Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 12(12): e0187609, 2017.
Article in English | MEDLINE | ID: mdl-29261656

ABSTRACT

Agonists at the nicotinic acetylcholine alpha 7 receptor (nAChR α7) subtype have the potential to treat cognitive deficits in patients with Alzheimer's disease (AD) or schizophrenia. Visuo-spatial paired associates learning (vsPAL) is a task that has been shown to reliably predict conversion from mild cognitive impairment to AD in humans and can also be performed by nonhuman primates. Reversal of scopolamine-induced impairment of vsPAL performance may represent a translational approach for the development of nAChR α7 agonists. The present study investigated the effect of treatment with the acetylcholinesterase inhibitor, donepezil, or three nAChR α7 agonists, BMS-933043, EVP-6124 and RG3487, on vsPAL performance in scopolamine-treated cynomolgus monkeys. Scopolamine administration impaired vsPAL performance accuracy in a dose- and difficulty- dependent manner. The impairment of eventual accuracy, a measure of visuo-spatial learning during the task, was significantly ameliorated by treatment with donepezil (0.3 mg/kg, i.m.), EVP-6124 (0.01 mg/kg, i.m.) or BMS-933043 (0.03, 0.1 and 0.3 mg/kg, i.m.). Both nAChR α7 agonists showed inverted-U shaped dose-effect relationships with EVP-6124 effective at a single dose only whereas BMS-933043 was effective across at least a 10 fold dose/exposure range. RG3487 was not efficacious in this paradigm at the dose range examined (0.03-1 mg/kg, i.m.). These results are the first demonstration that the nAChR α7 agonists, EVP-6124 and BMS-933043, can ameliorate scopolamine-induced cognitive deficits in nonhuman primates performing the vsPAL task.


Subject(s)
Paired-Associate Learning/drug effects , Quinuclidines/pharmacology , Space Perception/classification , Spiro Compounds/pharmacology , Thiophenes/pharmacology , Visual Perception/drug effects , alpha7 Nicotinic Acetylcholine Receptor/agonists , Animals , Donepezil , Indans/pharmacology , Macaca fascicularis , Male , Piperidines/pharmacology , Quinuclidines/chemistry , Reaction Time/drug effects , Scopolamine , Spiro Compounds/chemistry , Task Performance and Analysis , Thiophenes/chemistry , Treatment Outcome
2.
Atten Percept Psychophys ; 76(8): 2286-304, 2014 Nov.
Article in English | MEDLINE | ID: mdl-24939234

ABSTRACT

Attention precues improve the performance of perceptual tasks in many but not all circumstances. These spatial attention effects may depend upon display set size or workload, and have been variously attributed to external noise filtering, stimulus enhancement, contrast gain, or response gain, or to uncertainty or other decision effects. In this study, we document systematically different effects of spatial attention in low- and high-precision judgments, with and without external noise, and in different set sizes in order to contribute to the development of a taxonomy of spatial attention. An elaborated perceptual template model (ePTM) provides an integrated account of a complex set of effects of spatial attention with just two attention factors: a set-size dependent exclusion or filtering of external noise and a narrowing of the perceptual template to focus on the signal stimulus. These results are related to the previous literature by classifying the judgment precision and presence of external noise masks in those experiments, suggesting a taxonomy of spatially cued attention in discrimination accuracy.


Subject(s)
Attention/classification , Cues , Discrimination, Psychological/classification , Psychomotor Performance/classification , Space Perception/classification , Visual Perception/physiology , Adult , Attention/physiology , Discrimination, Psychological/physiology , Humans , Judgment , Models, Psychological , Psychomotor Performance/physiology , Space Perception/physiology
3.
Span J Psychol ; 13(2): 525-37, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20977005

ABSTRACT

The role of different spatial frequency bands on face gender and expression categorization was studied in three experiments. Accuracy and reaction time were measured for unfiltered, low-pass (cut-off frequency of 1 cycle/deg) and high-pass (cutoff frequency of 3 cycles/deg) filtered faces. Filtered and unfiltered faces were equated in root-mean-squared contrast. For low-pass filtered faces reaction times were higher than unfiltered and high-pass filtered faces in both categorization tasks. In the expression task, these results were obtained with expressive faces presented in isolation (Experiment 1) and also with neutral-expressive dynamic sequences where each expressive face was preceded by a briefly presented neutral version of the same face (Experiment 2). For high-pass filtered faces different effects were observed on gender and expression categorization. While both speed and accuracy of gender categorization were reduced comparing to unfiltered faces, the efficiency of expression classification remained similar. Finally, we found no differences between expressive and non expressive faces in the effects of spatial frequency filtering on gender categorization (Experiment 3). These results show a common role of information from the high spatial frequency band in the categorization of face gender and expression.


Subject(s)
Discrimination Learning/classification , Emotions/classification , Facial Expression , Gender Identity , Pattern Recognition, Visual/classification , Perceptual Masking , Space Perception/classification , Adolescent , Adult , Attention , Female , Humans , Male , Middle Aged , Psychophysics , Reaction Time , Young Adult
4.
IEEE Comput Graph Appl ; 28(2): 62-74, 2008.
Article in English | MEDLINE | ID: mdl-18350934

ABSTRACT

When people compare a computer-generated illustration to a hand-drawn illustration of the same object, they usually perceive differences. This seems to indicate that the two kinds of images follow different aesthetic principles. To explore and explain these differences, the authors compare texture stippling in hand-drawn and computer-generated illustrations, using image-processing analysis techniques.


Subject(s)
Computer Graphics , Esthetics , Paintings , Perceptual Closure , Weights and Measures , Computer Simulation , Esthetics/classification , Hand , Humans , Image Enhancement , Imaging, Three-Dimensional/methods , Models, Structural , Reference Standards , Reference Values , Space Perception/classification
SELECTION OF CITATIONS
SEARCH DETAIL
...