Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.977
Filter
1.
Commun Biol ; 7(1): 614, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773301

ABSTRACT

Uncertainty abounds in the real world, and in environments with multiple layers of unobservable hidden states, decision-making requires resolving uncertainties based on mutual inference. Focusing on a spatial navigation problem, we develop a Tiger maze task that involved simultaneously inferring the local hidden state and the global hidden state from probabilistically uncertain observation. We adopt a Bayesian computational approach by proposing a hierarchical inference model. Applying this to human task behaviour, alongside functional magnetic resonance brain imaging, allows us to separate the neural correlates associated with reinforcement and reassessment of belief in hidden states. The imaging results also suggest that different layers of uncertainty differentially involve the basal ganglia and dorsomedial prefrontal cortex, and that the regions responsible are organised along the rostral axis of these areas according to the type of inference and the level of abstraction of the hidden state, i.e. higher-order state inference involves more anterior parts.


Subject(s)
Bayes Theorem , Magnetic Resonance Imaging , Spatial Navigation , Spatial Navigation/physiology , Humans , Male , Adult , Female , Uncertainty , Prefrontal Cortex/physiology , Prefrontal Cortex/diagnostic imaging , Young Adult , Decision Making/physiology , Brain/physiology , Brain/diagnostic imaging , Brain Mapping/methods
2.
J Exp Biol ; 227(10)2024 May 15.
Article in English | MEDLINE | ID: mdl-38690630

ABSTRACT

Desert ants stand out as some of the most intriguing insect navigators, having captured the attention of scientists for decades. This includes the structure of walking trajectories during goal approach and search behaviour for the nest and familiar feeding sites. In the present study, we analysed such trajectories with regard to changes in walking direction. The directional change of the ants was quantified, i.e. an angle θ between trajectory increments of a given arclength λ was computed. This was done for different length scales λ, according to our goal of analysing desert ant path characteristics with respect to length scale. First, varying λ through more than two orders of magnitude demonstrated Brownian motion characteristics typical of the random walk component of search behaviour. Unexpectedly, this random walk component was also present in - supposedly rather linear - approach trajectories. Second, there were small but notable deviations from a uniform angle distribution that is characteristic of random walks. This was true for specific search situations, mostly close to the (virtual) goal position. And third, experience with a feeder position resulted in straighter approaches and more focused searches, which was also true for nest searches, albeit to a lesser extent. Taken together, these results both verify and extend previous studies on desert ant path characteristics. Of particular interest are the ubiquitous Brownian motion signatures and specific deviations thereof close to the goal position, indicative of unexpectedly structured search behaviour.


Subject(s)
Ants , Desert Climate , Walking , Animals , Ants/physiology , Walking/physiology , Spatial Navigation/physiology
3.
Commun Biol ; 7(1): 578, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755224

ABSTRACT

Path integration is a powerful navigational mechanism whereby individuals continuously update their distance and angular vector of movement to calculate their position in relation to their departure location, allowing them to return along the most direct route even across unfamiliar terrain. While path integration has been investigated in several terrestrial animals, it has never been demonstrated in aquatic vertebrates, where movement occurs through volumetric space and sensory cues available for navigation are likely to differ substantially from those in terrestrial environments. By performing displacement experiments with Lamprologus ocellatus, we show evidence consistent with fish using path integration to navigate alongside other mechanisms (allothetic place cues and route recapitulation). These results indicate that the use of path integration is likely to be deeply rooted within the vertebrate phylogeny irrespective of the environment, and suggests that fish may possess a spatial encoding system that parallels that of mammals.


Subject(s)
Cues , Animals , Spatial Navigation/physiology , Fishes/physiology
4.
Nat Commun ; 15(1): 4122, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750027

ABSTRACT

Visual information is important for accurate spatial coding and memory-guided navigation. As a crucial area for spatial cognition, the medial entorhinal cortex (MEC) harbors diverse spatially tuned cells and functions as the major gateway relaying sensory inputs to the hippocampus containing place cells. However, how visual information enters the MEC has not been fully understood. Here, we identify a pathway originating in the secondary visual cortex (V2) and directly targeting MEC layer 5a (L5a). L5a neurons served as a network hub for visual processing in the MEC by routing visual inputs from multiple V2 areas to other local neurons and hippocampal CA1. Interrupting this pathway severely impaired visual stimulus-evoked neural activity in the MEC and performance of mice in navigation tasks. These observations reveal a visual cortical-entorhinal pathway highlighting the role of MEC L5a in sensory information transmission, a function typically attributed to MEC superficial layers before.


Subject(s)
Entorhinal Cortex , Neurons , Spatial Navigation , Visual Cortex , Animals , Entorhinal Cortex/physiology , Visual Cortex/physiology , Spatial Navigation/physiology , Mice , Neurons/physiology , Male , Mice, Inbred C57BL , Photic Stimulation , CA1 Region, Hippocampal/physiology , CA1 Region, Hippocampal/cytology , Visual Pathways/physiology , Visual Perception/physiology
5.
PLoS One ; 19(5): e0298867, 2024.
Article in English | MEDLINE | ID: mdl-38728266

ABSTRACT

U.S. service members maintain constant situational awareness (SA) due to training and experience operating in dynamic and complex environments. Work examining how military experience impacts SA during visual search of a complex naturalistic environment, is limited. Here, we compare Active Duty service members and Civilians' physiological behavior during a navigational visual search task in an open-world virtual environment (VE) while cognitive load was manipulated. We measured eye-tracking and electroencephalogram (EEG) outcomes from Active Duty (N = 21) and Civilians (N = 15) while they navigated a desktop VE at a self-regulated pace. Participants searched and counted targets (N = 15) presented among distractors, while cognitive load was manipulated with an auditory Math Task. Results showed Active Duty participants reported significantly greater/closer to the correct number of targets compared to Civilians. Overall, Active Duty participants scanned the VE with faster peak saccade velocities and greater average saccade magnitudes compared to Civilians. Convolutional Neural Network (CNN) response (EEG P-300) was significantly weighted more to initial fixations for the Active Duty group, showing reduced attentional resources on object refixations compared to Civilians. There were no group differences in fixation outcomes or overall CNN response when comparing targets versus distractor objects. When cognitive load was manipulated, only Civilians significantly decreased their average dwell time on each object and the Active Duty group had significantly fewer numbers of correct answers on the Math Task. Overall, the Active Duty group explored the VE with increased scanning speed and distance and reduced cognitive re-processing on objects, employing a different, perhaps expert, visual search strategy indicative of increased SA. The Active Duty group maintained SA in the main visual search task and did not appear to shift focus to the secondary Math Task. Future work could compare how a stress inducing environment impacts these groups' physiological or cognitive markers and performance for these groups.


Subject(s)
Awareness , Electroencephalography , Military Personnel , Humans , Military Personnel/psychology , Male , Female , Adult , Awareness/physiology , Young Adult , Cognition/physiology , Virtual Reality , Attention/physiology , Spatial Navigation/physiology , Saccades/physiology
6.
PLoS One ; 19(5): e0298116, 2024.
Article in English | MEDLINE | ID: mdl-38722850

ABSTRACT

Spatial navigation is a multi-faceted behaviour drawing on many different aspects of cognition. Visuospatial abilities, such as mental rotation and visuospatial working memory, in particular, may be key factors. A range of tests have been developed to assess visuospatial processing and memory, but how such tests relate to navigation ability remains unclear. This understanding is important to advance tests of navigation for disease monitoring in various disorders (e.g., Alzheimer's disease) where spatial impairment is an early symptom. Here, we report the use of an established mobile gaming app, Sea Hero Quest (SHQ), as a measure of navigation ability in a sample of young, predominantly female university students (N = 78; 20; female = 74.3%; mean age = 20.33 years). We used three separate tests of navigation embedded in SHQ: wayfinding, path integration and spatial memory in a radial arm maze. In the same participants, we also collected measures of mental rotation (Mental Rotation Test), visuospatial processing (Design Organization Test) and visuospatial working memory (Digital Corsi). We found few strong correlations across our measures. Being good at wayfinding in a virtual navigation test does not mean an individual will also be good at path integration, have a superior memory in a radial arm maze, or rate themself as having a strong sense of direction. However, we observed that participants who were good in the wayfinding task of SHQ tended to perform well on the three visuospatial tasks examined here, and to also use a landmark strategy in the radial maze task. These findings help clarify the associations between different abilities involved in spatial navigation.


Subject(s)
Spatial Navigation , Humans , Female , Spatial Navigation/physiology , Male , Young Adult , Adult , Memory, Short-Term/physiology , Spatial Memory/physiology , Maze Learning/physiology , Space Perception/physiology , Adolescent , Mobile Applications
8.
Anim Cogn ; 27(1): 39, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38789697

ABSTRACT

The Australian red honey ant, Melophorus bagoti, stands out as the most thermophilic ant in Australia, engaging in all outdoor activities during the hottest periods of the day during summer months. This species of desert ants often navigates by means of path integration and learning landmark cues around the nest. In our study, we observed the outdoor activities of M. bagoti workers engaged in nest excavation, the maintenance of the nest structure, primarily by taking excess sand out of the nest. Before undertaking nest excavation, the ants conducted a single exploratory walk. Following their initial learning expedition, these ants then engaged in nest excavation activities. Consistent with previous findings on pre-foraging learning walks, after just one learning walk, the desert ants in our study demonstrated the ability to return home from locations 2 m away from the nest, although not from locations 4 m away. These findings indicate that even for activities like dumping excavated sand within a range of 5-10 cm outside the nest, these ants learn and utilize the visual landmark panorama around the nest.


Subject(s)
Ants , Animals , Ants/physiology , Australia , Learning , Walking , Nesting Behavior , Desert Climate , Homing Behavior , Cues , Spatial Navigation
9.
J Exp Biol ; 227(10)2024 May 15.
Article in English | MEDLINE | ID: mdl-38804964

ABSTRACT

Desert ants stand out as some of the most intriguing insect navigators, having captured the attention of scientists for decades. This includes the structure of walking trajectories during goal approach and search behaviour for the nest and familiar feeding sites. In the present study, we analysed such trajectories with regard to changes in walking direction. The directional change of the ants was quantified, i.e. an angle θ between trajectory increments of a given arclength λ was computed. This was done for different length scales λ, according to our goal of analysing desert ant path characteristics with respect to length scale. First, varying λ through more than two orders of magnitude demonstrated Brownian motion characteristics typical of the random walk component of search behaviour. Unexpectedly, this random walk component was also present in - supposedly rather linear - approach trajectories. Second, there were small but notable deviations from a uniform angle distribution that is characteristic of random walks. This was true for specific search situations, mostly close to the (virtual) goal position. And third, experience with a feeder position resulted in straighter approaches and more focused searches, which was also true for nest searches, albeit to a lesser extent. Taken together, these results both verify and extend previous studies on desert ant path characteristics. Of particular interest are the ubiquitous Brownian motion signatures and specific deviations thereof close to the goal position, indicative of unexpectedly structured search behaviour.


Subject(s)
Ants , Desert Climate , Walking , Animals , Ants/physiology , Walking/physiology , Spatial Navigation/physiology
10.
PLoS One ; 19(5): e0303785, 2024.
Article in English | MEDLINE | ID: mdl-38776348

ABSTRACT

Exercise enhances aspects of human cognition, but its intensity may matter. Recent animal research suggests that vigorous exercise, which releases greater amounts of lactate, activates more brain-derived neurotrophic factor (BDNF) in the hippocampus and, thus, may be optimal for supporting cognitive function. The cognitive benefits of exercise may be further augmented when combined with cognitive training. The sport of orienteering simultaneously combines exercise with spatial navigation and, therefore, may result in greater cognitive benefits than exercising only, especially at vigorous intensities. The present study aimed to examine the effects of an acute bout of orienteering at different intensities on cognition and BDNF compared to exercising only. We hypothesized that vigorous-intensity orienteering would increase lactate and BDNF and improve cognition more than moderate-intensity orienteering or vigorous exercise alone. Sixty-three recreationally active, healthy young adults (Mage = 21.10±2.75 years) with no orienteering experience completed a 1.3 km intervention course by navigating and exercising at a vigorous (80-85% of heart rate reserve) or moderate (40-50% of heart rate reserve) intensity or exercising vigorously without navigation. Exercise intensity was monitored using peak lactate, heart rate and rating of perceived exertion. Serum BDNF was extracted immediately before and after the intervention. Memory was assessed using the Mnemonic Similarity Task (high-interference memory) and the Groton Maze Learning Test (spatial memory). Both exercising and orienteering at a vigorous intensity elicited greater peak lactate and increases in BDNF than moderate-intensity orienteering, and individuals with higher peak lactate also had greater increases in BDNF. High-interference memory improved after both vigorous-intensity interventions but did not improve after the moderate-intensity intervention. Spatial memory only increased after vigorous-intensity orienteering, suggesting that orienteering at a vigorous intensity may particularly benefit spatial cognition. Overall, the results demonstrate the benefits of vigorous exercise on human cognition and BDNF.


Subject(s)
Brain-Derived Neurotrophic Factor , Cognition , Exercise , Brain-Derived Neurotrophic Factor/blood , Brain-Derived Neurotrophic Factor/metabolism , Humans , Cognition/physiology , Male , Exercise/physiology , Female , Young Adult , Adult , Lactic Acid/blood , Spatial Navigation/physiology , Hippocampus/physiology , Hippocampus/metabolism
11.
Nat Commun ; 15(1): 4471, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38796480

ABSTRACT

Working memory (WM) is the ability to maintain and manipulate information 'in mind'. The neural codes underlying WM have been a matter of debate. We simultaneously recorded the activity of hundreds of neurons in the lateral prefrontal cortex of male macaque monkeys during a visuospatial WM task that required navigation in a virtual 3D environment. Here, we demonstrate distinct neuronal activation sequences (NASs) that encode remembered target locations in the virtual environment. This NAS code outperformed the persistent firing code for remembered locations during the virtual reality task, but not during a classical WM task using stationary stimuli and constraining eye movements. Finally, blocking NMDA receptors using low doses of ketamine deteriorated the NAS code and behavioral performance selectively during the WM task. These results reveal the versatility and adaptability of neural codes supporting working memory function in the primate lateral prefrontal cortex.


Subject(s)
Macaca mulatta , Memory, Short-Term , Neurons , Prefrontal Cortex , Animals , Prefrontal Cortex/physiology , Memory, Short-Term/physiology , Male , Neurons/physiology , Virtual Reality , Ketamine/pharmacology , Spatial Navigation/physiology , Receptors, N-Methyl-D-Aspartate/metabolism
12.
Cortex ; 175: 12-27, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38701643

ABSTRACT

Navigation through space is based on memory representations of landmarks ('place') or movement sequences ('response'). Over time, memory representations transform through consolidation. However, it is unclear how the transformation affects place and response navigation in humans. In the present study, healthy adults navigated to target locations in a virtual maze. The preference for using place and response strategies and the ability to recall place and response memories were tested after a delay of one hour (n = 31), one day (n = 30), or two weeks (n = 32). The different delays captured early-phase synaptic changes, changes after one night of sleep, and long-delay changes due to the reorganization of navigation networks. Our results show that the relative contributions of place and response navigation changed as a function of time. After a short delay of up to one day, participants preferentially used a place strategy and exhibited a high degree of visual landmark exploration. After a longer delay of two weeks, place strategy use decreased significantly. Participants now equally relied on place and response strategy use and increasingly repeated previously taken paths. Further analyses indicate that response strategy use predominantly occurred as a compensatory strategy in the absence of sufficient place memory. Over time, place memory faded before response memory. We suggest that the observed shift from place to response navigation is context-dependent since detailed landmark information, which strongly relied on hippocampal function, decayed faster than sequence information, which required less detail and depended on extra-hippocampal areas. We conclude that changes in place and response navigation likely reflect the reorganization of navigation networks during systems consolidation.


Subject(s)
Memory Consolidation , Spatial Navigation , Humans , Male , Memory Consolidation/physiology , Spatial Navigation/physiology , Female , Adult , Young Adult , Space Perception/physiology , Spatial Memory/physiology , Hippocampus/physiology , Mental Recall/physiology , Maze Learning/physiology
13.
Nat Commun ; 15(1): 4053, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38744848

ABSTRACT

The role of the hippocampus in spatial navigation has been primarily studied in nocturnal mammals, such as rats, that lack many adaptations for daylight vision. Here we demonstrate that during 3D navigation, the common marmoset, a new world primate adapted to daylight, predominantly uses rapid head-gaze shifts for visual exploration while remaining stationary. During active locomotion marmosets stabilize the head, in contrast to rats that use low-velocity head movements to scan the environment as they locomote. Pyramidal neurons in the marmoset hippocampus CA3/CA1 regions predominantly show mixed selectivity for 3D spatial view, head direction, and place. Exclusive place selectivity is scarce. Inhibitory interneurons are predominantly mixed selective for angular head velocity and translation speed. Finally, we found theta phase resetting of local field potential oscillations triggered by head-gaze shifts. Our findings indicate that marmosets adapted to their daylight ecological niche by modifying exploration/navigation strategies and their corresponding hippocampal specializations.


Subject(s)
Callithrix , Hippocampus , Spatial Navigation , Animals , Callithrix/physiology , Spatial Navigation/physiology , Hippocampus/physiology , Male , Locomotion/physiology , Vision, Ocular/physiology , Pyramidal Cells/physiology , Head Movements/physiology , Interneurons/physiology , Female , Behavior, Animal/physiology , CA1 Region, Hippocampal/physiology , CA1 Region, Hippocampal/cytology
14.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 41(2): 335-341, 2024 Apr 25.
Article in Chinese | MEDLINE | ID: mdl-38686415

ABSTRACT

Place cell with location tuning characteristics play an important role in brain spatial cognition and navigation, but there is relatively little research on place cell screening and its influencing factors. Taking pigeons as model animals, the screening process of pigeon place cell was given by using the spike signal in pigeon hippocampus under free activity. The effects of grid number and filter kernel size on the place field of place cells during the screening process were analyzed. The results from the real and simulation data showed that the proposed place cell screening method presented in this study could effectively screen out place cell, and the research found that the size of place field was basically inversely proportional to the number of grids divided, and was basically proportional to the size of Gaussian filter kernel in the overall trend. This result will not only help to determine the appropriate parameters in the place cell screening process, but also promote the research on the neural mechanism of spatial cognition and navigation of birds such as pigeons.


Subject(s)
Columbidae , Hippocampus , Columbidae/physiology , Animals , Hippocampus/cytology , Hippocampus/physiology , Place Cells/physiology , Spatial Navigation/physiology , Cognition , Action Potentials
15.
Anim Cogn ; 27(1): 37, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38684551

ABSTRACT

For most primates living in tropical forests, food resources occur in patchworks of different habitats that vary seasonally in quality and quantity. Efficient navigation (i.e., spatial memory-based orientation) towards profitable food patches should enhance their foraging success. The mechanisms underpinning primate navigating ability remain nonetheless mostly unknown. Using GPS long-term tracking (596 days) of one group of wild western lowland gorillas (Gorilla gorilla gorilla), we investigated their ability to navigate at long distances, and tested for how the sun was used to navigate at any scale by improving landmark visibility and/or by acting as a compass. Long episodic movements ending at a distant swamp, a unique place in the home range where gorillas could find mineral-rich aquatic plants, were straighter and faster than their everyday foraging movements relying on spatial memory. This suggests intentional targeting of the swamp based on long-distance navigation skills, which can thus be efficient over a couple of kilometres. Interestingly, for both long-distance movements towards the swamp and everyday foraging movements, gorillas moved straighter under sunlight conditions even under a dense vegetation cover. By contrast, movement straightness was not markedly different when the sun elevation was low (the sun azimuth then being potentially usable as a compass) or high (so providing no directional information) and the sky was clear or overcast. This suggests that gorillas navigate their home range by relying on visual place recognition but do not use the sun azimuth as a compass. Like humans, who rely heavily on vision to navigate, gorillas should benefit from better lighting to help them identify landmarks as they move through shady forests. This study uncovers a neglected aspect of primate navigation. Spatial memory and vision might have played an important role in the evolutionary success of diurnal primate lineages.


Subject(s)
Gorilla gorilla , Animals , Gorilla gorilla/physiology , Male , Female , Spatial Navigation , Sunlight , Spatial Memory , Movement , Homing Behavior
16.
Proc Natl Acad Sci U S A ; 121(17): e2403858121, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38635638

ABSTRACT

Functional neuroimaging studies indicate that the human brain can represent concepts and their relational structure in memory using coding schemes typical of spatial navigation. However, whether we can read out the internal representational geometries of conceptual spaces solely from human behavior remains unclear. Here, we report that the relational structure between concepts in memory might be reflected in spontaneous eye movements during verbal fluency tasks: When we asked participants to randomly generate numbers, their eye movements correlated with distances along the left-to-right one-dimensional geometry of the number space (mental number line), while they scaled with distance along the ring-like two-dimensional geometry of the color space (color wheel) when they randomly generated color names. Moreover, when participants randomly produced animal names, eye movements correlated with low-dimensional similarity in word frequencies. These results suggest that the representational geometries used to internally organize conceptual spaces might be read out from gaze behavior.


Subject(s)
Eye Movements , Spatial Navigation , Humans , Brain , Movement , Functional Neuroimaging
17.
Behav Processes ; 217: 105026, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38582301

ABSTRACT

Species of crab have been shown to spatially track and navigate to consequential locations through different processes, such as path integration and landmark orienting. Few investigations examine their ability to wayfind in complex environments, like mazes, with multiple intersections and how they may utilize specific features to benefit this process. Spatial learning potentially would lend a fitness advantage to animals living in complicated habitats, and ghost crab (Ocypode quadrata) is a semiterrestrial species that typically occupies extensive beach environments, which present many navigational challenges. Despite their potential, there are currently no studies that investigate forms of spatial cognition in these animals. To better diversify our knowledge of this trait, the current research exposed ghost crab to a maze with seven intersections. Animals were given multiple trials to learn the location of a reward destination to a specific criterion proficiency. In one condition several landmarks were distributed throughout the maze, and in another the environment was completely empty. Results showed that ghost crab in the landmark present group were able to learn the maze faster, they required significantly fewer trials to reach the learning criterion than those in the landmark absent group. However, only approximately half of the total sample met the learning criterion, indicating the maze was rather difficult. These findings are interpreted through theories of route learning that suggest animals may navigate by establishing landmark-turn associations. Such processes have implications for the cognitive ability of ghost crab, and spatial learning in this species may support the notion of convergent evolution for this trait.


Subject(s)
Brachyura , Maze Learning , Spatial Navigation , Animals , Brachyura/physiology , Maze Learning/physiology , Spatial Navigation/physiology , Male , Space Perception/physiology , Cues , Spatial Learning/physiology
18.
Nat Commun ; 15(1): 3476, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38658530

ABSTRACT

Cognitive maps in the hippocampal-entorhinal system are central for the representation of both spatial and non-spatial relationships. Although this system, especially in humans, heavily relies on vision, the role of visual experience in shaping the development of cognitive maps remains largely unknown. Here, we test sighted and early blind individuals in both imagined navigation in fMRI and real-world navigation. During imagined navigation, the Human Navigation Network, constituted by frontal, medial temporal, and parietal cortices, is reliably activated in both groups, showing resilience to visual deprivation. However, neural geometry analyses highlight crucial differences between groups. A 60° rotational symmetry, characteristic of a hexagonal grid-like coding, emerges in the entorhinal cortex of sighted but not blind people, who instead show a 90° (4-fold) symmetry, indicative of a square grid. Moreover, higher parietal cortex activity during navigation in blind people correlates with the magnitude of 4-fold symmetry. In sum, early blindness can alter the geometry of entorhinal cognitive maps, possibly as a consequence of higher reliance on parietal egocentric coding during navigation.


Subject(s)
Blindness , Brain Mapping , Entorhinal Cortex , Magnetic Resonance Imaging , Humans , Blindness/physiopathology , Male , Adult , Female , Entorhinal Cortex/diagnostic imaging , Entorhinal Cortex/physiopathology , Entorhinal Cortex/physiology , Brain Mapping/methods , Parietal Lobe/diagnostic imaging , Parietal Lobe/physiopathology , Middle Aged , Spatial Navigation/physiology , Young Adult , Visually Impaired Persons , Cognition/physiology , Imagination/physiology
19.
Sci Rep ; 14(1): 8331, 2024 04 09.
Article in English | MEDLINE | ID: mdl-38594309

ABSTRACT

With the rapid accumulation of online information, efficient web navigation has grown vital yet challenging. To create an easily navigable cyberspace catering to diverse demographics, understanding how people navigate differently is paramount. While previous research has unveiled individual differences in spatial navigation, such differences in knowledge space navigation remain sparse. To bridge this gap, we conducted an online experiment where participants played a navigation game on Wikipedia and completed personal information questionnaires. Our analysis shows that age negatively affects knowledge space navigation performance, while multilingualism enhances it. Under time pressure, participants' performance improves across trials and males outperform females, an effect not observed in games without time pressure. In our experiment, successful route-finding is usually not related to abilities of innovative exploration of routes. Our results underline the importance of age, multilingualism and time constraint in the knowledge space navigation.


Subject(s)
Multilingualism , Spatial Navigation , Male , Female , Humans , Individuality
20.
Nat Commun ; 15(1): 3221, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38622129

ABSTRACT

The hippocampus creates a cognitive map of the external environment by encoding spatial and self-motion-related information. However, it is unclear whether hippocampal neurons could also incorporate internal cognitive states reflecting an animal's exploratory intention, which is not driven by rewards or unexpected sensory stimuli. In this study, a subgroup of CA1 neurons was found to encode both spatial information and animals' investigatory intentions in male mice. These neurons became active before the initiation of exploration behaviors at specific locations and were nearly silent when the same fields were traversed without exploration. Interestingly, this neuronal activity could not be explained by object features, rewards, or mismatches in environmental cues. Inhibition of the lateral entorhinal cortex decreased the activity of these cells during exploration. Our findings demonstrate that hippocampal neurons may bridge external and internal signals, indicating a potential connection between spatial representation and intentional states in the construction of internal navigation systems.


Subject(s)
Intention , Spatial Navigation , Male , Mice , Animals , Space Perception/physiology , Hippocampus/physiology , Entorhinal Cortex , Cues , Spatial Navigation/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...