiation by downregulating the expression levels of the transcription factor Osterix, and indirectly promotes osteoclast production by increasing transcription of RANKL. This may be one of the mechanisms via which CCR6 deletion regulates bone metabolism.


Subject(s)
Osteoprotegerin , RANK Ligand/genetics , Receptors, CCR6/metabolism , Sp7 Transcription Factor/genetics , Animals , Cell Differentiation , Mice , Osteoblasts , Osteoclasts , Osteogenesis , Osteoprotegerin/genetics , Receptor Activator of Nuclear Factor-kappa B
18.
PLoS One ; 16(7): e0254426, 2021.
Article in English | MEDLINE | ID: mdl-34292968

ABSTRACT

Aberrant NF-κB signaling fuels tumor growth in multiple human cancer types including both hematologic and solid malignancies. Chronic elevated alternative NF-κB signaling can be modeled in transgenic mice upon activation of a conditional NF-κB-inducing kinase (NIK) allele lacking the regulatory TRAF3 binding domain (NT3). Here, we report that expression of NT3 in the mesenchymal lineage with Osterix (Osx/Sp7)-Cre or Fibroblast-Specific Protein 1 (FSP1)-Cre caused subcutaneous, soft tissue tumors. These tumors displayed significantly shorter latency and a greater multiple incidence rate in Fsp1-Cre;NT3 compared to Osx-Cre;NT3 mice, regardless of sex. Histological assessment revealed poorly differentiated solid tumors with some spindled patterns, as well as robust RelB immunostaining, confirming activation of alternative NF-κB. Even though NT3 expression also occurs in the osteolineage in Osx-Cre;NT3 mice, we observed no bony lesions. The staining profiles and pattern of Cre expression in the two lines pointed to a mesenchymal tumor origin. Immunohistochemistry revealed that these tumors stain strongly for alpha-smooth muscle actin (αSMA), although vimentin staining was uniform only in Osx-Cre;NT3 tumors. Negative CD45 and S100 immunostains precluded hematopoietic and melanocytic origins, respectively, while positive staining for cytokeratin 19 (CK19), typically associated with epithelia, was found in subpopulations of both tumors. Principal component, differential expression, and gene ontology analyses revealed that NT3 tumors are distinct from normal mesenchymal tissues and are enriched for NF-κB related biological processes. We conclude that constitutive activation of the alternative NF-κB pathway in the mesenchymal lineage drives spontaneous sarcoma and provides a novel mouse model for NF-κB related sarcomas.


Subject(s)
Gene Expression Regulation, Neoplastic , Integrases , Neoplasm Proteins , Protein Serine-Threonine Kinases , S100 Calcium-Binding Protein A4 , Sarcoma, Experimental , Sp7 Transcription Factor , Animals , Enzyme Induction , Integrases/genetics , Integrases/metabolism , Mice , Mice, Transgenic , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Protein Serine-Threonine Kinases/biosynthesis , Protein Serine-Threonine Kinases/genetics , S100 Calcium-Binding Protein A4/genetics , S100 Calcium-Binding Protein A4/metabolism , Sarcoma, Experimental/genetics , Sarcoma, Experimental/metabolism , Sarcoma, Experimental/pathology , Sp7 Transcription Factor/genetics , Sp7 Transcription Factor/metabolism , NF-kappaB-Inducing Kinase
19.
Genes (Basel) ; 12(7)2021 06 25.
Article in English | MEDLINE | ID: mdl-34202311

ABSTRACT

Transforming growth factor ß (TGFß) signaling plays an important role in skeletal development. We previously demonstrated that the loss of TGFß receptor II (Tgfbr2) in Osterix-Cre-expressing mesenchyme results in defects in bones and teeth due to reduced proliferation and differentiation in pre-osteoblasts and pre-odontoblasts. These Osterix-Cre;Tgfbr2f/f mice typically die within approximately four weeks for unknown reasons. To investigate the cause of death, we performed extensive pathological analysis on Osterix-Cre- (Cre-), Osterix-Cre+;Tgfbr2f/wt (HET), and Osterix-Cre+;Tgfbr2f/f (CKO) mice. We also crossed Osterix-Cre mice with the ROSA26mTmG reporter line to identify potential off-target Cre expression. The findings recapitulated published skeletal and tooth abnormalities and revealed previously unreported osteochondral dysplasia throughout both the appendicular and axial skeletons in the CKO mice, including the calvaria. Alterations to the nasal area and teeth suggest a potentially reduced capacity to sense and process food, while off-target Cre expression in the gastrointestinal tract may indicate an inability to absorb nutrients. Additionally, altered nasal passages and unexplained changes in diaphragmatic muscle support the possibility of hypoxia. We conclude that these mice likely died due to a combination of breathing difficulties, malnutrition, and starvation resulting primarily from skeletal deformities that decreased their ability to sense, gather, and process food.


Subject(s)
Osteogenesis/genetics , Receptor, Transforming Growth Factor-beta Type II/genetics , Skeleton/abnormalities , Sp7 Transcription Factor/genetics , Animals , Bone and Bones/abnormalities , Bone and Bones/physiopathology , Cell Differentiation/genetics , Disease Models, Animal , Gene Expression Regulation, Developmental/genetics , Humans , Integrases/genetics , Mesoderm/growth & development , Mesoderm/metabolism , Mice , Osteoblasts/metabolism , Osteoblasts/pathology , Signal Transduction/genetics , Skeleton/diagnostic imaging , Skeleton/metabolism , Skeleton/physiopathology
20.
Sci Rep ; 11(1): 11968, 2021 06 07.
Article in English | MEDLINE | ID: mdl-34099837

ABSTRACT

The need for an autologous cell source for bone tissue engineering and medical applications has led researchers to explore multipotent mesenchymal stromal cells (MSC), which show stem cell plasticity, in various human tissues. However, MSC with different tissue origins vary in their biological properties and their capability for osteogenic differentiation. Furthermore, MSC-based therapies require large-scale ex vivo expansion, accompanied by cell type-specific replicative senescence, which affects osteogenic differentiation. To elucidate cell type-specific differences in the osteogenic differentiation potential and replicative senescence, we analysed the impact of BMP and TGF-ß signaling in adipose-derived stromal cells (ASC), fibroblasts (FB), and dental pulp stromal cells (DSC). We used inhibitors of BMP and TGF-ß signaling, such as SB431542, dorsomorphin and/or a supplemental addition of BMP-2. The expression of high-affinity binding receptors for BMP-2 and calcium deposition with alizarin red S were evaluated to assess osteogenic differentiation potential. Our study demonstrated that TGF-ß signaling inhibits osteogenic differentiation of ASC, DSC and FB in the early cell culture passages. Moreover, DSC had the best osteogenic differentiation potential and an activation of BMP signaling with BMP-2 could further enhance this capacity. This phenomenon is likely due to an increased expression of activin receptor-like kinase-3 and -6. However, in DSC with replicative senescence (in cell culture passage 10), osteogenic differentiation sharply decreased, and the simultaneous use of BMP-2 and SB431542 did not result in further improvement of this process. In comparison, ASC retain a similar osteogenic differentiation potential regardless of whether they were in the early (cell culture passage 3) or later (cell culture passage 10) stages. Our study elucidated that ASC, DSC, and FB vary functionally in their osteogenic differentiation, depending on their tissue origin and replicative senescence. Therefore, our study provides important insights for cell-based therapies to optimize prospective bone tissue engineering strategies.


Subject(s)
Cell Differentiation/physiology , Cellular Senescence/physiology , Tissue Engineering/methods , Activin Receptors/genetics , Activin Receptors/metabolism , Adipose Tissue/metabolism , Biomarkers , Bone Morphogenetic Protein 2/genetics , Bone Morphogenetic Protein 2/metabolism , Cell Culture Techniques , Fibroblasts/cytology , Gene Expression Regulation , Humans , Mesenchymal Stem Cells/cytology , Osteogenesis , Signal Transduction , Sp7 Transcription Factor/genetics , Sp7 Transcription Factor/metabolism , Stromal Cells/cytology , beta Catenin/genetics , beta Catenin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...