Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 17.265
Filter
1.
Sci Rep ; 14(1): 12657, 2024 06 03.
Article in English | MEDLINE | ID: mdl-38825633

ABSTRACT

When lying inside a MRI scanner and even in the absence of any motion, the static magnetic field of MRI scanners induces a magneto-hydrodynamic stimulation of subjects' vestibular organ (MVS). MVS thereby not only causes a horizontal vestibular nystagmus but also induces a horizontal bias in spatial attention. In this study, we aimed to determine the time course of MVS-induced biases in both VOR and spatial attention inside a 3 T MRI-scanner as well as their respective aftereffects after participants left the scanner. Eye movements and overt spatial attention in a visual search task were assessed in healthy volunteers before, during, and after a one-hour MVS period. All participants exhibited a VOR inside the scanner, which declined over time but never vanished completely. Importantly, there was also an MVS-induced horizontal bias in spatial attention and exploration, which persisted throughout the entire hour within the scanner. Upon exiting the scanner, we observed aftereffects in the opposite direction manifested in both the VOR and in spatial attention, which were statistically no longer detectable after 7 min. Sustained MVS effects on spatial attention have important implications for the design and interpretation of fMRI-studies and for the development of therapeutic interventions counteracting spatial neglect.


Subject(s)
Attention , Magnetic Resonance Imaging , Humans , Magnetic Resonance Imaging/methods , Male , Female , Adult , Attention/physiology , Eye Movements/physiology , Young Adult , Reflex, Vestibulo-Ocular/physiology , Space Perception/physiology , Vestibule, Labyrinth/physiology , Vestibule, Labyrinth/diagnostic imaging , Healthy Volunteers
2.
PeerJ ; 12: e17295, 2024.
Article in English | MEDLINE | ID: mdl-38827290

ABSTRACT

This study aimed to examine the influence of sport skill levels on behavioural and neuroelectric performance in visuospatial attention and memory visuospatial tasks were administered to 54 participants, including 18 elite and 18 amateur table tennis players and 18 nonathletes, while event-related potentials were recorded. In all the visuospatial attention and memory conditions, table tennis players displayed faster reaction times than nonathletes, regardless of skill level, although there was no difference in accuracy between groups. In addition, regardless of task conditions, both player groups had a greater P3 amplitude than nonathletes, and elite players exhibited a greater P3 amplitude than amateurs players. The results of this study indicate that table tennis players, irrespective of their skill level, exhibit enhanced visuospatial capabilities. Notably, athletes at the elite level appear to benefit from an augmented allocation of attentional resources when engaging in visuospatial tasks.


Subject(s)
Attention , Cognition , Evoked Potentials , Reaction Time , Humans , Male , Young Adult , Attention/physiology , Cognition/physiology , Evoked Potentials/physiology , Reaction Time/physiology , Female , Tennis/physiology , Tennis/psychology , Adult , Space Perception/physiology , Athletes/psychology , Athletic Performance/physiology , Visual Perception/physiology , Electroencephalography , Adolescent
3.
Sci Rep ; 14(1): 12852, 2024 06 04.
Article in English | MEDLINE | ID: mdl-38834578

ABSTRACT

The dorsal pulvinar has been implicated in visuospatial attentional and perceptual confidence processing. Pulvinar lesions in humans and monkeys lead to spatial neglect symptoms, including an overt spatial saccade bias during free choices. However, it remains unclear whether disrupting the dorsal pulvinar during target selection that relies on a perceptual decision leads to a perceptual impairment or a more general spatial orienting and choice deficit. To address this question, we reversibly inactivated the unilateral dorsal pulvinar by injecting GABA-A agonist THIP while two macaque monkeys performed a color discrimination saccade task with varying perceptual difficulty. We used Signal Detection Theory and simulations to dissociate perceptual sensitivity (d-prime) and spatial selection bias (response criterion) effects. We expected a decrease in d-prime if dorsal pulvinar affects perceptual discrimination and a shift in response criterion if dorsal pulvinar is mainly involved in spatial orienting. After the inactivation, we observed response criterion shifts away from contralesional stimuli, especially when two competing stimuli in opposite hemifields were present. Notably, the d-prime and overall accuracy remained largely unaffected. Our results underline the critical contribution of the dorsal pulvinar to spatial orienting and action selection while showing it to be less important for visual perceptual discrimination.


Subject(s)
Pulvinar , Saccades , Animals , Pulvinar/physiology , Saccades/physiology , Male , Space Perception/physiology , Visual Perception/physiology , Photic Stimulation , Macaca mulatta , Attention/physiology
4.
PLoS One ; 19(5): e0298116, 2024.
Article in English | MEDLINE | ID: mdl-38722850

ABSTRACT

Spatial navigation is a multi-faceted behaviour drawing on many different aspects of cognition. Visuospatial abilities, such as mental rotation and visuospatial working memory, in particular, may be key factors. A range of tests have been developed to assess visuospatial processing and memory, but how such tests relate to navigation ability remains unclear. This understanding is important to advance tests of navigation for disease monitoring in various disorders (e.g., Alzheimer's disease) where spatial impairment is an early symptom. Here, we report the use of an established mobile gaming app, Sea Hero Quest (SHQ), as a measure of navigation ability in a sample of young, predominantly female university students (N = 78; 20; female = 74.3%; mean age = 20.33 years). We used three separate tests of navigation embedded in SHQ: wayfinding, path integration and spatial memory in a radial arm maze. In the same participants, we also collected measures of mental rotation (Mental Rotation Test), visuospatial processing (Design Organization Test) and visuospatial working memory (Digital Corsi). We found few strong correlations across our measures. Being good at wayfinding in a virtual navigation test does not mean an individual will also be good at path integration, have a superior memory in a radial arm maze, or rate themself as having a strong sense of direction. However, we observed that participants who were good in the wayfinding task of SHQ tended to perform well on the three visuospatial tasks examined here, and to also use a landmark strategy in the radial maze task. These findings help clarify the associations between different abilities involved in spatial navigation.


Subject(s)
Spatial Navigation , Humans , Female , Spatial Navigation/physiology , Male , Young Adult , Adult , Memory, Short-Term/physiology , Spatial Memory/physiology , Maze Learning/physiology , Space Perception/physiology , Adolescent , Mobile Applications
5.
Cereb Cortex ; 34(13): 19-29, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38696600

ABSTRACT

While fronto-posterior underconnectivity has often been reported in autism, it was shown that different contexts may modulate between-group differences in functional connectivity. Here, we assessed how different task paradigms modulate functional connectivity differences in a young autistic sample relative to typically developing children. Twenty-three autistic and 23 typically developing children aged 6 to 15 years underwent functional magnetic resonance imaging (fMRI) scanning while completing a reasoning task with visuospatial versus semantic content. We observed distinct connectivity patterns in autistic versus typical children as a function of task type (visuospatial vs. semantic) and problem complexity (visual matching vs. reasoning), despite similar performance. For semantic reasoning problems, there was no significant between-group differences in connectivity. However, during visuospatial reasoning problems, we observed occipital-occipital, occipital-temporal, and occipital-frontal over-connectivity in autistic children relative to typical children. Also, increasing the complexity of visuospatial problems resulted in increased functional connectivity between occipital, posterior (temporal), and anterior (frontal) brain regions in autistic participants, more so than in typical children. Our results add to several studies now demonstrating that the connectivity alterations in autistic relative to neurotypical individuals are much more complex than previously thought and depend on both task type and task complexity and their respective underlying cognitive processes.


Subject(s)
Autistic Disorder , Brain , Magnetic Resonance Imaging , Semantics , Humans , Child , Male , Adolescent , Female , Autistic Disorder/physiopathology , Autistic Disorder/diagnostic imaging , Autistic Disorder/psychology , Brain/diagnostic imaging , Brain/physiopathology , Brain Mapping , Space Perception/physiology , Neural Pathways/physiopathology , Neural Pathways/diagnostic imaging
6.
Hum Brain Mapp ; 45(7): e26690, 2024 May.
Article in English | MEDLINE | ID: mdl-38703117

ABSTRACT

One potential application of forensic "brain reading" is to test whether a suspect has previously experienced a crime scene. Here, we investigated whether it is possible to decode real life autobiographic exposure to spatial locations using fMRI. In the first session, participants visited four out of eight possible rooms on a university campus. During a subsequent scanning session, subjects passively viewed pictures and videos from these eight possible rooms (four old, four novel) without giving any responses. A multivariate searchlight analysis was employed that trained a classifier to distinguish between "seen" versus "unseen" stimuli from a subset of six rooms. We found that bilateral precuneus encoded information that can be used to distinguish between previously seen and unseen rooms and that also generalized to the two stimuli left out from training. We conclude that activity in bilateral precuneus is associated with the memory of previously visited rooms, irrespective of the identity of the room, thus supporting a parietal contribution to episodic memory for spatial locations. Importantly, we could decode whether a room was visited in real life without the need of explicit judgments about the rooms. This suggests that recognition is an automatic response that can be decoded from fMRI data, thus potentially supporting forensic applications of concealed information tests for crime scene recognition.


Subject(s)
Brain Mapping , Magnetic Resonance Imaging , Parietal Lobe , Recognition, Psychology , Humans , Male , Female , Parietal Lobe/physiology , Parietal Lobe/diagnostic imaging , Young Adult , Recognition, Psychology/physiology , Brain Mapping/methods , Adult , Photic Stimulation/methods , Pattern Recognition, Visual/physiology , Space Perception/physiology , Memory, Episodic
7.
Sci Rep ; 14(1): 10304, 2024 05 05.
Article in English | MEDLINE | ID: mdl-38705917

ABSTRACT

Understanding neurogenetic mechanisms underlying neuropsychiatric disorders such as schizophrenia and autism is complicated by their inherent clinical and genetic heterogeneity. Williams syndrome (WS), a rare neurodevelopmental condition in which both the genetic alteration (hemideletion of ~ twenty-six 7q11.23 genes) and the cognitive/behavioral profile are well-defined, offers an invaluable opportunity to delineate gene-brain-behavior relationships. People with WS are characterized by increased social drive, including particular interest in faces, together with hallmark difficulty in visuospatial processing. Prior work, primarily in adults with WS, has searched for neural correlates of these characteristics, with reports of altered fusiform gyrus function while viewing socioemotional stimuli such as faces, along with hypoactivation of the intraparietal sulcus during visuospatial processing. Here, we investigated neural function in children and adolescents with WS by using four separate fMRI paradigms, two that probe each of these two cognitive/behavioral domains. During the two visuospatial tasks, but not during the two face processing tasks, we found bilateral intraparietal sulcus hypoactivation in WS. In contrast, during both face processing tasks, but not during the visuospatial tasks, we found fusiform hyperactivation. These data not only demonstrate that previous findings in adults with WS are also present in childhood and adolescence, but also provide a clear example that genetic mechanisms can bias neural circuit function, thereby affecting behavioral traits.


Subject(s)
Magnetic Resonance Imaging , Williams Syndrome , Humans , Williams Syndrome/physiopathology , Williams Syndrome/genetics , Williams Syndrome/diagnostic imaging , Magnetic Resonance Imaging/methods , Adolescent , Child , Female , Male , Brain Mapping/methods , Brain/diagnostic imaging , Brain/physiopathology , Face , Facial Recognition/physiology , Parietal Lobe/physiopathology , Parietal Lobe/diagnostic imaging , Space Perception/physiology
8.
Sci Rep ; 14(1): 10377, 2024 05 06.
Article in English | MEDLINE | ID: mdl-38710784

ABSTRACT

This study investigated the development of spatiotemporal perceptual interactions in 5-to-7 years old children. Participants reproduced the temporal and spatial interval between sequentially presented visual stimuli. The time and spacing between stimuli were experimentally manipulated. In addition, cognitive capacities were assessed using neuropsychological tests. Results revealed that starting at 5 years old, children exhibited spatial biases in their time estimations and temporal biases in their spatial estimations, pointing at space-time interference. In line with developmental improvement of temporal and spatial abilities, these spatiotemporal biases decreased with age. Importantly, short-term memory capacity was a predictor of space-time interference pointing to shared cognitive mechanisms between time and space processing. Our results support the symmetrical hypothesis that proposes a common neurocognitive mechanism for processing time and space.


Subject(s)
Memory, Short-Term , Space Perception , Humans , Child, Preschool , Female , Child , Male , Space Perception/physiology , Memory, Short-Term/physiology , Time Perception/physiology , Child Development/physiology , Cognition/physiology , Neuropsychological Tests , Photic Stimulation/methods
9.
Curr Biol ; 34(10): 2256-2264.e3, 2024 05 20.
Article in English | MEDLINE | ID: mdl-38701787

ABSTRACT

The hippocampal formation contains neurons responsive to an animal's current location and orientation, which together provide the organism with a neural map of space.1,2,3 Spatially tuned neurons rely on external landmark cues and internally generated movement information to estimate position.4,5 An important class of landmark cue are the boundaries delimiting an environment, which can define place cell field position6,7 and stabilize grid cell firing.8 However, the precise nature of the sensory information used to detect boundaries remains unknown. We used 2-dimensional virtual reality (VR)9 to show that visual cues from elevated walls surrounding the environment are both sufficient and necessary to stabilize place and grid cell responses in VR, when only visual and self-motion cues are available. By contrast, flat boundaries formed by the edges of a textured floor did not stabilize place and grid cells, indicating only specific forms of visual boundary stabilize hippocampal spatial firing. Unstable grid cells retain internally coherent, hexagonally arranged firing fields, but these fields "drift" with respect to the virtual environment over periods >5 s. Optic flow from a virtual floor does not slow drift dynamics, emphasizing the importance of boundary-related visual information. Surprisingly, place fields are more stable close to boundaries even with floor and wall cues removed, suggesting invisible boundaries are inferred using the motion of a discrete, separate cue (a beacon signaling reward location). Subsets of place cells show allocentric directional tuning toward the beacon, with strength of tuning correlating with place field stability when boundaries are removed.


Subject(s)
Cues , Grid Cells , Virtual Reality , Animals , Grid Cells/physiology , Male , Hippocampus/physiology , Space Perception/physiology , Rats , Place Cells/physiology , Visual Perception/physiology , Rats, Long-Evans , Orientation/physiology
10.
Nat Rev Neurosci ; 25(6): 428-448, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38714834

ABSTRACT

The representation of distinct spaces by hippocampal place cells has been linked to changes in their place fields (the locations in the environment where the place cells discharge strongly), a phenomenon that has been termed 'remapping'. Remapping has been assumed to be accompanied by the reorganization of subsecond cofiring relationships among the place cells, potentially maximizing hippocampal information coding capacity. However, several observations challenge this standard view. For example, place cells exhibit mixed selectivity, encode non-positional variables, can have multiple place fields and exhibit unreliable discharge in fixed environments. Furthermore, recent evidence suggests that, when measured at subsecond timescales, the moment-to-moment cofiring of a pair of cells in one environment is remarkably similar in another environment, despite remapping. Here, I propose that remapping is a misnomer for the changes in place fields across environments and suggest instead that internally organized manifold representations of hippocampal activity are actively registered to different environments to enable navigation, promote memory and organize knowledge.


Subject(s)
Hippocampus , Space Perception , Hippocampus/physiology , Animals , Humans , Space Perception/physiology , Place Cells/physiology
11.
Sci Rep ; 14(1): 12329, 2024 05 29.
Article in English | MEDLINE | ID: mdl-38811593

ABSTRACT

Mental rotation is the ability to rotate mental representations of objects in space. Shepard and Metzler's shape-matching tasks, frequently used to test mental rotation, involve presenting pictorial representations of 3D objects. This stimulus material has raised questions regarding the ecological validity of the test for mental rotation with actual visual 3D objects. To systematically investigate differences in mental rotation with pictorial and visual stimuli, we compared data of N = 54 university students from a virtual reality experiment. Comparing both conditions within subjects, we found higher accuracy and faster reaction times for 3D visual figures. We expected eye tracking to reveal differences in participants' stimulus processing and mental rotation strategies induced by the visual differences. We statistically compared fixations (locations), saccades (directions), pupil changes, and head movements. Supplementary Shapley values of a Gradient Boosting Decision Tree algorithm were analyzed, which correctly classified the two conditions using eye and head movements. The results indicated that with visual 3D figures, the encoding of spatial information was less demanding, and participants may have used egocentric transformations and perspective changes. Moreover, participants showed eye movements associated with more holistic processing for visual 3D figures and more piecemeal processing for pictorial 2D figures.


Subject(s)
Eye Movements , Humans , Female , Male , Eye Movements/physiology , Young Adult , Adult , Rotation , Reaction Time/physiology , Photic Stimulation/methods , Space Perception/physiology , Virtual Reality , Visual Perception/physiology , Head Movements/physiology , Saccades/physiology
12.
Conscious Cogn ; 121: 103696, 2024 05.
Article in English | MEDLINE | ID: mdl-38703539

ABSTRACT

A serial reaction time task was used to test whether the representations of a probabilistic second-order sequence structure are (i) stored in an effector-dependent, effector-independent intrinsic or effector-independent visuospatial code and (ii) are inter-manually accessible. Participants were trained either with the dominant or non-dominant hand. Tests were performed with both hands in the practice sequence, a random sequence, and a mirror sequence. Learning did not differ significantly between left and right-hand practice, suggesting symmetric intermanual transfer from the dominant to the non-dominant hand and vice versa. In the posttest, RTs were shorter for the practice sequence than for the random sequence, and longest for the mirror sequence. Participants were unable to freely generate or recognize the practice sequence, indicating implicit knowledge of the probabilistic sequence structure. Because sequence-specific learning did not differ significantly between hands, we conclude that representations of the probabilistic sequence structure are stored in an effector-independent visuospatial code.


Subject(s)
Reaction Time , Space Perception , Transfer, Psychology , Humans , Male , Female , Adult , Reaction Time/physiology , Young Adult , Space Perception/physiology , Transfer, Psychology/physiology , Psychomotor Performance/physiology , Visual Perception/physiology , Functional Laterality/physiology , Serial Learning/physiology , Practice, Psychological , Hand/physiology
13.
PLoS One ; 19(5): e0304008, 2024.
Article in English | MEDLINE | ID: mdl-38814897

ABSTRACT

The current study investigated spatial scaling of tactile maps among blind adults and blindfolded sighted controls. We were specifically interested in identifying spatial scaling strategies as well as effects of different scaling directions (up versus down) on participants' performance. To this aim, we asked late blind participants (with visual memory, Experiment 1) and early blind participants (without visual memory, Experiment 2) as well as sighted blindfolded controls to encode a map including a target and to place a response disc at the same spot on an empty, constant-sized referent space. Maps had five different sizes resulting in five scaling factors (1:3, 1:2, 1:1, 2:1, 3:1), allowing to investigate different scaling directions (up and down) in a single, comprehensive design. Accuracy and speed of learning about the target location as well as responding served as dependent variables. We hypothesized that participants who can use visual mental representations (i.e., late blind and blindfolded sighted participants) may adopt mental transformation scaling strategies. However, our results did not support this hypothesis. At the same time, we predicted the usage of relative distance scaling strategies in early blind participants, which was supported by our findings. Moreover, our results suggested that tactile maps can be scaled as accurately and even faster by blind participants than by sighted participants. Furthermore, irrespective of the visual status, participants of each visual status group gravitated their responses towards the center of the space. Overall, it seems that a lack of visual imagery does not impair early blind adults' spatial scaling ability but causes them to use a different strategy than sighted and late blind individuals.


Subject(s)
Blindness , Humans , Blindness/physiopathology , Male , Female , Adult , Middle Aged , Space Perception/physiology , Touch Perception/physiology , Young Adult , Touch/physiology
14.
J Vis ; 24(5): 11, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38787570

ABSTRACT

Contextual modulation occurs for many aspects of high-level vision but is relatively unexplored for the perception of walking direction. In a recent study, we observed an effect of the temporal context on perceived walking direction. Here, we examined the spatial contextual modulation by measuring the perceived direction of a target point-light walker in the presence of two flanker walkers, one on each side. Experiment 1 followed a within-subjects design. Participants (n = 30) completed a spatial context task by judging the walking direction of the target in 13 different conditions: a walker alone in the center or with two flanking walkers either intact or scrambled at a flanker deviation of ±15°, ±30°, or ±45°. For comparison, participants completed an adaptation task where they reported the walking direction of a target after adaptation to ±30° walking direction. We found the expected repulsive effects in the adaptation task but attractive effects in the spatial context task. In Experiment 2 (n = 40), we measured the tuning of spatial contextual modulation across a wide range of flanker deviation magnitudes ranging from 15° to 165° in 15° intervals. Our results showed significant attractive effects across a wide range of flanker walking directions with the peak effect at around 30°. The assimilative versus repulsive effects of spatial contextual modulation and temporal adaptation suggest dissociable neural mechanisms, but they may operate on the same population of sensory channels coding for walking direction, as evidenced by similarity in the peak tuning across the walking direction of the inducers.


Subject(s)
Space Perception , Walking , Humans , Walking/physiology , Male , Female , Adult , Young Adult , Space Perception/physiology , Motion Perception/physiology , Photic Stimulation/methods , Adaptation, Physiological/physiology
15.
Cereb Cortex ; 34(5)2024 May 02.
Article in English | MEDLINE | ID: mdl-38795357

ABSTRACT

Visuospatial processing impairments are prevalent in individuals with cerebral visual impairment (CVI) and are typically ascribed to "dorsal stream dysfunction" (DSD). However, the contribution of other cortical regions, including early visual cortex (EVC), frontal cortex, or the ventral visual stream, to such impairments remains unknown. Thus, here, we examined fMRI activity in these regions, while individuals with CVI (and neurotypicals) performed a visual search task within a dynamic naturalistic scene. First, behavioral performance was measured with eye tracking. Participants were instructed to search and follow a walking human target. CVI participants took significantly longer to find the target, and their eye gaze patterns were less accurate and less precise. Second, we used the same task in the MRI scanner. Along the dorsal stream, activation was reduced in CVI participants, consistent with the proposed DSD in CVI. Intriguingly, however, visual areas along the ventral stream showed the complete opposite pattern, with greater activation in CVI participants. In contrast, we found no differences in either EVC or frontal cortex between groups. These results suggest that the impaired visuospatial processing abilities in CVI are associated with differential recruitment of the dorsal and ventral visual streams, likely resulting from impaired selective attention.


Subject(s)
Magnetic Resonance Imaging , Space Perception , Visual Cortex , Humans , Male , Female , Adult , Space Perception/physiology , Visual Cortex/diagnostic imaging , Visual Cortex/physiopathology , Visual Cortex/physiology , Visual Pathways/diagnostic imaging , Visual Pathways/physiology , Visual Pathways/physiopathology , Young Adult , Vision Disorders/physiopathology , Brain Mapping , Middle Aged , Visual Perception/physiology , Photic Stimulation/methods
16.
Cortex ; 175: 12-27, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38701643

ABSTRACT

Navigation through space is based on memory representations of landmarks ('place') or movement sequences ('response'). Over time, memory representations transform through consolidation. However, it is unclear how the transformation affects place and response navigation in humans. In the present study, healthy adults navigated to target locations in a virtual maze. The preference for using place and response strategies and the ability to recall place and response memories were tested after a delay of one hour (n = 31), one day (n = 30), or two weeks (n = 32). The different delays captured early-phase synaptic changes, changes after one night of sleep, and long-delay changes due to the reorganization of navigation networks. Our results show that the relative contributions of place and response navigation changed as a function of time. After a short delay of up to one day, participants preferentially used a place strategy and exhibited a high degree of visual landmark exploration. After a longer delay of two weeks, place strategy use decreased significantly. Participants now equally relied on place and response strategy use and increasingly repeated previously taken paths. Further analyses indicate that response strategy use predominantly occurred as a compensatory strategy in the absence of sufficient place memory. Over time, place memory faded before response memory. We suggest that the observed shift from place to response navigation is context-dependent since detailed landmark information, which strongly relied on hippocampal function, decayed faster than sequence information, which required less detail and depended on extra-hippocampal areas. We conclude that changes in place and response navigation likely reflect the reorganization of navigation networks during systems consolidation.


Subject(s)
Memory Consolidation , Spatial Navigation , Humans , Male , Memory Consolidation/physiology , Spatial Navigation/physiology , Female , Adult , Young Adult , Space Perception/physiology , Spatial Memory/physiology , Hippocampus/physiology , Mental Recall/physiology , Maze Learning/physiology
17.
J Neurophysiol ; 131(6): 1200-1212, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38718415

ABSTRACT

Localizing one's body parts is important for movement control and motor learning. Recent studies have shown that the precision with which people localize their hand places constraints on motor adaptation. Although these studies have assumed that hand localization remains equally precise across learning, we show that precision decreases rapidly during early motor learning. In three experiments, healthy young participants (n = 92) repeatedly adapted to a 45° visuomotor rotation for a cycle of two to four reaches, followed by a cycle of two to four reaches with veridical feedback. Participants either used an aiming strategy that fully compensated for the rotation (experiment 1), or always aimed directly at the target, so that adaptation was implicit (experiment 2). We omitted visual feedback for the last reach of each cycle, after which participants localized their unseen hand. We observed an increase in the variability of angular localization errors when subjects used a strategy to counter the visuomotor rotation (experiment 1). This decrease in precision was less pronounced in the absence of reaiming (experiment 2), and when subjects knew that they would have to localize their hand on the upcoming trial, and could thus focus on hand position (experiment 3). We propose that strategic reaiming decreases the precision of perceived hand position, possibly due to attention to vision rather than proprioception. We discuss how these dynamics in precision during early motor learning could impact on motor control and shape the interplay between implicit and strategy-based motor adaptation.NEW & NOTEWORTHY Recent studies indicate that the precision with which people localize their hand limits implicit visuomotor learning. We found that localization precision is not static, but decreases early during learning. This decrease is pronounced when people apply a reaiming strategy to compensate for a visuomotor perturbation and is partly resistant to allocation of attention to the hand. We propose that these dynamics in position sense during learning may influence how implicit and strategy-based motor adaption interact.


Subject(s)
Adaptation, Physiological , Hand , Psychomotor Performance , Humans , Male , Female , Adaptation, Physiological/physiology , Hand/physiology , Adult , Psychomotor Performance/physiology , Young Adult , Visual Perception/physiology , Feedback, Sensory/physiology , Learning/physiology , Space Perception/physiology , Motor Activity/physiology , Proprioception/physiology , Rotation
18.
Multisens Res ; 37(3): 185-216, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38714316

ABSTRACT

The influence of landmarks, that is, nearby non-target stimuli, on spatial perception has been shown in multiple ways. These include altered target localization variability near landmarks and systematic spatial distortions of target localizations. Previous studies have mostly been conducted in the visual modality using temporary, artificial landmarks or the tactile modality with persistent landmarks on the body. Thus, it is unclear whether both landmark types produce the same spatial distortions as they were never investigated in the same modality. Addressing this, we used a novel tactile setup to present temporary, artificial landmarks on the forearm and systematically manipulated their location to either be close to a persistent landmark (wrist or elbow) or in between both persistent landmarks at the middle of the forearm. Initial data (Exp. 1 and Exp. 2) suggested systematic differences of temporary landmarks based on their distance from the persistent landmark, possibly indicating different distortions of temporary and persistent landmarks. Subsequent control studies (Exp. 3 and Exp. 4) showed this effect was driven by the relative landmark location within the target distribution. Specifically, landmarks in the middle of the target distribution led to systematic distortions of target localizations toward the landmark, whereas landmarks at the side led to distortions away from the landmark for nearby targets, and toward the landmark with wider distances. Our results indicate that experimental results with temporary landmarks can be generalized to more natural settings with persistent landmarks, and further reveal that the relative landmark location leads to different effects of the pattern of spatial distortions.


Subject(s)
Space Perception , Touch Perception , Humans , Space Perception/physiology , Female , Touch Perception/physiology , Male , Young Adult , Adult , Touch/physiology , Physical Stimulation , Forearm/physiology
19.
Multisens Res ; 37(3): 217-241, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38762220

ABSTRACT

Previous research has revealed congruency effects between different spatial dimensions such as right and up. In the audiovisual context, high-pitched sounds are associated with the spatial dimensions of up/above and front, while low-pitched sounds are associated with the spatial dimensions of down/below and back. This opens the question of whether there could also be a spatial association between above and front and/or below and back. Participants were presented with a high- or low-pitch stimulus at the time of the onset of the visual stimulus. In one block, participants responded according to the above/below location of the visual target stimulus if the target appeared in front of the reference object, and in the other block, they performed these above/below responses if the target appeared at the back of the reference. In general, reaction times revealed an advantage in processing the target location in the front-above and back-below locations. The front-above/back-below effect was more robust concerning the back-below component of the effect, and significantly larger in reaction times that were slower rather than faster than the median value of a participant. However, the pitch did not robustly influence responding to front/back or above/below locations. We propose that this effect might be based on the conceptual association between different spatial dimensions.


Subject(s)
Reaction Time , Space Perception , Humans , Male , Female , Space Perception/physiology , Young Adult , Adult , Reaction Time/physiology , Photic Stimulation , Acoustic Stimulation , Visual Perception/physiology , Pitch Perception/physiology
20.
Neuroimage ; 293: 120634, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38705431

ABSTRACT

Spatial image transformation of the self-body is a fundamental function of visual perspective-taking. Recent research underscores the significance of intero-exteroceptive information integration to construct representations of our embodied self. This raises the intriguing hypothesis that interoceptive processing might be involved in the spatial image transformation of the self-body. To test this hypothesis, the present study used functional magnetic resonance imaging to measure brain activity during an arm laterality judgment (ALJ) task. In this task, participants were tasked with discerning whether the outstretched arm of a human figure, viewed from the front or back, was the right or left hand. The reaction times for the ALJ task proved longer when the stimulus presented orientations of 0°, 90°, and 270° relative to the upright orientation, and when the front view was presented rather than the back view. Reflecting the increased reaction time, increased brain activity was manifested in a cluster centered on the dorsal anterior cingulate cortex (ACC), suggesting that the activation reflects the involvement of an embodied simulation in ALJ. Furthermore, this cluster of brain activity exhibited overlap with regions where the difference in activation between the front and back views positively correlated with the participants' interoceptive sensitivity, as assessed through the heartbeat discrimination task, within the pregenual ACC. These results suggest that the ACC plays an important role in integrating intero-exteroceptive cues to spatially transform the image of our self-body.


Subject(s)
Brain Mapping , Gyrus Cinguli , Magnetic Resonance Imaging , Humans , Gyrus Cinguli/physiology , Gyrus Cinguli/diagnostic imaging , Female , Male , Young Adult , Adult , Brain Mapping/methods , Interoception/physiology , Body Image , Functional Laterality/physiology , Reaction Time/physiology , Space Perception/physiology , Arm/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...