Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.204
Filter
1.
Environ Sci Technol ; 58(23): 10028-10040, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38822757

ABSTRACT

Our understanding of connections between human and animal health has advanced substantially since the canary was introduced as a sentinel of toxic conditions in coal mines. Nonetheless, the development of wildlife sentinels for monitoring human exposure to toxins has been limited. Here, we capitalized on a three-decade long child blood lead monitoring program to demonstrate that the globally ubiquitous and human commensal house sparrow (Passer domesticus) can be used as a sentinel of human health risks in urban environments impacted by lead mining. We showed that sparrows are a viable proxy for the measurement of blood lead levels in children at a neighborhood scale (0.28 km2). In support of the generalizability of this approach, the blood lead relationship established in our focal mining city enabled us to accurately predict elevated blood lead levels in children from another mining city using only sparrows from the second location. Using lead concentrations and lead isotopic compositions from environmental and biological matrices, we identified shared sources and pathways of lead exposure in sparrows and children, with strong links to contamination from local mining emissions. Our findings showed how human commensal species can be used to identify and predict human health risks over time and space.


Subject(s)
Environmental Exposure , Lead , Sparrows , Animals , Lead/blood , Humans , Child , Mining , Environmental Monitoring , Sentinel Species , Environmental Pollutants
2.
Behav Processes ; 218: 105043, 2024 May.
Article in English | MEDLINE | ID: mdl-38692462

ABSTRACT

Acoustic communication plays a vital role in predator-prey interactions. Although habitat structure has been shown to affect anti-predator tactics, little is known about how animals vary their behaviors in response to predator calls or heterospecific alarm calls in different environments. Here we used sound playbacks to test the responses of Eurasian tree sparrows (Passer montanus) foraging in harvested/unharvested rice paddy and open residential area. In the first experiment, we tested their behavioral responses to dove calls, male common cuckoo (Cuculus canorus) calls, hawk-like calls mimicked by female common cuckoo, sparrowhawk (Accipiter nisus) calls, and human yell calls produced to scare birds (predator signal playbacks). In the second experiment, we tested their behavioral responses to the Japanese tit's (Parus minor) territorial songs and alarm calls (heterospecific alarm signal playbacks). Results showed that the tree sparrows had less fleeing in unharvested ripe rice paddy than in harvested rice paddy and open residential area. In predator signal playbacks, call type affected the escape behavior of sparrows in unharvested rice paddy and open residential area but not harvested rice paddy. In alarm signal playbacks, tit alarm calls evoked more fleeing than territorial songs in harvested rice paddy and open residential area but not unharvested rice paddy. These results suggest that anthropogenic habitat changes may influence avian anti-predator tactics.


Subject(s)
Ecosystem , Predatory Behavior , Sparrows , Vocalization, Animal , Animals , Vocalization, Animal/physiology , Sparrows/physiology , Predatory Behavior/physiology , Male , Female , Behavior, Animal/physiology , Territoriality
3.
PLoS One ; 19(5): e0303688, 2024.
Article in English | MEDLINE | ID: mdl-38748753

ABSTRACT

Deep learning models struggle to effectively capture data features and make accurate predictions because of the strong non-linear characteristics of arbitrage data. Therefore, to fully exploit the model performance, researchers have focused on network structure and hyperparameter selection using various swarm intelligence algorithms for optimization. Sparrow Search Algorithm (SSA), a classic heuristic method that simulates the sparrows' foraging and anti-predatory behavior, has demonstrated excellent performance in various optimization problems. Hence, in this study, the Multi-Strategy Modified Sparrow Search Algorithm (MSMSSA) is applied to the Long Short-Term Memory (LSTM) network to construct an arbitrage spread prediction model (MSMSSA-LSTM). In the modified algorithm, the good point set theory, the proportion-adaptive strategy, and the improved location update method are introduced to further enhance the spatial exploration capability of the sparrow. The proposed model was evaluated using the real spread data of rebar and hot coil futures in the Chinese futures market. The obtained results showed that the mean absolute percentage error, root mean square error, and mean absolute error of the proposed model had decreased by a maximum of 58.5%, 65.2%, and 67.6% compared to several classical models. The model has high accuracy in predicting arbitrage spreads, which can provide some reference for investors.


Subject(s)
Algorithms , Sparrows , Sparrows/physiology , Animals , Deep Learning , Models, Theoretical
4.
Environ Pollut ; 351: 124055, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38692388

ABSTRACT

Artificial Light At Night (ALAN) is a major urban perturbation, which can have detrimental effects on wildlife. Recent urban planning has led to an increased use of white light emission diodes (LEDs) in cities. However, little is known about the effects of this type of ALAN on wild vertebrates, especially during reproduction. We designed an experiment to test the impact of ALAN on the activity rhythms (daily time of first activity (TFA) and time of last activity (TLA)) of captive House sparrows (Passer domesticus) during several reproductive stages (from pre-breeding to post-breeding). We also tested the impact of ALAN on reproductive performance (laying date, clutch size, hatching and fledging success). Experimental birds were active earlier in the morning (earlier TFA) relative to controls although experimental and control birds did not differ in their TLA. The effect of ALAN on TFA was apparent during specific stages only (pre-breeding and chick-rearing stages), suggesting that sparrows actively adjust their activity in response to ALAN only during specific periods. This impact of ALAN on activity did not persist through the whole breeding season, suggesting that sparrows may habituate to ALAN. Alternatively, they may not be able to sustain a long-term increased activity in response to ALAN because of sleep deprivation and related physiological costs. Finally, we did not find any impact of ALAN on the reproductive performance of captive house sparrows held under optimal conditions. This suggests that ALAN may not be dramatically detrimental to the reproduction of this urban exploiter, at least when food availability is not constraining.


Subject(s)
Light , Reproduction , Sparrows , Animals , Sparrows/physiology , Cities , Breeding , Female , Environmental Pollution , Lighting
5.
Ecol Evol Physiol ; 97(1): 11-28, 2024.
Article in English | MEDLINE | ID: mdl-38717370

ABSTRACT

AbstractSeasonally breeding birds express variations of traits (phenotypic flexibility) throughout their life history stages that represent adaptations to environmental conditions. Changes of body condition during migration have been well studied, whereas alterations of skeletal and cardiac muscles, body mass, and fat scores have yet to be characterized throughout the spring or fall migratory stages. Additionally, we examined flexible patterns of muscle, body mass, and fat score in migrant white-crowned sparrows (Zonotrichia leucophrys gambelii) in comparison with those in a resident subspecies (Zonotrichia leucophrys nuttalli) during the stages they share to evaluate the influence of different life histories. Migrants showed hypertrophy of the pectoralis muscle fiber area on the wintering grounds in late prealternate molt, yet increased pectoralis muscle mass was not detected until birds readied for spring departure. While pectoralis profile and fat scores enlarged at predeparture in spring and fall, pectoralis, cardiac, and body masses were greater only in spring stages, suggesting seasonal differences for migratory preparation. Gastrocnemius mass showed little change throughout all stages, whereas gastrocnemius fiber area declined steadily but rebounded in fall on the wintering grounds, where migrants become more sedentary. In general, residents are heavier birds with larger leg structures, while migrants sport longer wings and greater heart mass. Phenotypic flexibility was most prominent among residents with peaks of pectoralis, gastrocnemius, and body masses during the winter stage, when local weather is most severe. Thus, the subspecies express specific patterns of phenotypic flexibility with peaks coinciding with the stages of heightened energy demands: the winter stage for residents and the spring stages for migrants.


Subject(s)
Animal Migration , Muscle, Skeletal , Phenotype , Seasons , Sparrows , Animals , Animal Migration/physiology , Muscle, Skeletal/physiology , Body Composition/physiology , Male , Pectoralis Muscles/physiology , Female
6.
PLoS One ; 19(5): e0304348, 2024.
Article in English | MEDLINE | ID: mdl-38809922

ABSTRACT

Animal culture evolves alongside genomes, and the two modes of inheritance-culture and genes-interact in myriad ways. For example, stable geographic variation in culture can act as a reproductive barrier, thereby facilitating genetic divergence between "cultural populations." White-crowned sparrows (Zonotrichia leucophrys) are a well-established model species for bird song learning and cultural evolution, as they have distinct, geographically discrete, and culturally transmitted song types (i.e., song dialects). In this study, we tested the hypothesis that divergence between culturally transmitted songs drives genetic divergence within Nuttall's white-crowned sparrows (Z. l. nuttalli). In accordance with sexual selection theory, we hypothesized that cultural divergence between mating signals both preceded and generated genetic divergence. We characterized the population structure and song variation in the subspecies and found two genetically differentiated populations whose boundary coincides with a major song boundary at Monterey Bay, California. We then conducted a song playback experiment that demonstrated males discriminate between songs based on their degree of divergence from their local dialect. These results support the idea that discrimination against non-local songs is driving genetic divergence between the northern and southern populations. Altogether, this study provides evidence that culturally transmitted bird songs can act as the foundation for speciation by sexual selection.


Subject(s)
Sparrows , Vocalization, Animal , Animals , Sparrows/genetics , Sparrows/physiology , Vocalization, Animal/physiology , Male , Genetic Variation , Female , California , White
7.
J Acoust Soc Am ; 155(4): 2803-2816, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38662608

ABSTRACT

Urban expansion has increased pollution, including both physical (e.g., exhaust, litter) and sensory (e.g., anthropogenic noise) components. Urban avian species tend to increase the frequency and/or amplitude of songs to reduce masking by low-frequency noise. Nevertheless, song propagation to the receiver can also be constrained by the environment. We know relatively little about how this propagation may be altered across species that (1) vary in song complexity and (2) inhabit areas along an urbanization gradient. We investigated differences in song amplitude, attenuation, and active space, or the maximum distance a receiver can detect a signal, in two human-commensal species: the house sparrow (Passer domesticus) and house finch (Haemorhous mexicanus). We described urbanization both discretely and quantitatively to investigate the habitat characteristics most responsible for propagation changes. We found mixed support for our hypothesis of urban-specific degradation of songs. Urban songs propagated with higher amplitude; however, urban song fidelity was species-specific and showed lowered active space for urban house finch songs. Taken together, our results suggest that urban environments may constrain the propagation of vocal signals in species-specific manners. Ultimately, this has implications for the ability of urban birds to communicate with potential mates or kin.


Subject(s)
Finches , Species Specificity , Urbanization , Vocalization, Animal , Animals , Vocalization, Animal/physiology , Finches/physiology , Sparrows/physiology , Noise , Sound Spectrography , Ecosystem , Humans , Perceptual Masking/physiology , Male
8.
Sci Rep ; 14(1): 9456, 2024 04 24.
Article in English | MEDLINE | ID: mdl-38658588

ABSTRACT

Migration is one of the most energy-demanding behaviors observed in birds. Mitochondria are the primary source of energy used to support these long-distance movements, yet how mitochondria meet the energetic demands of migration is scarcely studied. We quantified changes in mitochondrial respiratory performance in the White-crowned Sparrow (Zonotrichia leucophrys), which has a migratory and non-migratory subspecies. We hypothesized that the long-distance migratory Gambel's subspecies (Z. l. gambelii) would show higher mitochondrial respiratory performance compared to the non-migratory Nuttall's subspecies (Z. l. nuttalli). We sampled Gambel's individuals during spring pre-migration, active fall migration, and a period with no migration or breeding (winter). We sampled Nuttall's individuals during periods coinciding with fall migration and the winter period of Gambel's annual cycle. Overall, Gambel's individuals had higher citrate synthase, a proxy for mitochondrial volume, than Nuttall's individuals. This was most pronounced prior to and during migration. We found that both OXPHOS capacity (state 3) and basal respiration (state 4) of mitochondria exhibit high seasonal flexibility within Gambel's individuals, with values highest during active migration. These values in Nuttall's individuals were most similar to Gambel's individuals in winter. Our observations indicate that seasonal changes in mitochondrial respiration play a vital role in migration energetics.


Subject(s)
Animal Migration , Mitochondria , Sparrows , Animals , Animal Migration/physiology , Sparrows/physiology , Mitochondria/metabolism , Seasons , Oxidative Phosphorylation , Cell Respiration , Energy Metabolism
9.
Arch Environ Contam Toxicol ; 86(3): 199-216, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38598146

ABSTRACT

Global contamination of environments with lead (Pb) poses threats to many ecosystems and populations. While exposure to Pb is toxic at high concentrations, recent literature has shown that lower concentrations can also cause sublethal, deleterious effects. However, there remains relatively little causal investigation of how exposure to lower concentrations of environmental Pb affects ecologically important behaviors. Behaviors often represent first-line responses of an organism and its internal physiological, molecular, and genetic responses to a changing environment. Hence, better understanding how behaviors are influenced by pollutants such as Pb generates crucial information on how species are coping with the effects of pollution more broadly. To better understand the effects of sublethal Pb on behavior, we chronically exposed adult wild-caught, captive house sparrows (Passer domesticus) to Pb-exposed drinking water and quantified a suite of behavioral outcomes: takeoff flight performance, activity in a novel environment, and in-hand struggling and breathing rate while being handled by an experimenter. Compared to controls (un-exposed drinking water), sparrows exposed to environmentally relevant concentrations of Pb exhibited decreases in takeoff flight performance and reduced movements in a novel environment following 9-10 weeks of exposure. We interpret this suite of results to be consistent with Pb influencing fundamental neuro-muscular abilities, making it more difficult for exposed birds to mount faster movements and activities. It is likely that suppression of takeoff flight and reduced movements would increase the predation risk of similar birds in the wild; hence, we also conclude that the effects we observed could influence fitness outcomes for individuals and populations altering ecological interactions within more naturalistic settings.


Subject(s)
Drinking Water , Sparrows , Humans , Animals , Sparrows/genetics , Lead/toxicity , Ecosystem
10.
Genome Biol Evol ; 16(4)2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38566597

ABSTRACT

Transposable elements (TE) play critical roles in shaping genome evolution. Highly repetitive TE sequences are also a major source of assembly gaps making it difficult to fully understand the impact of these elements on host genomes. The increased capacity of long-read sequencing technologies to span highly repetitive regions promises to provide new insights into patterns of TE activity across diverse taxa. Here we report the generation of highly contiguous reference genomes using PacBio long-read and Omni-C technologies for three species of Passerellidae sparrow. We compared these assemblies to three chromosome-level sparrow assemblies and nine other sparrow assemblies generated using a variety of short- and long-read technologies. All long-read based assemblies were longer (range: 1.12 to 1.41 Gb) than short-read assemblies (0.91 to 1.08 Gb) and assembly length was strongly correlated with the amount of repeat content. Repeat content for Bell's sparrow (31.2% of genome) was the highest level ever reported within the order Passeriformes, which comprises over half of avian diversity. The highest levels of repeat content (79.2% to 93.7%) were found on the W chromosome relative to other regions of the genome. Finally, we show that proliferation of different TE classes varied even among species with similar levels of repeat content. These patterns support a dynamic model of TE expansion and contraction even in a clade where TEs were once thought to be fairly depauperate and static. Our work highlights how the resolution of difficult-to-assemble regions of the genome with new sequencing technologies promises to transform our understanding of avian genome evolution.


Subject(s)
DNA Transposable Elements , Sparrows , Animals , DNA Transposable Elements/genetics , Sparrows/genetics , Sequence Analysis, DNA
11.
Am Nat ; 203(5): 576-589, 2024 May.
Article in English | MEDLINE | ID: mdl-38635359

ABSTRACT

AbstractLong-term social and genetic monogamy is rare in animals except birds, but even in birds it is infrequent and poorly understood. We investigated possible advantages of monogamy in a colonial, facultative cooperatively breeding bird from an arid, unpredictable environment, the sociable weaver (Philetairus socius). We documented divorce and extrapair paternity of 703 pairs over 10 years and separated effects of pair duration from breeding experience by analyzing longitudinal and cross-sectional datasets. Parts of the colonies were protected from nest predation, thereby limiting its stochastic and thus confounding effect on fitness measures. We found that 6.4% of sociable weaver pairs divorced and 2.2% of young were extrapair. Longer pair-bonds were associated with more clutches and fledglings per season and with reproducing earlier and later in the season, when snake predation is lower, but not with increased egg or fledgling mass or with nestling survival. Finally, the number of helpers at the nest increased with pair-bond duration. Results were similar for protected and unprotected nests. We suggest that long-term monogamy is associated with a better capacity for exploiting a temporally unpredictable environment and helps to form larger groups. These results can contribute to our understanding of why long-term monogamy is frequently associated with unpredictable environments and cooperation.


Subject(s)
Pair Bond , Sparrows , Animals , Cross-Sectional Studies , Predatory Behavior , Reproduction
12.
J Neurosci ; 44(23)2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38658166

ABSTRACT

Aggression is a crucial behavior that impacts access to limited resources in different environmental contexts. Androgens synthesized by the gonads promote aggression during the breeding season. However, aggression can be expressed during the non-breeding season, despite low androgen synthesis by the gonads. The brain can also synthesize steroids ("neurosteroids"), including androgens, which might promote aggression during the non-breeding season. Male song sparrows, Melospiza melodia, are territorial year-round and allow the study of seasonal changes in the steroid modulation of aggression. Here, we quantified steroids following a simulated territorial intrusion (STI) for 10 min in wild adult male song sparrows during the breeding and non-breeding seasons. Using liquid chromatography-tandem mass spectrometry (LC-MS/MS), we examined 11 steroids: pregnenolone, progesterone, corticosterone, dehydroepiandrosterone, androstenedione, testosterone, 5α-dihydrotestosterone, 17ß-estradiol, 17α-estradiol, estriol, and estrone. Steroids were measured in blood and 10 microdissected brain regions that regulate social behavior. In both seasons, STI increased corticosterone in the blood and brain. In the breeding season, STI had no rapid effects on androgens or estrogens. Intriguingly, in the non-breeding season, STI increased testosterone and androstenedione in several behaviorally relevant regions, but not in the blood, where androgens remained non-detectable. Also in the non-breeding season, STI increased progesterone in the blood and specific brain regions. Overall, rapid socially modulated changes in brain steroid levels are more prominent during the non-breeding season. Brain steroid levels vary with season and social context in a region-specific manner and suggest a role for neuroandrogens in aggression during the non-breeding season.


Subject(s)
Aggression , Androgens , Brain , Seasons , Sparrows , Territoriality , Animals , Male , Aggression/physiology , Androgens/metabolism , Brain/metabolism , Sparrows/physiology , Sparrows/metabolism , Songbirds/metabolism
13.
Brain Behav Immun ; 119: 6-13, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38552921

ABSTRACT

When organisms move into new areas, they are likely to encounter novel food resources. Even if they are nutritious, these foods can also be risky, as they might be contaminated by parasites. The behavioural immune system of animals could help them avoid the negative effects of contaminated resources, but our understanding of behavioural immunity is limited, particularly whether and how behavioural immunity interacts with physiological immunity. Here, we asked about the potential for interplay between these two traits, specifically how the propensity of an individual house sparrow (Passer domesticus) to take foraging risks was related to its ability to regulate a key facet of its immune response to bacterial pathogens. Previously, we found that sparrows at expanding geographic range edges were more exploratory and less risk-averse to novel foods; in those same populations, birds tended to over-express Toll-like receptor 4 (TLR4), a pattern-recognition receptor that distinguishes cell-wall components of Gram-negative bacteria, making it the major sensor of potentially lethal gut microbial infections including salmonellosis. When we investigated how birds would respond to a typical diet (i.e., mixed seeds) spiked with domesticated chicken faeces, birds that expressed more TLR4 or had higher epigenetic potential for TLR4 (more CpG dinucleotides in the putative gene promoter) ate more food, spiked or not. Females expressing abundant TLR4 were also willing to take more foraging risks and ate more spiked food. In males, TLR4 expression was not associated with risk-taking. Altogether, our results indicate that behaviour and immunity covary among individual house sparrows, particularly in females where those birds that maintain more immune surveillance also are more disposed to take foraging risks.


Subject(s)
Epigenesis, Genetic , Feeding Behavior , Sparrows , Animals , Sparrows/immunology , Female , Feeding Behavior/physiology , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism , Risk-Taking , Gene Expression , Chickens/immunology , Male , Behavior, Animal/physiology
14.
Mol Ecol ; 33(8): e17316, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38481075

ABSTRACT

Eco-phylogeographic approaches to comparative population genetic analyses allow for the inclusion of intrinsic influences as drivers of intraspecific genetic structure. This insight into microevolutionary processes, including changes within a species or lineage, provides better mechanistic understanding of species-specific interactions and enables predictions of evolutionary responses to environmental change. In this study, we used single nucleotide polymorphisms (SNPs) identified from reduced representation sequencing to compare neutral population structure, isolation by distance (IBD), genetic diversity and effective population size (Ne) across three closely related and co-distributed saltmarsh sparrow species differing along a specialization gradient-Nelson's (Ammospiza nelsoni subvirgata), saltmarsh (A. caudacuta) and seaside sparrows (A. maritima maritima). Using an eco-phylogeographic lens within a conservation management context, we tested predictions about species' degree of evolutionary history and ecological specialization to tidal marshes, habitat, current distribution and population status on population genetic metrics. Population structure differed among the species consistent with their current distribution and habitat factors, rather than degree of ecological specialization: seaside sparrows were panmictic, saltmarsh sparrows showed hierarchical structure and Nelson's sparrows were differentiated into multiple, genetically distinct populations. Neutral population genetic theory and demographic/evolutionary history predicted patterns of genetic diversity and Ne rather than degree of ecological specialization. Patterns of population variation and evolutionary distinctiveness (Shapely metric) suggest different conservation measures for long-term persistence and evolutionary potential in each species. Our findings contribute to a broader understanding of the complex factors influencing genetic variation, beyond specialist-generalist status and support the role of an eco-phylogeographic approach in population and conservation genetics.


Subject(s)
Sparrows , Animals , Sparrows/genetics , Ecosystem , Wetlands , Biological Evolution , Polymorphism, Single Nucleotide/genetics , Genetic Variation/genetics
15.
Elife ; 122024 Mar 12.
Article in English | MEDLINE | ID: mdl-38470231

ABSTRACT

Phenotypic plasticity facilitates organismal invasion of novel environments, and the resultant phenotypic change may later be modified by genetic change, so called 'plasticity first.' Herein, we quantify gene expression plasticity and regulatory adaptation in a wild bird (Eurasian Tree Sparrow) from its original lowland (ancestral stage), experimentally implemented hypoxia acclimation (plastic stage), and colonized highland (colonized stage). Using a group of co-expressed genes from the cardiac and flight muscles, respectively, we demonstrate that gene expression plasticity to hypoxia tolerance is more often reversed than reinforced at the colonized stage. By correlating gene expression change with muscle phenotypes, we show that colonized tree sparrows reduce maladaptive plasticity that largely associated with decreased hypoxia tolerance. Conversely, adaptive plasticity that is congruent with increased hypoxia tolerance is often reinforced in the colonized tree sparrows. Genes displaying large levels of reinforcement or reversion plasticity (i.e. 200% of original level) show greater genetic divergence between ancestral and colonized populations. Overall, our work demonstrates that gene expression plasticity at the initial stage of high-elevation colonization can be reversed or reinforced through selection-driven adaptive modification.


Subject(s)
Adaptation, Physiological , Sparrows , Animals , Adaptation, Physiological/genetics , Genetic Drift , Heart , Hypoxia , Sparrows/genetics , Gene Expression
16.
J Exp Biol ; 227(6)2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38380522

ABSTRACT

Animals can cope with dehydration in a myriad of ways, both behaviorally and physiologically. The oxidation of protein produces more metabolic water per kilojoule than that of fat or carbohydrate, and it is well established that birds increase protein catabolism in response to high rates of water loss. However, the fate of amino acids mobilized in response to water restriction has not been explicitly determined. While protein catabolism releases bound water, we hypothesized that water-restricted birds would also oxidize the resulting amino acids, producing additional water as a product of oxidative phosphorylation. To test this, we fed captive house sparrows (Passer domesticus) 13C-labeled leucine for 9 weeks to label endogenous proteins. We conducted weekly trials during which we measured the physiological response to water restriction as changes in lean mass, fat mass, metabolism and the enrichment of 13C in exhaled CO2 (δ13Cbreath). If water-restricted birds catabolized proteins and oxidized the resulting amino acids, we expected to simultaneously observe greater lean mass loss and elevated δ13Cbreath relative to control birds. We found that water-restricted birds catabolized more lean tissue and also had enriched δ13Cbreath in response to water restriction, supporting our hypothesis. δ13Cbreath, however, varied with metabolic rate and the length of the water restriction period, suggesting that birds may spare protein when water balance can be achieved using other physiological strategies.


Subject(s)
Amino Acids , Sparrows , Animals , Amino Acids/metabolism , Water/metabolism , Sparrows/physiology , Oxidation-Reduction
17.
J Evol Biol ; 37(2): 171-188, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38305563

ABSTRACT

When a single species evolves into multiple descendent species, some parts of the genome can play a key role in the evolution of reproductive isolation while other parts flow between the evolving species via interbreeding. Genomic evolution during the speciation process is particularly interesting when major components of the genome-for instance, sex chromosomes vs. autosomes vs. mitochondrial DNA-show widely differing patterns of relationships between three diverging populations. The golden-crowned sparrow (Zonotrichia atricapilla) and the white-crowned sparrow (Zonotrichia leucophrys) are phenotypically differentiated sister species that are largely reproductively isolated despite possessing similar mitochondrial genomes, likely due to recent introgression. We assessed variation in more than 45,000 single nucleotide polymorphisms to determine the structure of nuclear genomic differentiation between these species and between two hybridizing subspecies of Z. leucophrys. The two Z. leucophrys subspecies show moderate levels of relative differentiation and patterns consistent with a history of recurrent selection in both ancestral and daughter populations, with much of the sex chromosome Z and a large region on the autosome 1A showing increased differentiation compared to the rest of the genome. The two species Z. leucophrys and Z. atricapilla show high relative differentiation and strong heterogeneity in the level of differentiation among various chromosomal regions, with a large portion of the sex chromosome (Z) showing highly divergent haplotypes between these species. Studies of speciation often emphasize mitochondrial DNA differentiation, but speciation between Z. atricapilla and Z. leucophrys appears primarily associated with Z chromosome divergence and more moderately associated with autosomal differentiation, whereas mitochondria are highly similar due apparently to recent introgression. These results add to the growing body of evidence for highly heterogeneous patterns of genomic differentiation during speciation, with some genomic regions showing a lack of gene flow between populations many hundreds of thousands of years before other genomic regions.


Subject(s)
Sparrows , Animals , Sparrows/genetics , Genetics, Population , Genetic Speciation , Sex Chromosomes/genetics , Gene Flow , DNA, Mitochondrial/genetics , Mitochondria/genetics
18.
Mol Ecol ; 33(6): e17291, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38343177

ABSTRACT

The hypothalamic-pituitary-adrenal (HPA) axis coordinates an organism's response to environmental stress. The responsiveness and sensitivity of an offspring's stress response may be shaped not only by stressors encountered in their early post-natal environment but also by stressors in their parent's environment. Yet, few studies have considered how stressors encountered in both of these early life environments may function together to impact the developing HPA axis. Here, we manipulated stressors in the parental and post-natal environments in a population of house sparrows (Passer domesticus) to assess their impact on changes in DNA methylation (and corresponding gene expression) in a suite of genes within the HPA axis. We found that nestlings that experienced early life stress across both life-history periods had higher DNA methylation in a critical HPA axis gene, the glucocorticoid receptor (NR3C1). In addition, we found that the life-history stage when stress was encountered impacted some genes (HSD11B1, NR3C1 and NR3C2) differently. We also found evidence for the mitigation of parental stress by post-natal stress (in HSD11B1 and NR3C2). Finally, by assessing DNA methylation in both the brain and blood, we were able to evaluate cross-tissue patterns. While some differentially methylated regions were tissue-specific, we found cross-tissue changes in NR3C2 and NR3C1, suggesting that blood is a suitable tissue for assessing DNA methylation as a biomarker of early life stress. Our results provide a crucial first step in understanding the mechanisms by which early life stress in different life-history periods contributes to changes in the epigenome of the HPA axis.


Subject(s)
DNA Methylation , Hypothalamo-Hypophyseal System , Sparrows , Hypothalamo-Hypophyseal System/metabolism , DNA Methylation/genetics , Pituitary-Adrenal System/metabolism , Receptors, Glucocorticoid/genetics , Receptors, Glucocorticoid/metabolism , Stress, Physiological/genetics , Receptors, Mineralocorticoid/genetics , Receptors, Mineralocorticoid/metabolism
19.
Proc Biol Sci ; 291(2017): 20232857, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38378156

ABSTRACT

The exceptional polymorphism observed within genes of the major histocompatibility complex (MHC), a core component of the vertebrate immune system, has long fascinated biologists. The highly polymorphic classical MHC class-I (MHC-I) genes are maintained by pathogen-mediated balancing selection (PMBS), as shown by many sites subject to positive selection, while the more monomorphic non-classical MHC-I genes show signatures of purifying selection. In line with PMBS, at any point in time, rare classical MHC alleles are more likely than common classical MHC alleles to confer a selective advantage in host-pathogen interactions. Combining genomic and expression data from the blood of wild house sparrows Passer domesticus, we found that only rare classical MHC-I alleles were highly expressed, while common classical MHC-I alleles were lowly expressed or not expressed. Moreover, highly expressed rare classical MHC-I alleles had more positively selected sites, indicating exposure to stronger PMBS, compared with lowly expressed classical alleles. As predicted, the level of expression was unrelated to allele frequency in the monomorphic non-classical MHC-I alleles. Going beyond previous studies, we offer a fine-scale view of selection on classical MHC-I genes in a wild population by revealing differences in the strength of PMBS according to allele frequency and expression level.


Subject(s)
Major Histocompatibility Complex , Sparrows , Animals , Alleles , Major Histocompatibility Complex/genetics , Sparrows/genetics , Gene Frequency , Selection, Genetic , Genetic Variation
20.
Bull Environ Contam Toxicol ; 112(3): 42, 2024 Feb 25.
Article in English | MEDLINE | ID: mdl-38402343

ABSTRACT

Industrial chemical contamination is known to have immuno-toxic effects on birds. It may also interfere with natural stressful conditions to further disrupt the immune responses, but these possible interactive effects are still poorly documented in free-living birds. Using the phytohaemagglutinin skin-swelling test, we assessed how the T-cell mediated immune response varied according to the perceived risk of predation in hybrid sparrows, Passer domesticus × Passer hispaniolensis, originating from two sites differentially impacted by industrial chemical contamination, in southern Tunisia. Results showed that T-cell mediated immune response decreased with increasing perceived risk of predation, but the extent of this predator-associated immunosuppression was weaker in birds from the contaminated site compared to those from the control site. The immune response of birds living in the contaminated site was so weak that it could not be further weakened by a predator-related stress. Overall, these results support the idea that chemical contamination interferes with natural environmental stressors, such as predators, thus entailing profound disruption of the immune responses, with possible deleterious repercussions on the ability of birds to cope with diseases.


Subject(s)
Sparrows , Animals , Sparrows/physiology , Industry , Tunisia , Predatory Behavior , Immunosuppression Therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...