Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54.970
Filter
1.
J Environ Sci (China) ; 147: 200-216, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39003040

ABSTRACT

Microplastics (MPs) are ubiquitous in the environment, continuously undergo aging processes and release toxic chemical substances. Understanding the environmental behaviors of MPs is critical to accurately evaluate their long-term ecological risk. Generalized two-dimensional correlation spectroscopy (2D-COS) is a powerful tool for MPs studies, which can dig more comprehensive information hiding in the conventional one-dimensional spectra, such as infrared (IR) and Raman spectra. The recent applications of 2D-COS in analyzing the behaviors and fates of MPs in the environment, including their aging processes, and interactions with natural organic matter (NOM) or other chemical substances, were summarized systematically. The main requirements and limitations of current approaches for exploring these processes are discussed, and the corresponding strategies to address these limitations and drawbacks are proposed as well. Finally, new trends of 2D-COS are prospected for analyzing the properties and behaviors of MPs in both natural and artificial environmental processes.


Subject(s)
Environmental Monitoring , Microplastics , Microplastics/analysis , Environmental Monitoring/methods , Spectroscopy, Fourier Transform Infrared/methods , Water Pollutants, Chemical/analysis
2.
Int J Mol Sci ; 25(13)2024 Jul 02.
Article in English | MEDLINE | ID: mdl-39000407

ABSTRACT

This work focused on the preparation and investigation of polyurethane (SO-PU)-containing sunflower oil glycerides. By transesterification of sunflower oil with glycerol, we synthesized a glyceride mixture with an equilibrium composition, which was used as a new diol component in polyurethanes in addition to poly(ε-caprolactone)diol (PCLD2000). The structure of the glyceride mixture was characterized by physicochemical methods, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), nuclear magnetic resonance spectroscopy (NMR), and size exclusion chromatography (SEC) measurements. The synthesis of polyurethanes was performed in two steps: first the prepolymer with the isocyanate end was synthesized, followed by crosslinking with an additional amount of diisocyanate. For the synthesis of the prepolymer, 4,4'-methylene diphenyl diisocyanate (MDI) or 1,6-hexamethylene diisocyanate (HDI) were used as isocyanate components, while the crosslinking was carried out using an additional amount of MDI or HDI. The obtained SO-PU flexible polymer films were characterized by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). The so-obtained flexible SO-PU films were proved to be suitable for the preparation of potentially biocompatible and/or biodegradable scaffolds. In addition, the stress versus strain curves for the SO-PU polymers were interpreted in terms of a mechanical model, taking into account the yield and the strain hardening.


Subject(s)
Polymers , Polyurethanes , Sunflower Oil , Polyurethanes/chemistry , Polymers/chemistry , Sunflower Oil/chemistry , Biocompatible Materials/chemistry , Isocyanates/chemistry , Polyesters/chemistry , Magnetic Resonance Spectroscopy , Spectroscopy, Fourier Transform Infrared
3.
Arch Microbiol ; 206(7): 334, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38951200

ABSTRACT

Ionic liquids (ILs) are interesting chemical compounds that have a wide range of industrial and scientific applications. They have extraordinary properties, such as the tunability of many of their physical properties and, accordingly, their activities; and the ease of synthesis methods. Hence, they became important building blocks in catalysis, extraction, electrochemistry, analytics, biotechnology, etc. This study determined antifungal activities of various imidazolium-based ionic liquids against yeast Saccharomyces cerevisiae via minimum inhibitory concentration (MIC) estimation method. Increasing the length of the alkyl group attached to the imidazolium cation, enhanced the antifungal activity of the ILs, as well as their ability of the disruption of the cell membrane integrity. FTIR studies performed on the S. cerevisiae cells treated with the ILs revealed alterations in the biochemical composition of these cells. Interestingly, the alterations in fatty acid content occurred in parallel with the increase in the activity of the molecules upon the increase in the length of the attached alkyl group. This trend was confirmed by statistical analysis and machine learning methodology. The classification of antifungal activities based on FTIR spectra of S. cerevisiae cells yielded a prediction accuracy of 83%, indicating the pharmacy and medicine industries could benefit from machine learning methodology. Furthermore, synthesized ionic compounds exhibit significant potential for pharmaceutical and medical applications.


Subject(s)
Antifungal Agents , Cell Membrane , Imidazoles , Ionic Liquids , Microbial Sensitivity Tests , Saccharomyces cerevisiae , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/chemistry , Ionic Liquids/pharmacology , Ionic Liquids/chemistry , Imidazoles/pharmacology , Imidazoles/chemistry , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Cell Membrane/drug effects , Spectroscopy, Fourier Transform Infrared
4.
Astrobiology ; 24(7): 684-697, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38979614

ABSTRACT

The key building blocks for life on Mars could be preserved within potentially habitable paleo-depositional settings with their detection possible by utilizing mid-infrared spectroscopy; however, a definite identification and confirmation of organic or even biological origin will require the samples to be returned to Earth. In the present study, Fourier-transform infrared (FTIR) spectroscopic techniques were used to characterize both mineralogical and organic materials within Mars dust simulant JSC Mars-1 and ancient Antarctic cyanobacterial microbial mats from 1901 to 1904 Discovery Expedition. When FTIR spectroscopy is applied to cyanobacterial microbial mat communities, the resulting spectra will reflect the average biochemical composition of the mats rather than taxa-specific spectral patterns of the individual organisms and can thus be considered as a total chemical analysis of the mat colony. This study also highlights the potential difficulties in the detection of these communities on Mars and which spectral biosignatures will be most detectable within geological substrates. Through the creation and analysis of a suite of dried microbial mat material and Martian dust simulant mixtures, the spectral signatures and wavenumber positions of CHx aliphatic hydrocarbons and the C-O and O-H bands of polysaccharides remained detectable and may be detectable within sample mixtures obtained through Mars Sample Return activities.


Subject(s)
Cyanobacteria , Dust , Exobiology , Extraterrestrial Environment , Mars , Dust/analysis , Spectroscopy, Fourier Transform Infrared/methods , Exobiology/methods , Cyanobacteria/isolation & purification , Museums
5.
Microb Cell Fact ; 23(1): 195, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38971787

ABSTRACT

This study explores a sustainable approach for synthesizing silver nanocomposites (AgNCs) with enhanced antimicrobial and bioactivity using safe Lactobacillus strains and a whey-based medium (WBM). WBM effectively supported the growth of Lactobacillus delbrueckii and Lactobacillus acidophilus, triggering a stress response that led to AgNCs formation. The synthesized AgNCs were characterized using advanced spectroscopic and imaging techniques such as UV‒visible, Fourier transform infrared (FT-IR) spectroscopy, transmission electron (TEM), and scanning electron microscopy with energy dispersive X-ray analysis (SEM-Edx). Lb acidophilus-synthesized AgNCs in WBM (had DLS size average 817.2-974.3 ± PDI = 0.441 nm with an average of metal core size 13.32 ± 3.55 nm) exhibited significant antimicrobial activity against a broad spectrum of pathogens, including bacteria such as Escherichia coli (16.47 ± 2.19 nm), Bacillus cereus (15.31 ± 0.43 nm), Clostridium perfringens (25.95 ± 0.03 mm), Enterococcus faecalis (32.34 ± 0.07 mm), Listeria monocytogenes (23.33 ± 0.05 mm), methicillin-resistant Staphylococcus aureus (MRSA) (13.20 ± 1.76 mm), and filamentous fungi such as Aspergillus brasiliensis (33.46 ± 0.01 mm). In addition, Lb acidophilus-synthesized AgNCs in WBM exhibit remarkable free radical scavenging abilities, suggesting their potential as bioavailable antioxidants. These findings highlight the dual functionality of these biogenic AgNCs, making them promising candidates for applications in both medicine and nutrition.


Subject(s)
Microbial Sensitivity Tests , Nanocomposites , Silver , Whey , Nanocomposites/chemistry , Silver/chemistry , Silver/pharmacology , Whey/chemistry , Whey/metabolism , Lactobacillus acidophilus/drug effects , Lactobacillus acidophilus/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/biosynthesis , Metal Nanoparticles/chemistry , Lactobacillus/metabolism , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Spectroscopy, Fourier Transform Infrared
6.
Int J Nanomedicine ; 19: 6845-6855, 2024.
Article in English | MEDLINE | ID: mdl-39005957

ABSTRACT

Objective: Collagen, a widely used natural biomaterial polymer in skin tissue engineering, can be innovatively processed into nanocollagen through cryogenic milling to potentially enhance skin tissue healing. Although various methods for fabricating nanocollagen have been documented, there is no existing study on the fabrication of nanocollagen via cryogenic milling, specifically employing graphene oxide as separators to prevent agglomeration. Methods: In this study, three research groups were created using cryogenic milling: pure nanocollagen (Pure NC), nanocollagen with 0.005% graphene oxide (NC + 0.005% GO), and nanocollagen with 0.01% graphene oxide (NC+0.01% GO). Characterization analyses included transmission electron microscopy (TEM), scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, x-ray diffraction (XRD), zeta potential (ZP), and polydispersity index (PDI). Results: TEM and SEM analysis revealed that nanocollagen groups alone exhibited particle sizes of less than 100 nm. FTIR spectroscopic investigations indicated the presence of amide A, B, and I, II, and III (1800 to 800 cm-1) in all nanocollagen study groups, with the characteristic C-O-C stretching suggesting the incorporation of graphene oxide (GO). XRD data exhibited broadening of the major peak as the proportion of GO increased from pure NC to the nanocollagen groups with GO. Zeta potential measurements indicated electrostatic attraction of the samples to negatively charged surfaces, accompanied by sample instability. PDI results depicted size diameters ranging from 800 to 1800 nm, indicating strong polydispersity with multiple size populations. Conclusion: This research demonstrated that collagen can be successfully fabricated into nanoparticles with sizes smaller than 100 nm.


Subject(s)
Collagen , Graphite , Particle Size , Graphite/chemistry , Collagen/chemistry , Spectroscopy, Fourier Transform Infrared , Biocompatible Materials/chemistry , X-Ray Diffraction , Tissue Engineering/methods , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission
7.
AAPS J ; 26(4): 83, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39009955

ABSTRACT

Salts of weakly basic drugs can partially dissociate in formulations, to give basic drugs and counter acids. The aim of the present study was to clarify the effect of physicochemical properties on the basic drug-acid-polymer interactions and salt-polymer miscibility, and to explain the influence mechanism at the molecular level. Six maleate salts with different physicochemical properties were selected and PVA was used as the film forming material. The relationship between the physicochemical properties and the miscibility was presented with multiple linear regression analysis. The existence state of salts in formulations were determined by XRD and Raman imaging. The stability of salts was characterized by NMR and XPS. The intermolecular interactions were investigated by FTIR and NMR. The results showed that the salt-PVA miscibility was related to polar surface area of salts and Tg of free bases, which represented hydrogen bond interaction and solubility potential. The basic drug-acid-PVA intermolecular interactions determined the existence state and bonding pattern of the three molecules. Meanwhile, the decrease of the stability after formulation increased the number of free bases in orodispersible films, which in turn affected the miscibility with PVA. The study provided references for the rational design of PVA based orodispersible films.


Subject(s)
Polyvinyl Alcohol , Solubility , Polyvinyl Alcohol/chemistry , Administration, Oral , Drug Stability , Maleates/chemistry , Chemistry, Pharmaceutical/methods , Hydrogen Bonding , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction
8.
Environ Geochem Health ; 46(9): 308, 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39001890

ABSTRACT

This study introduces a new biosorbent derived from Delonix regia bark-activated carbon to efficiently remove Chromium Cr(VI) metal ions from aqueous systems. The biosorbent was synthesized from the bark powder of the plant species and chemically activated with phosphoric acid. The biosorbent was characterized using FTIR, SEM, and BET to determine its functional properties and structural morphology. The batch adsorption experiments examined the optimal conditions for Cr(VI) metal ion adsorption, identifying that the highest removal efficiency occurred at pH levels of 2. The ideal adsorbent dosage was determined to be 2.5 g/L, with equilibrium achieved at a contact time of 60 min at the optimal temperature of about 303 K for a Cr(VI) metal ion concentration of 20 mg/L. Various isotherm models were applied to the adsorption equilibrium values, revealing that the adsorbent had a maximum removal capacity of approximately 224.8 mg/g for Cr(VI) metal ions. The adsorption process of Cr(VI) on the DAC biosorbent was best described by the Freundlich isotherm, indicating multilayer adsorption. The kinetic data fit well with the pseudo-second-order model. Thermodynamic parameters suggested that the adsorption process was spontaneous, exothermic, and feasible across different temperatures. Furthermore, the desorption studies showed that the DAC biosorbent can easily be rejuvenated and utilized several cycles with high adsorption capacity. These findings indicate that the developed adsorbent is environmentally friendly and effective for removing Cr(VI) from water systems.


Subject(s)
Charcoal , Chromium , Plant Bark , Water Pollutants, Chemical , Chromium/chemistry , Adsorption , Plant Bark/chemistry , Water Pollutants, Chemical/chemistry , Charcoal/chemistry , Hydrogen-Ion Concentration , Water Purification/methods , Kinetics , Sapotaceae/chemistry , Thermodynamics , Spectroscopy, Fourier Transform Infrared , Temperature
9.
Environ Geochem Health ; 46(9): 306, 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39002030

ABSTRACT

This study examined plastics and toxic metals in municipal solid waste compost from various regions in Sri Lanka. Plastics were extracted using density separation, digested using wet peroxidation, and identified using Fourier Transform Infra-Red Spectroscopy in Attenuated Total Reflection mode. Compost and plastics were acid-digested to quantify total Cd, Cu, Co, Cr, Pb, and Zn concentrations and analyzed for the bioavailable fraction using 0.01 M CaCl2. Notably, plastics were highly abundant in most compost samples. The main plastic types detected were polyethylene, polypropylene, and cellophane. However, the average Cd, Cu, Co, Cr, Pb, and Zn levels were 0.727, 60.78, 3.670, 25.44, 18.95, and 130.7 mg/kg, respectively, which are well below the recommended levels. Zn was the most bioavailable (2.476 mg/kg), and Cd was the least bioavailable (0.053 mg/kg) metal associated with compost. The Contamination factor data show that there is considerable enhancement of Cd and Cu, however, Cr, Cu, Co, and Pb are at low contamination levels. Mean geo accumulation index values were 1.39, 1.07, - 1.06, - 0.84, - 0.32, and 0.08 for Cd, Cu, Co, Cr, Pb, and Zn. Therefore, the contamination level of compost samples with Cd and Cu ranges from uncontaminated to contaminated levels, whereas Co, Cr, Pb, and Zn are at uncontaminated levels. Despite no direct metal-plastic correlation, plastics in compost could harm plants, animals, and humans due to ingestion. Hence, reducing plastic and metal contamination in compost is crucial.


Subject(s)
Composting , Metals, Heavy , Plastics , Soil Pollutants , Solid Waste , Sri Lanka , Plastics/analysis , Solid Waste/analysis , Metals, Heavy/analysis , Soil Pollutants/analysis , Environmental Monitoring , Soil/chemistry , Spectroscopy, Fourier Transform Infrared , Refuse Disposal
10.
Molecules ; 29(13)2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38998917

ABSTRACT

The rapid and sensitive detection of pathogenic and suspicious bioaerosols are essential for public health protection. The impact of pollen on the identification of bacterial species by Raman and Fourier-Transform Infrared (FTIR) spectra cannot be overlooked. The spectral features of the fourteen class samples were preprocessed and extracted by machine learning algorithms to serve as input data for training purposes. The two types of spectral data were classified using classification models. The partial least squares discriminant analysis (PLS-DA) model achieved classification accuracies of 78.57% and 92.85%, respectively. The Raman spectral data were accurately classified by the support vector machine (SVM) algorithm, with a 100% accuracy rate. The two spectra and their fusion data were correctly classified with 100% accuracy by the random forest (RF) algorithm. The spectral processed algorithms investigated provide an efficient method for eliminating the impact of pollen interference.


Subject(s)
Bacteria , Machine Learning , Spectrum Analysis, Raman , Support Vector Machine , Spectrum Analysis, Raman/methods , Spectroscopy, Fourier Transform Infrared/methods , Bacteria/classification , Bacteria/isolation & purification , Algorithms , Pollen , Least-Squares Analysis , Discriminant Analysis
11.
Molecules ; 29(13)2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38998960

ABSTRACT

The United Nations proposed the Sustainable Development Goals with the aim to make human settlements in cities resilient and sustainable. The excessive discharge of urban waste including sludge and garden waste can pollute groundwater and lead to the emission of greenhouse gases (e.g., CH4). The proper recycling of urban waste is essential for responsible consumption and production, reducing environmental pollution and addressing climate change issues. This study aimed to prepare biochar with high adsorption amounts of iodine using urban sludge and peach wood from garden waste. The study was conducted to examine the variations in the mass ratio between urban sludge and peach wood (2/1, 1/1, and 1/2) as well as pyrolysis temperatures (300 °C, 500 °C, and 700 °C) on the carbon yield and adsorption capacities of biochar. Scanning electron microscopy, Brunauer-Emmett-Teller analysis, Fourier transform infrared spectrometry, powder X-ray diffraction, and elemental analysis were used to characterize the biochar produced at different pyrolysis temperatures and mass ratios. The results indicate that the carbon yield of biochar was found to be the highest (>60%) at a pyrolysis temperature of 300 °C across different pyrolysis temperatures. The absorbed amounts of iodine in the aqueous solution ranged from 86 to 223 mg g-1 at a mass ratio of 1:1 between urban sludge and peach wood, which were comparably higher than those observed in other mass ratios. This study advances water treatment by offering a cost-effective method by using biochar derived from the processing of urban sludge and garden waste.


Subject(s)
Charcoal , Iodine , Pyrolysis , Sewage , Charcoal/chemistry , Iodine/chemistry , Sewage/chemistry , Adsorption , Temperature , Gardens , Spectroscopy, Fourier Transform Infrared , Cities
12.
Sci Rep ; 14(1): 16010, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38992053

ABSTRACT

Aporosa cardiosperma is a plant species majorly found in the Indian Western Ghats that belongs to the phyllanthaceae family with ethnobotanical importance. Using a Fourier Transform-Infrared Spectrometer (FT-IR) and Gas Chromatography-Mass Spectrometry (GC-MS) for evaluating leaf extracts of A. cardiosperma, significant functional groups and metabolite constituents were determined, and its total flavonoid, phenol, and tannin content were quantified. Further, its antibacterial efficacy was investigated against microorganisms that cause fish and human disease and are resistant to common antibiotics, including Staphylococcus aureus, Bacillus subtilis, Mycobacterium tuberculosis, Klebsiella pneumoniae, Aeromonas hydrophila, and Pseudomonas aeruginosa. Regarding the outcomes of GC-MS analysis, the primary metabolites in the A. cardiosperma leaf extracts were heneicosane (57.06%), silane (13.60%), 1-heptadecene (10.09%), 3-hexadecene (9.99%), and pentadecane (9.54%). In comparison to other solvents, methanolic extract of A. cardiosperma leaves had increased phenolic, flavonoid, and tannin content; these findings are consistent with in vitro antioxidant potential and obtained that the methanolic extract (100 µg/mL) exhibited the higher percentage of inhibition in DPPH (82.35%), FRAP (86.20%), metal chelating (72.32%), and ABTS (86.06%) antioxidant assays respectively. Similar findings were found regarding the antibacterial efficacy against pathogenic bacteria. Comparatively, to other extracts, methanolic extracts showed more significant antibacterial activity at a lower minimum inhibitory concentration (MIC) value (250 µg/mL), whilst ethyl acetate and hexane solvent extracts of A. cardiosperma leaves had higher MIC values 500 µg/mL and 1000 µg/mL respectively. The antimicrobial potential was validated by investigating bacterial growth through the extracts acquired MICs and sub-MICs range. Bacterial growth was completely inhibited at the determined MIC range. In conclusion, A. cardiosperma leaf extract's phytochemical fingerprint has been determined, and its potent antibacterial and antioxidant activities were discovered. These findings of the current study will pave the way for developing herbal treatments from A. cardiosperma for various fish and human diseases.


Subject(s)
Anti-Bacterial Agents , Gas Chromatography-Mass Spectrometry , Metabolomics , Plant Extracts , Plant Leaves , Plant Extracts/pharmacology , Plant Extracts/chemistry , Plant Leaves/chemistry , Anti-Bacterial Agents/pharmacology , Metabolomics/methods , Microbial Sensitivity Tests , Antioxidants/pharmacology , Antioxidants/chemistry , Flavonoids/analysis , Flavonoids/pharmacology , Phenols/analysis , Phenols/pharmacology , Tannins/analysis , Tannins/pharmacology , Humans , Spectroscopy, Fourier Transform Infrared/methods
13.
J Mol Graph Model ; 131: 108814, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38968767

ABSTRACT

The synthesis of two pyrazolone derivative compounds, PYR-I(4-Acetyl-1-(4-chlorophenyl)-3-isopropyl-1H-pyrazol-5(4H)-one) and PYR-II1-(4-Chlorophenyl))-3-isopropyl-5-oxo-4,5-5-dihydro-1H-pyrazole-4-carbaldehyde, their characterization by FT-IR, NMR, UV-Vis and GC-MS techniques, and the evaluation of the keto-enol tautomerization process of the structures along with the DFT approach and spectral data were reported in this paper. Spectral findings indicated that PYR-I was stable at the keto state. The IR spectrum recorded in solid form showed that the PYR-II structure was stable in the enol state, while the NMR spectrum in the solution medium showed that it was stable in the keto state. DFT-based analyses were realized with the B3LYP hybrid functional and the 6-311++G(d,p) basis set. The modelled keto, transition and enol state molecular geometries of structures were optimized in the gas phase and different solvent media and the total energy and dipole moment values were investigated at the specified theoretical level. The possible keto-enol tautomerism mechanism of the structures was evaluated through some thermodynamic parameters such as the difference in free Gibbs energy (ΔG), enthalpy (ΔH), entropy (ΔS), and predictive tautomeric equilibrium constants (Keq), acidity constants (pKa) and percentages of tautomers at 298.15 K and 1 atm pressure. The results of these analyses based on the DFT approach indicated that the keto-enol tautomer equilibrium heavily favours the keto form for PYR-I and the enol form for PYR-II in all cases. Moreover, natural bond orbital (NBO) analysis was performed for the tautomers, and the chemical reactivity profiles of the most stable tautomers were examined with the values of frontier molecular orbital energy and some reactivity descriptors.


Subject(s)
Density Functional Theory , Models, Molecular , Pyrazolones , Pyrazolones/chemistry , Molecular Structure , Spectroscopy, Fourier Transform Infrared/methods , Thermodynamics , Molecular Conformation , Magnetic Resonance Spectroscopy
14.
Sci Rep ; 14(1): 16211, 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39003334

ABSTRACT

In this research, the magnetic solid acid nanocatalyst based on ferrierite has been prepared and used as catalyst for the green synthesis of some [1,3]-oxazine derivatives in water at room temperature. The synthesized compounds were obtained in high to excellent yields after short reaction times and the structure of synthesized products were investigated by spectroscopic methods such as: FT-IR, 1H NMR and 13C NMR. The prepared magnetic solid acid catalyst was characterized using XRD, FT-IR, FE-SEM, EDX, elemental mapping, TGA and VSM analysis methods. Magnetic catalyst has easy separation ability, which leads to better and easier recycling. The preparation and synthesis of [1,3]-oxazine derivatives were carried out at room temperature in the presence of M-FER/TEPA/SO3H. Easy workup, green solvent (water) and also short reaction times with high to excellent yield of products, are some of advantageous of presented method. Docking calculations on the structure of the synthesized compounds proved their medicinal properties against breast cancer cells.


Subject(s)
Breast Neoplasms , Molecular Docking Simulation , Oxazines , Catalysis , Breast Neoplasms/drug therapy , Humans , Oxazines/chemistry , Oxazines/chemical synthesis , Female , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Spectroscopy, Fourier Transform Infrared , Green Chemistry Technology/methods
15.
Drug Res (Stuttg) ; 74(6): 296-301, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38968953

ABSTRACT

BACKGROUND: Epilepsy poses a significant global health challenge, particularly in regions with limited financial resources hindering access to treatment. Recent research highlights neuroinflammation, particularly involving cyclooxygenase-2 (COX-2) pathways, as a promising avenue for epilepsy management. METHODS: This study aimed to develop a Cyclooxygenase-2 inhibitor with potential anticonvulsant properties. A promising drug candidate was identified and chemically linked with phospholipids through docking analyses. The activation of this prodrug was assessed using phospholipase A2 (PLA2)-mediated hydrolysis studies. The conjugate's confirmation and cytotoxicity were evaluated using Fourier Transform Infrared Spectroscopy (FT-IR), Differential Scanning Calorimetry (DSC), and Sulphoramide B (SRB) assays. RESULTS: Docking studies revealed that the Celecoxib-Phospholipid conjugate exhibited a superior affinity for PLA2 compared to other drug-phospholipid conjugates. FT-IR spectroscopy confirmed the successful synthesis of the conjugate, while DSC analysis confirmed its purity and formation. PLA2-mediated hydrolysis experiments demonstrated selective activation of the prodrug depending on PLA2 concentration. SRB experiments indicated dose-dependent cytotoxic effects of Celecoxib, phospholipid non-toxicity, and efficient celecoxib-phospholipid conjugation. CONCLUSION: This study successfully developed a Celecoxib-phospholipid conjugate with potential anticonvulsant properties. The prodrug's specific activation and cytotoxicity profile makes it a promising therapeutic candidate. Further investigation into underlying mechanisms and in vivo studies is necessary to assess its translational potential fully.


Subject(s)
Anticonvulsants , Celecoxib , Molecular Docking Simulation , Phospholipases A2 , Phospholipids , Prodrugs , Celecoxib/pharmacology , Phospholipids/chemistry , Anticonvulsants/pharmacology , Anticonvulsants/chemical synthesis , Anticonvulsants/chemistry , Prodrugs/pharmacology , Prodrugs/chemistry , Prodrugs/chemical synthesis , Phospholipases A2/metabolism , Humans , Cyclooxygenase 2 Inhibitors/pharmacology , Cyclooxygenase 2 Inhibitors/chemistry , Cyclooxygenase 2 Inhibitors/chemical synthesis , Spectroscopy, Fourier Transform Infrared/methods , Animals , Calorimetry, Differential Scanning , Epilepsy/drug therapy , Hydrolysis , Cell Survival/drug effects
16.
PLoS One ; 19(7): e0304684, 2024.
Article in English | MEDLINE | ID: mdl-38985698

ABSTRACT

To effectively remove Diazinon (DZ), Amoxicillin (AMX), and Crystal Violet (CV) from aquatic environments, a novel granular activated carbon (GAC) modified with Polyethylene glycol 600 (PEG) was created and manufactured. The chemical properties were investigated using a variety of characteristic analyses, including FT-IR, XRD, FESEM, and N2 adsorption/desorption. The effectiveness of GAC-PEG's adsorption for the removal of DZ, AMX, and CV was assessed under a variety of conditions, including a pH of 4-9 for the solution, 0.003-0.05 g doses of adsorbent, 50-400 ppm starting concentration, and a reaction time of 5-25 min. For DZ, AMX, and CV adsorption, the maximum adsorption capacity (Qmax) was 1163.933, 1163.100, and 1150.300 mg g-1, respectively. The Langmuir isotherm described all of the data from these adsorption experiments, and the pseudo-second-order well explains all-adsorption kinetics. Most contacts between molecules, electrostatic interactions, π-π interactions, hydrogen bonding, and entrapment in the modified CAG network were used to carry out the DZ, AMX, and CV adsorption on the GAC-PEG. The retrievability of the prepared adsorbent was successfully investigated in studies up to two cycles without loss of adsorption efficiency, and it was shown that it can be efficiently separated.


Subject(s)
Charcoal , Polyethylene Glycols , Wastewater , Water Pollutants, Chemical , Water Purification , Polyethylene Glycols/chemistry , Wastewater/chemistry , Kinetics , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/isolation & purification , Adsorption , Charcoal/chemistry , Water Purification/methods , Amoxicillin/chemistry , Hydrogen-Ion Concentration , Gentian Violet/chemistry , Gentian Violet/isolation & purification , Spectroscopy, Fourier Transform Infrared
17.
J Environ Manage ; 365: 121650, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38968881

ABSTRACT

Enhancing the coal-based fulvic acid (FA) yield through the effect of oxidation methods was of great importance. However, the realization of an efficient and environmentally friendly method for the preparation of FA, along with understanding of its formation mechanism, remains imperative. Herein, coal-based FA was prepared by oxidizing lignite with H2O2 and NaOH/KOH. The experimental data showed that ML lignite was pickled with HCl, metal ions such as iron, aluminum, and calcium can be removed, and this lignite is used as raw material, the reaction time was 150 min, the reaction temperature was 50 °C, and the volume ratio of H2O2 (30%) to KOH (3 mol/L) was 1:1, the effect of H2O2 and KOH on FA extraction was the best. The coal-based FA yield could reach 60.49%. The addition of silicone defoaming agent during the experiment resulted in a significant diminished the presence of bubbles and prevent the production of CO2. A decrease in N2 content was detected by GC. The FTIR, XPS, Py-GC/MS and other characterization results showed that FA has more polar functional groups (-COOH, -OH), and it contains more O-CO structure. Consequently, a greater quantity of FA molecules is generated during the reaction process. Moreover, the partial Gibbs free energies during the formation process of coal-based FA were calculated by density-functional theory (DFT). The highest energy required for free radicals was found to be between 1.3 and 1.7 eV. This study would provide theoretical support for exploring the FA formation process and the promotion of lignite humification by adding H2O2 or alkali to lignite.


Subject(s)
Benzopyrans , Coal , Benzopyrans/chemistry , Hydrogen Peroxide/chemistry , Oxidation-Reduction , Spectroscopy, Fourier Transform Infrared
18.
AAPS PharmSciTech ; 25(6): 164, 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-38997569

ABSTRACT

This study employed a Quality by Design (QbD) approach to spray dry amorphousclotrimazole nanosuspension (CLT-NS) consisting of Soluplus® and microcrystallinecellulose. Using the Box-Behnken Design, a systematic evaluation was conducted toanalyze the impact of inlet temperature, % aspiration, and feed rate on the criticalquality attributes (CQAs) of the clotrimazole spray-dried nanosuspension (CLT-SDNS). In this study, regression analysis and ANOVA were employed to detect significantfactors and interactions, enabling the development of a predictive model for the spraydrying process. Following optimization, the CLT-SD-NS underwent analysis using Xraypowder diffraction (XRPD), Fourier transform infrared spectroscopy (FTIR), Dynamic Scanning Calorimetry (DSC), and in vitro dissolution studies. The resultsshowed significant variables, including inlet temperature, feed rate, and aspiration rate,affecting yield, redispersibility index (RDI), and moisture content of the final product. The models created for critical quality attributes (CQAs) showed statistical significanceat a p-value of 0.05. XRPD and DSC confirmed the amorphous state of CLT in theCLT-SD-NS, and FTIR indicated no interactions between CLT and excipients. In vitrodissolution studies showed improved dissolution rates for the CLT-SD-NS (3.12-foldincrease in DI water and 5.88-fold increase at pH 7.2 dissolution media), attributed torapidly redispersing nanosized amorphous CLT particles. The well-designed studyutilizing the Design of Experiments (DoE) methodology.


Subject(s)
Clotrimazole , Nanoparticles , Suspensions , Clotrimazole/chemistry , Clotrimazole/administration & dosage , Nanoparticles/chemistry , Suspensions/chemistry , Spray Drying , Chemistry, Pharmaceutical/methods , Solubility , Spectroscopy, Fourier Transform Infrared/methods , Particle Size , Calorimetry, Differential Scanning/methods , Temperature , Drug Compounding/methods , Polyvinyls/chemistry , X-Ray Diffraction/methods , Polyethylene Glycols
19.
Sci Rep ; 14(1): 16719, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39030243

ABSTRACT

The purpose of this work is to explore the properties of the lignin-derived amine-free photoinitiating systems (PISs) during the curing process. Four novel hydrogen donors (HD1, HD2, HD3, and HD4) derived from lignin α-O-4 structural were designed and synthesized by simple methods, and their low C-H bond dissociation energies on methylene were determined by molecular orbitals theory. Four experimental groups using CQ (camphorquinone)/HD PIs formulated with Bis-GMA/TEGDMA (70 w%/30 w%) were compared to CQ/EDB (ethyl 4-dimethylamino benzoate) system. The photopolymerization profiles and double bond conversion rate was tracked by FTIR experiments; the color bleaching ability of the samples and color aging test assay were performed using color indexes measurements; The cytotoxicity of the samples was also compared to EDB related systems. All of the experimental groups with new HDs were compared to the control group with EDB by statistical analysis. Compared to CQ/EDB system, new lignin-derived hydrogen donors combined with CQ showed comparable or even better performances in polymerization initiation to form resin samples, under a blue dental LED in air. Excellent color bleaching property was observed with the new HDs. Aging tests and cytotoxicity examination of the resin were performed, indicating the new lignin compounds to be efficient hydrogen donors for amine-free CQ-based photo-initiating system. Novel lignin α-O-4 derived hydrogen donors are promising for further usage in light-curing materials.


Subject(s)
Lignin , Polymerization , Lignin/chemistry , Hydrogen/chemistry , Terpenes/chemistry , Spectroscopy, Fourier Transform Infrared , Resins, Synthetic/chemistry , Dental Materials/chemistry , Polyethylene Glycols/chemistry , Polymethacrylic Acids/chemistry , Camphor/analogs & derivatives
20.
Sci Rep ; 14(1): 16692, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39030347

ABSTRACT

In this study, zinc oxide nanoparticles (Zn-NPs) were prepared by the green synthesis method and loaded inside niosomes as a drug release system and their physicochemical and biological properties were determined. Zn-NPs were prepared by the eco-friendly green strategy, the structure, and morphological properties were studied and loaded into niosomes. Subsequently, different formulations of niosomes containing Zn-NPs were prepared and the optimal formulation was used for biological studies. Scanning electron microscope (SEM) and dynamic light scattering (DLS) were used to investigate the morphology and size of nanoparticles. Fourier transform infrared spectroscopy (FTIR) and UV-Vis were used to confirm the synthesis of Zn-NPs. Energy dispersive X-ray spectrometer (EDS) determined the elemental analysis of the Zn-NPs synthesis solution and the crystalline structure of Zn-NPs was analysed by XRD (X-Ray diffraction). Furthermore, Zn-NPs were loaded inside the niosomes, and their structural characteristics, entrapment efficiency (EE%), the release profile of Zn-NPs, and their stability also were assessed. Moreover, its antimicrobial properties against some microbial pathogens, its effect on the expression of biofilm genes, and its anticancer activity on the breast cancer cell lines were also determined. To study the cytocompatibility, exposure of niosomes against normal HEK-293 cells was carried out. In addition, the impact of niosomes on the expression of genes involved in the apoptosis (Bcl2, Casp3, Casp9, Bax) at the mRNA level was measured. Our findings revealed that the Zn-NPs have a round shape and an average size of 27.60 nm. Meanwhile, UV-Vis, FTIR, and XRD results confirmed the synthesis of Zn-NPs. Also, the EE% and the size of the optimized niosomal formulation were 31.26% and 256.6 ± 12 nm, respectively. The release profile showed that within 24 h, 26% of Zn-NPs were released from niosomes, while in the same period, 99% of free Zn-NPs were released, which indicates the slow release of Zn-NPs from niosomes. Antimicrobial effects exhibited that niosomes containing Zn-NPs had more significant antimicrobial and anti-biofilm effects than Zn-NPs alone, the antimicrobial and anti-biofilm effects increased 2 to 4 times. Cytotoxic effects indicated that when Zn-NPs are loaded into niosomes, the anticancer activity increases compared to Zn-NPs alone and has low cytotoxicity on cancer cells. Niosomes containing ZnNPs increased the apoptosis-related gene expression level and reduced the Bcl2 genes. In general, the results show that niosomes can increase the biological effects of free Zn-NPs and therefore can be a suitable carrier for targeted delivery of Zn-NPs.


Subject(s)
Liposomes , Metal Nanoparticles , Zinc Oxide , Humans , Zinc Oxide/chemistry , Zinc Oxide/pharmacology , Liposomes/chemistry , Metal Nanoparticles/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Biofilms/drug effects , Particle Size , Cell Line, Tumor , MCF-7 Cells , Apoptosis/drug effects , HEK293 Cells , Spectroscopy, Fourier Transform Infrared , Cell Survival/drug effects , Drug Compounding/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...