Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.887
Filter
1.
Int J Mol Sci ; 25(9)2024 May 03.
Article in English | MEDLINE | ID: mdl-38732227

ABSTRACT

The most common form of hereditary spastic paraplegia (HSP), SPG4 is caused by single nucleotide variants and microrearrangements in the SPAST gene. The high percentage of multi-exonic deletions or duplications observed in SPG4 patients is predisposed by the presence of a high frequency of Alu sequences in the gene sequence. In the present study, we analyzed DNA and RNA samples collected from patients with different microrearrangements in SPAST to map gene breakpoints and evaluate the mutation mechanism. The study group consisted of 69 individuals, including 50 SPG4 patients and 19 healthy relatives from 18 families. Affected family members from 17 families carried varying ranges of microrearrangements in the SPAST gene, while one individual had a single nucleotide variant in the 5'UTR of SPAST. To detect the breakpoints of the SPAST gene, long-range PCR followed by sequencing was performed. The breakpoint sequence was detected for five different intragenic SPAST deletions and one duplication, revealing Alu-mediated microhomology at breakpoint junctions resulting from non-allelic homologous recombination in these patients. Furthermore, SPAST gene expression analysis was performed using patient RNA samples extracted from whole blood. Quantitative real-time PCR tests performed in 14 patients suggest no expression of transcripts with microrearrangements in 5 of them. The obtained data indicate that nonsense-mediated decay degradation is not the only mechanism of hereditary spastic paraplegia in patients with SPAST microrearrangements.


Subject(s)
Haploinsufficiency , Spastic Paraplegia, Hereditary , Spastin , Humans , Spastin/genetics , Spastic Paraplegia, Hereditary/genetics , Male , Female , Haploinsufficiency/genetics , Pedigree , DNA Copy Number Variations , Adult , Alu Elements/genetics , Middle Aged , Adolescent , Young Adult , Nonsense Mediated mRNA Decay
2.
PLoS One ; 19(4): e0301452, 2024.
Article in English | MEDLINE | ID: mdl-38557877

ABSTRACT

BACKGROUND AND AIM: Patient-reported outcome measures (PROMs) are recognized as valuable measures in the clinical setting. In 2018 we developed the Italian version of the "Hereditary Spastic Paraplegia-Self Notion and Perception Questionnaire" (HSP-SNAP), a disease-specific questionnaire that collects personal perception on motor symptoms related to HSP such as stiffness, weakness, imbalance, reduced endurance, fatigue and pain. In this study our primary aim was to assess the questionnaire validity and reliability. Our secondary aim was to characterize the symptoms "perceived" by patients with HSP and compare them with those "perceived" by age-matched healthy subjects. METHODS: The 12-item HSP-SNAP questionnaire was submitted to 20 external judges for comprehensibility and to 15 external judges for content validity assessment. We recruited 40 subjects with HSP and asked them to fill the questionnaire twice for test-retest procedure. They also completed the Medical Outcome Survey Short Form (SF-36) and were evaluated by the Spastic Paraplegia Rating Scale and the Six-Minute Walk Test. We also recruited 44 healthy subjects who completed the HSP-SNAP once to test score variability. RESULTS: The HSP-SNAP content validity index was high (0.8±0.1) and the test-retest analysis showed high reliability (ICC = 0.94). The mean HSP-SNAP score (score range 0-48) of the HSP group was 22.2±7.8, which was significantly lower than healthy subjects (43.1±6.3). The most commonly perceived symptom was stiffness, followed by weakness and imbalance. CONCLUSION: Although HSP-SNAP does not investigate non-motor symptoms and we validated only its Italian version, it showed good validity and reliability and it could be used in combination with other objective outcome measures for clinical purposes or as endpoints for future clinical rehabilitation studies. TRIAL REGISTRATION: Trial Registration: ClinicalTrial.gov, NCT04256681. Registered 3 February 2020.


Subject(s)
Spastic Paraplegia, Hereditary , Humans , Spastic Paraplegia, Hereditary/diagnosis , Reproducibility of Results , Paraplegia , Patient Reported Outcome Measures , Italy
3.
Cells ; 13(7)2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38607016

ABSTRACT

Hereditary spastic paraplegias (HSPs) are a heterogeneous group of mono-genetic inherited neurological disorders, whose primary manifestation is the disruption of the pyramidal system, observed as a progressive impaired gait and leg spasticity in patients. Despite the large list of genes linked to this group, which exceeds 80 loci, the number of cellular functions which the gene products engage is relatively limited, among which endoplasmic reticulum (ER) morphogenesis appears central. Mutations in genes encoding ER-shaping proteins are the most common cause of HSP, highlighting the importance of correct ER organisation for long motor neuron survival. However, a major bottleneck in the study of ER morphology is the current lack of quantitative methods, with most studies to date reporting, instead, on qualitative changes. Here, we describe and apply a quantitative image-based screen to identify genetic modifiers of ER organisation using a mammalian cell culture system. An analysis reveals significant quantitative changes in tubular ER and dense sheet ER organisation caused by the siRNA-mediated knockdown of HSP-causing genes ATL1 and RTN2. This screen constitutes the first attempt to examine ER distribution in cells in an automated and high-content manner and to detect genes which impact ER organisation.


Subject(s)
Nervous System Diseases , Spastic Paraplegia, Hereditary , Animals , Humans , Membrane Proteins/metabolism , Membrane Transport Proteins/genetics , GTP-Binding Proteins/metabolism , Spastic Paraplegia, Hereditary/genetics , Mammals/metabolism
4.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(4): 437-442, 2024 Apr 10.
Article in Chinese | MEDLINE | ID: mdl-38565509

ABSTRACT

OBJECTIVE: To explore the clinical phenotype and genetic characteristics of a Chinese pedigree affected with Spastic paraplegia type 5A (SPG5A). METHODS: A pedigree suspected for Hereditary spastic paraplegia (HSP) at Henan Children's Hospital on August 15 2022 was selected as the study subject. Clinical data of the pedigree was collected. Peripheral blood samples were collected from members of the pedigree. Following extraction of genomic DNA, trio-WGS was carried out, and candidate variant was verified by Sanger sequencing. RESULTS: The child, a 1-year-old boy, had presented with microcephaly, hairy face and dorsal side of distal extremities and trunk, intellectual and motor development delay, increased muscle tone of lower limbs, hyperreflexes of bilateral knee tendons, and positive pathological signs. His parents and sister both had normal phenotypes. Trio-WGS revealed that the child has harbored a homozygous c.1250G>A (p.Arg417His) variant of the CYP7B1 gene, for which his mother was heterozygous, the father and sister were of the wild type. The variant was determined to have originated from maternal uniparental disomy (UPD). The result of Sanger sequencing was in keeping with the that of trio-WGS. SPG5A due to maternal UPD of chromosome 8 was unreported previously. CONCLUSION: The child was diagnosed with SPG5A, a complex type of HSP, for which the homozygous c.1250G>A variant of the CYP7B1 gene derived from maternal UPD may be accountable.


Subject(s)
Spastic Paraplegia, Hereditary , Humans , Infant , Male , China , Mutation , Paraplegia/genetics , Pedigree , Phenotype , Spastic Paraplegia, Hereditary/genetics
5.
BMJ Case Rep ; 17(4)2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38631813

ABSTRACT

A man in his 30s was referred to neurology with right-sided paraesthesia, tremors, chest pain and lower urinary tract and erectile dysfunction. He had a medical history of left acetabular dysplasia, and subjective memory impairment, the latter being in the context of depression and chronic pain with opioid use. There was no notable family history. On examination, he had a spastic paraparesis. Imaging revealed atrophy of the thoracic spine. Lumbar puncture demonstrated a raised protein but other constituents were normal, including no presence of oligoclonal bands. Genetic testing revealed a novel heterozygous likely pathogenic SPAST variant c. 1643A>T p.(Asp548Val), confirming the diagnosis of hereditary spastic paraparesis. Symptomatic treatment with physiotherapy and antispasmodic therapy was initiated. This is the first study reporting a patient with this SPAST variant. Ensembl variant effect predictor was used, with the application of computational variant prediction tools providing support that the variant we have identified is likely deleterious and damaging. Our variant CADD score was high, indicating that our identified variant was a highly deleterious substitution.


Subject(s)
Paraparesis, Spastic , Spastic Paraplegia, Hereditary , Male , Humans , Paraparesis, Spastic/genetics , Spastic Paraplegia, Hereditary/genetics , Pedigree , Proteins/genetics , Genetic Testing , Mutation , Spastin/genetics
6.
Muscle Nerve ; 70(1): 152-156, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38687249

ABSTRACT

INTRODUCTION/AIMS: The frequency and distribution of upper motor neuron (UMN) signs in primary lateral sclerosis (PLS) are unknown. We aimed to study the spectrum of UMN signs in PLS and compare it with hereditary spastic paraplegia (HSP). METHODS: We retrospectively analyzed the frequency of different UMN signs, including hyperreflexia (limbs and jaw), limb and tongue spasticity, Babinski, and Hoffman signs, in PLS patients at first observation and compared this respect to onset region and symptom duration. We also compared PLS versus HSP patients. RESULTS: We included 34 PLS and 20 HSP patients, with a median symptom duration at first visit of 3.0 (interquartile range, IQR = 4.0) and 19.0 (IQR = 22.0) years, respectively. In PLS patients, hyperreflexia of upper (UL) (88.2%) and lower (LL) (91.2%) limbs, and LL spasticity (79.4%) were the most common findings. Spasticity of LL was significantly (p = .012) more frequent in LL-spinal onset subgroup, tongue spasticity in bulbar-onset subgroup (p = .021), and Hoffman sign in UL-spinal onset subgroup (p = .024). The PLS subgroup with shorter disease duration had a higher frequency of abnormal jaw jerk reflex (p = .037). Compared with HSP, PLS patients had a higher frequency of UL hyperreflexia (88.2% vs. 42.1%, p < .001) and UL spasticity (44.1% vs. 0.0%, p < .001). Asymmetric distribution of UMN signs was present in PLS and not in HSP. DISCUSSION: In PLS, UL UMN signs are nearly always present and UMN sign distribution appears to be associated with onset region. At first observation, bulbar involvement, asymmetrical distribution of UMN signs and UL spasticity may indicate PLS versus HSP.


Subject(s)
Spastic Paraplegia, Hereditary , Humans , Spastic Paraplegia, Hereditary/physiopathology , Spastic Paraplegia, Hereditary/diagnosis , Male , Female , Middle Aged , Adult , Retrospective Studies , Motor Neurons/physiology , Aged , Muscle Spasticity/physiopathology , Muscle Spasticity/diagnosis , Motor Neuron Disease/physiopathology , Motor Neuron Disease/diagnosis
8.
J Biol Chem ; 300(5): 107259, 2024 May.
Article in English | MEDLINE | ID: mdl-38582453

ABSTRACT

Selenoprotein I (SELENOI) catalyzes the final reaction of the CDP-ethanolamine branch of the Kennedy pathway, generating the phospholipids phosphatidylethanolamine (PE) and plasmenyl-PE. Plasmenyl-PE is a key component of myelin and is characterized by a vinyl ether bond that preferentially reacts with oxidants, thus serves as a sacrificial antioxidant. In humans, multiple loss-of-function mutations in genes affecting plasmenyl-PE metabolism have been implicated in hereditary spastic paraplegia, including SELENOI. Herein, we developed a mouse model of nervous system-restricted SELENOI deficiency that circumvents embryonic lethality caused by constitutive deletion and recapitulates phenotypic features of hereditary spastic paraplegia. Resulting mice exhibited pronounced alterations in brain lipid composition, which coincided with motor deficits and neuropathology including hypomyelination, elevated reactive gliosis, and microcephaly. Further studies revealed increased lipid peroxidation in oligodendrocyte lineage cells and disrupted oligodendrocyte maturation both in vivo and in vitro. Altogether, these findings detail a critical role for SELENOI-derived plasmenyl-PE in myelination that is of paramount importance for neurodevelopment.


Subject(s)
Homeostasis , Myelin Sheath , Oligodendroglia , Selenoproteins , Animals , Myelin Sheath/metabolism , Mice , Selenoproteins/metabolism , Selenoproteins/genetics , Oligodendroglia/metabolism , Oligodendroglia/pathology , Phosphatidylethanolamines/metabolism , Lipid Peroxidation , Mice, Knockout , Spastic Paraplegia, Hereditary/metabolism , Spastic Paraplegia, Hereditary/genetics , Spastic Paraplegia, Hereditary/pathology , Lipid Metabolism , Humans , Brain/metabolism , Brain/pathology , Phospholipid Ethers/metabolism , Plasmalogens/metabolism
9.
Sci Rep ; 14(1): 7335, 2024 03 27.
Article in English | MEDLINE | ID: mdl-38538623

ABSTRACT

Hereditary spastic paraplegia type 5 (SPG5) is an autosomal recessively inherited movement disorder characterized by progressive spastic gait disturbance and afferent ataxia. SPG5 is caused by bi-allelic loss of function mutations in CYP7B1 resulting in accumulation of the oxysterols 25-hydroxycholesterol and 27-hydroxycholesterol in serum and cerebrospinal fluid of SPG5 patients. An effect of 27- hydroxycholesterol via the estrogen and liver X receptors was previously shown on bone homeostasis. This study analyzed bone homeostasis and osteopenia in 14 SPG5 patients as a non-motor feature leading to a potential increased risk for bone fractures. T-Scores in CT bone density measurements were reduced, indicating osteopenia in SPG5 patients. Further, we analyzed various metabolites of bone homeostasis by ELISA in serum samples of these patients. We identified a lack of vitamin D3 metabolites (Calcidiol and Calcitriol), an increase in Sclerostin as a bone formation/mineralization inhibiting factor, and a decrease in cross-linked N-telopeptide of type I collagen (NTX), a marker indicating reduced bone resorption. As statin treatment has been found to lower oxysterol levels, we evaluated its effect in samples of the STOP-SPG5 trial and found atorvastatin to normalize the increased sclerostin levels. In summary, our study identified osteopenia as a non-motor feature in SPG5 and suggests the need for vitamin D3 substitution in SPG5 patients. Sclerostin may be considered a therapeutic target and biomarker in upcoming therapeutical trials in SPG5.


Subject(s)
Oxysterols , Spastic Paraplegia, Hereditary , Humans , Mutation , Spastic Paraplegia, Hereditary/genetics , Spastic Paraplegia, Hereditary/metabolism , Paraplegia , Homeostasis , Vitamin D/therapeutic use
10.
Ann Clin Transl Neurol ; 11(4): 1067-1074, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38439593

ABSTRACT

Biallelic mutations in the coenzyme Q7 (COQ7) encoding gene were recently identified as a genetic cause of distal hereditary motor neuropathy. Here, we explored the clinical, electrophysiological, pathological, and genetic characteristics of a Chinese patient with spastic paraplegia associated with recessive variants in COQ7. This patient carried a novel c.322C>A (p.Pro108Thr) homozygous variant. Sural biopsy revealed mild mixed axonal and demyelinating degeneration. Immunoblotting showed a significant decrease in the COQ7 protein level in the patient's fibroblasts. This study confirmed that COQ7 variant as a genetic cause of HSP, and further extended spastic paraplegia to the phenotypic spectrum of COQ7-related disorders.


Subject(s)
Spastic Paraplegia, Hereditary , Ubiquinone , Humans , Homozygote , Mutation , Paraplegia , Spastic Paraplegia, Hereditary/genetics
11.
Int J Mol Sci ; 25(5)2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38473862

ABSTRACT

Hereditary spastic paraplegias (HSPs) comprise a family of degenerative diseases mostly hitting descending axons of corticospinal neurons. Depending on the gene and mutation involved, the disease could present as a pure form with limb spasticity, or a complex form associated with cerebellar and/or cortical signs such as ataxia, dysarthria, epilepsy, and intellectual disability. The progressive nature of HSPs invariably leads patients to require walking canes or wheelchairs over time. Despite several attempts to ameliorate the life quality of patients that have been tested, current therapeutical approaches are just symptomatic, as no cure is available. Progress in research in the last two decades has identified a vast number of genes involved in HSP etiology, using cellular and animal models generated on purpose. Although unanimously considered invaluable tools for basic research, those systems are rarely predictive for the establishment of a therapeutic approach. The advent of induced pluripotent stem (iPS) cells allowed instead the direct study of morphological and molecular properties of the patient's affected neurons generated upon in vitro differentiation. In this review, we revisited all the present literature recently published regarding the use of iPS cells to differentiate HSP patient-specific neurons. Most studies have defined patient-derived neurons as a reliable model to faithfully mimic HSP in vitro, discovering original findings through immunological and -omics approaches, and providing a platform to screen novel or repurposed drugs. Thereby, one of the biggest hopes of current HSP research regards the use of patient-derived iPS cells to expand basic knowledge on the disease, while simultaneously establishing new therapeutic treatments for both generalized and personalized approaches in daily medical practice.


Subject(s)
Cerebellar Ataxia , Pluripotent Stem Cells , Spastic Paraplegia, Hereditary , Animals , Humans , Spastic Paraplegia, Hereditary/genetics , Neurons , Axons , Mutation
12.
Int J Mol Sci ; 25(5)2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38474289

ABSTRACT

The L1 cell adhesion molecule (L1) has demonstrated a range of beneficial effects in animal models of spinal cord injury, neurodegenerative disease, and ischemia; however, the role of L1 in TBI has not been fully examined. Mutations in the L1 gene affecting the extracellular domain of this type 1 transmembrane glycoprotein have been identified in patients with L1 syndrome. These patients suffer from hydrocephalus, MASA (mental retardation, adducted thumbs, shuffling gait, aphasia) symptoms, and corpus callosum agenesis. Clinicians have observed that recovery post-traumatic brain injury (TBI) varies among the population. This variability may be explained by the genetic differences present in the general population. In this study, we utilized a novel mouse model of L1 syndrome with a mutation at aspartic acid position 201 in the extracellular domain of L1 (L1-201). We assessed the impact of this specific single nucleotide polymorphism (SNP) localized to the X-chromosome L1 gene on recovery outcomes following TBI by comparing the L1-201 mouse mutants with their wild-type littermates. We demonstrate that male L1-201 mice exhibit significantly worse learning and memory outcomes in the Morris water maze after lateral fluid percussion (LFP) injury compared to male wild-type mice and a trend to worse motor function on the rotarod. However, no significant changes were observed in markers for inflammatory responses or apoptosis after TBI.


Subject(s)
Brain Injuries, Traumatic , Genetic Diseases, X-Linked , Hydrocephalus , Intellectual Disability , Neural Cell Adhesion Molecule L1 , Neurodegenerative Diseases , Spastic Paraplegia, Hereditary , Humans , Male , Animals , Mice , Neural Cell Adhesion Molecule L1/genetics , Polymorphism, Single Nucleotide , Hydrocephalus/genetics
13.
Pediatr Neurol ; 152: 189-195, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38301322

ABSTRACT

BACKGROUND: Hereditary spastic paraplegias (HSPs) are a group of genetically heterogeneous neurodegenerative disorders. Our objective was to determine the clinical and molecular characteristics of patients with genetically confirmed childhood-onset HSPs and to expand the genetic spectrum for some rare subtypes of HSP. METHODS: We reviewed the charts of subjects with genetically confirmed childhood-onset HSP. The age at the disease onset was defined as the point at which the delayed motor milestones were observed. Delayed motor milestones were defined as being unable to hold the head up by four months, sitting unassisted by nine months, and walking independently by 17 months. If there were no delayed motor milestones, age at disease onset was determined by leg stiffness, frequent falls, or unsteady gait. Genetic testing was performed based on delayed motor milestones, progressive leg spasticity, and gait difficulty. The variant classification was determined based on the American College of Medical Genetics standard guidelines for variant interpretation. Variants of uncertain significance (VUS) were considered disease-associated when clinical findings were consistent with the previously described disease phenotypes for pathogenic variants. In addition, in the absence of another pathogenic, likely pathogenic, or VUS variant that could explain the phenotype of our cases, we concluded that the disease is associated with VUS in the HSP-causing gene. Segregation analysis was also performed on the parents of some patients to demonstrate the inheritance model. RESULTS: There were a total of 18 patients from 17 families. The median age of symptom onset was 18 months (2 to 84 months). The mean delay between symptom onset and genetic diagnosis was 5.8 years (5 months to 17 years). All patients had gait difficulty caused by progressive leg spasticity and weakness. Independent walking was not achieved at 17 months for 67% of patients (n = 12). In our cohort, there were two subjects each with SPG11, SPG46, and SPG 50 followed by single subject each with SPG3A, SPG4, SPG7, SPG8, SPG30, SPG35, SPG43, SPG44, SPG57, SPG62, infantile-onset ascending spastic paralysis (IAHSP), and spastic paraplegia and psychomotor retardation with or without seizures (SPPRS). Eight novel variants in nine patients were described. Two affected siblings had a novel variant in the GBA2 gene (SPG46), and one subject each had a novel variant in WASHC5 (SPG8), SPG11 (SPG11), KIF1A (SPG30), GJC2 (SPG44), ERLIN1 (SPG62), ALS2 (IAHSP), and HACE1 (SPPRS). Among the novel variants, the variant in the SPG11 was pathogenic and the variants in the KIF1A, GJC2, and HACE1 were likely pathogenic. The variants in the GBA2, ALS2, ERLIN1, and WASHC5 were classified as VUS. CONCLUSIONS: There was a significant delay between symptom onset and genetic diagnosis of HSP. An early diagnosis may be possible by examining patients with delayed motor milestones, progressive spasticity, gait difficulties, and neuromuscular weakness in the context of HSP. Eight novel variants in nine patients were described, clinically similar to the previously described disease phenotype associated with pathogenic variants. This study contributes to expanding the genetic spectrum of some rare subtypes of HSP.


Subject(s)
Amyotrophic Lateral Sclerosis , Spastic Paraplegia, Hereditary , Child , Humans , Infant , Kinesins/genetics , Mutation/genetics , Phenotype , Proteins/genetics , Retrospective Studies , Spastic Paraplegia, Hereditary/genetics , Ubiquitin-Protein Ligases/genetics , Child, Preschool , Adolescent
15.
Pediatr Neurol ; 152: 200-208, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38306901

ABSTRACT

BACKGROUND: Fatty acid 2-hydroxylase (FA2H) is encoded by the FA2H gene, with mutations therein leading to the neurodegenerative condition, spastic paraplegia-35 (SPG35). We aim to elucidate the genetic underpinnings of a nonconsanguineous Chinese family diagnosed with SPG35 by examining the clinical manifestations, scrutinizing genetic variants, and establishing the role of FA2H mutation in lipid metabolism. METHODS: Using next-generation sequencing analysis to identify the pathogenic gene in this pedigree and family cosegregation verification. The use of lipidomics of patient pedigree peripheral blood mononuclear cells further substantiated alterations in lipid metabolism attributable to the FA2H exon 1 deletion. RESULTS: The proband exhibited gait disturbance from age 5 years; he developed further clinical manifestations such as scissor gait and dystonia. His younger sister also presented with a spastic gait from the same age. We identified a homozygous deletion in the region of FA2H exon 1, spanning from chr16:74807867 to chr16: 74810391 in the patients. Lipidomic analysis revealed significant differences in 102 metabolites compared with healthy controls, with 62 metabolites increased and 40 metabolites decreased. We specifically zeroed in on 19 different sphingolipid metabolites, which comprised ceramides, ganglioside, etc., with only three of these sphingolipids previously reported. CONCLUSIONS: This is the first study of lipid metabolism in the blood of patients with SPG35. The results broaden our understanding of the SPG35 gene spectrum, offering insights for future molecular mechanism research and laying groundwork for determining metabolic markers.


Subject(s)
Heredodegenerative Disorders, Nervous System , Lipidomics , Spastic Paraplegia, Hereditary , Male , Humans , Child, Preschool , Homozygote , Leukocytes, Mononuclear/pathology , Sequence Deletion/genetics , Mutation , Exons/genetics , Pedigree , Spastic Paraplegia, Hereditary/genetics , Spastic Paraplegia, Hereditary/diagnosis , Paraplegia
16.
J Pediatr Endocrinol Metab ; 37(3): 271-275, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38353247

ABSTRACT

OBJECTIVES: The fatty acid 2-hydroxylase gene (FA2H) compound heterozygous or homozygous variants that cause spastic paraplegia type 35 (SPG35) (OMIM # 612319) are autosomal recessive HSPs. FA2H gene variants in humans have been shown to be associated with not only SPG35 but also leukodystrophy and neurodegeneration with brain iron accumulation. CASE PRESENTATION: A patient with a spastic gait since age seven was admitted to the paediatric metabolism department. She was born to consanguineous, healthy Turkish parents and had no family history of neurological disease. She had normal developmental milestones and was able to walk at 11 months. At age seven, she developed a progressive gait disorder with increased muscle tone in her lower limbs, bilateral ankle clonus and dysdiadochokinesis. She had frequent falls and deteriorating school performance. Despite physiotherapy, her spastic paraplegia was progressive. Whole exome sequencing (WES) identified a homozygous NM_024306.5:c.460C>T missense variant in the FA2H gene, of which her parents were heterozygous carriers. A brain MRI showed a slight reduction in the cerebellar volume with no iron deposits. CONCLUSIONS: Pathogenic variants of the FA2H gene have been linked to neurodegeneration with iron accumulation in the brain, leukodystrophy and SPG35. When patients developed progressive gait deterioration since early childhood even if not exhibited hypointensity in the basal ganglia detected by neuroimaging, FA2H-related neurodegeneration with brain iron accumulation should be ruled out. FA2H/SPG35 disease is characterised by notable clinical and imaging variability, as well as phenotypic diversity.


Subject(s)
Heredodegenerative Disorders, Nervous System , Spastic Paraplegia, Hereditary , Child , Female , Humans , Child, Preschool , Mutation , Spastic Paraplegia, Hereditary/genetics , Spastic Paraplegia, Hereditary/pathology , Mixed Function Oxygenases/genetics , Magnetic Resonance Imaging , Pedigree , Paraplegia , Iron
17.
Trends Neurosci ; 47(3): 227-238, 2024 03.
Article in English | MEDLINE | ID: mdl-38360512

ABSTRACT

International consortia collaborating on the genetics of rare diseases have significantly boosted our understanding of inherited neurological disorders. Historical clinical classification boundaries were drawn between disorders with seemingly different etiologies, such as inherited peripheral neuropathies (IPNs), spastic paraplegias, and cerebellar ataxias. These clinically defined borders are being challenged by the identification of mutations in genes displaying wide phenotypic spectra and by shared pathomechanistic themes, which are valuable indications for therapy development. We highlight common cellular alterations that underlie this genetic landscape, including alteration of cytoskeleton, axonal transport, mitochondrial function, and DNA repair response. Finally, we discuss venues for future research using the long axonopathies of the PNS as a model to explore other neurogenetic disorders.


Subject(s)
Cerebellar Ataxia , Peripheral Nervous System Diseases , Spastic Paraplegia, Hereditary , Humans , Cerebellar Ataxia/genetics , Spastic Paraplegia, Hereditary/genetics , Peripheral Nervous System Diseases/genetics , Mutation/genetics , Paraplegia
18.
Cell Death Differ ; 31(3): 348-359, 2024 03.
Article in English | MEDLINE | ID: mdl-38332048

ABSTRACT

Hereditary spastic paraplegia (HSP) is a group of inherited neurodegenerative disorders characterized by progressive lower limb spasticity and weakness. One subtype of HSP, known as SPG54, is caused by biallelic mutations in the DDHD2 gene. The primary pathological feature observed in patients with SPG54 is the massive accumulation of lipid droplets (LDs) in the brain. However, the precise mechanisms and roles of DDHD2 in regulating lipid homeostasis are not yet fully understood. Through Affinity Purification-Mass Spectroscopy (AP-MS) analysis, we identify that DDHD2 interacts with multiple members of the ATG8 family proteins (LC3, GABARAPs), which play crucial roles in lipophagy. Mutational analysis reveals the presence of two authentic LIR motifs in DDHD2 protein that are essential for its binding to LC3/GABARAPs. We show that DDHD2 deficiency leads to LD accumulation, while enhanced DDHD2 expression reduces LD formation. The LC3/GABARAP-binding capacity of DDHD2 and the canonical autophagy pathway both contribute to its LD-eliminating activity. Moreover, DDHD2 enhances the colocalization between LC3B and LDs to promote lipophagy. LD·ATTEC, a small molecule that tethers LC3 to LDs to enhance their autophagic clearance, effectively counteracts DDHD2 deficiency-induced LD accumulation. These findings provide valuable insights into the regulatory roles of DDHD2 in LD catabolism and offer a potential therapeutic approach for treating SPG54 patients.


Subject(s)
Phospholipases , Spastic Paraplegia, Hereditary , Humans , Autophagy/genetics , Autophagy-Related Protein 8 Family , Mutation/genetics , Phospholipases/genetics , Spastic Paraplegia, Hereditary/genetics , Spastic Paraplegia, Hereditary/pathology
19.
Continuum (Minneap Minn) ; 30(1): 119-132, 2024 02 01.
Article in English | MEDLINE | ID: mdl-38330475

ABSTRACT

OBJECTIVE: This article provides an overview of genetic myelopathies, a diverse group of inherited, degenerative conditions that may be broadly categorized as motor neuron disorders, disorders of spinocerebellar degeneration, leukodystrophies, and hereditary spastic paraplegia. Clinical examples from each category are provided to illustrate the spectrum of genetic myelopathies and their distinguishing features that aid in differentiating genetic myelopathies from potentially treatable acquired causes of myelopathy. LATEST DEVELOPMENTS: Advances in genetic testing have vastly enhanced current knowledge of genetic myelopathies and the ability to diagnose and provide appropriate counseling to patients and their families. However, potential health care disparities in access to genetic testing is a topic that must be further explored. Although treatment for most of these conditions is typically supportive, there have been recent therapeutic breakthroughs in treatments for amyotrophic lateral sclerosis, spinal muscular atrophy, and Friedreich ataxia. ESSENTIAL POINTS: Genetic myelopathies may present with chronic and progressive symptoms, a family history of similar symptoms, and involvement of other structures outside of the spinal cord. Imaging often shows spinal cord atrophy, but cord signal change is rare. Exclusion of reversible causes of myelopathy is a key step in the diagnosis. There are many different causes of genetic myelopathies, and in some cases, symptoms may overlap, which underscores the utility of genetic testing in confirming the precise underlying neurologic condition.


Subject(s)
Amyotrophic Lateral Sclerosis , Muscular Atrophy, Spinal , Spastic Paraplegia, Hereditary , Spinal Cord Diseases , Humans , Amyotrophic Lateral Sclerosis/diagnosis , Muscular Atrophy, Spinal/diagnosis , Spastic Paraplegia, Hereditary/diagnosis , Spinal Cord Diseases/diagnosis , Spinal Cord Diseases/genetics , Spinal Cord Diseases/therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...