Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 16.767
Filter
1.
Braz J Biol ; 84: e277974, 2024.
Article in English | MEDLINE | ID: mdl-38808784

ABSTRACT

Maize (Zea mays L.) is of socioeconomic importance as an essential food for human and animal nutrition. However, cereals are susceptible to attack by mycotoxin-producing fungi, which can damage health. The methods most commonly used to detect and quantify mycotoxins are expensive and time-consuming. Therefore, alternative non-destructive methods are required urgently. The present study aimed to use near-infrared spectroscopy with hyperspectral imaging (NIR-HSI) and multivariate image analysis to develop a rapid and accurate method for quantifying fumonisins in whole grains of six naturally contaminated maize cultivars. Fifty-eight samples, each containing 40 grains, were subjected to NIR-HSI. These were subsequently divided into calibration (38 samples) and prediction sets (20 samples) based on the multispectral data obtained. The averaged spectra were subjected to various pre-processing techniques (standard normal variate (SNV), first derivative, or second derivative). The most effective pre-treatment performed on the spectra was SNV. Partial least squares (PLS) models were developed to quantify the fumonisin content. The final model presented a correlation coefficient (R2) of 0.98 and root mean square error of calibration (RMSEC) of 508 µg.kg-1 for the calibration set, an R2 of 0.95 and root mean square error of prediction (RMSEP) of 508 µg.kg-1 for the test validation set and a ratio of performance to deviation of 4.7. It was concluded that NIR-HSI with partial least square regression is a rapid, effective, and non-destructive method to determine the fumonisin content in whole maize grains.


Subject(s)
Fumonisins , Hyperspectral Imaging , Spectroscopy, Near-Infrared , Zea mays , Zea mays/chemistry , Fumonisins/analysis , Spectroscopy, Near-Infrared/methods , Hyperspectral Imaging/methods , Reproducibility of Results , Chemometrics/methods
2.
Food Chem ; 452: 139589, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38744130

ABSTRACT

The exopolysaccharide production from blueberry juice fermented were investigated. The highest exopolysaccharide yield of 2.2 ± 0.1 g/L (increase by 32.5 %) was reached under the conditions of temperature 26.5 °C, pH 5.5, inoculated quantity 5.4 %, and glucose addition 9.1 % using the artificial neural network and genetic algorithm. Under the optimal conditions, the viable cell counts and total acids were increased by 2.0 log CFU/mL and 1.6 times, respectively, while the content of phenolics and anthocyanin was decreased by 9.26 % and 7.86 %, respectively. The changes of these components affected the exopolysaccharide biosynthesis. The absorption bands of -OH and -CH associated with the main functional groups of exopolysaccharide were detected by Visible near-infrared spectroscopy. The prediction model based on spectrum results was constructed. Competitive adaptive reweighted sampling and the random forest were used to enhance the model's prediction performance with the value of RC = 0.936 and RP = 0.835, indicating a good predictability of exopolysaccharides content during fermentation.


Subject(s)
Blueberry Plants , Fermentation , Fruit and Vegetable Juices , Lactobacillales , Spectroscopy, Near-Infrared , Blueberry Plants/chemistry , Blueberry Plants/metabolism , Blueberry Plants/microbiology , Fruit and Vegetable Juices/analysis , Fruit and Vegetable Juices/microbiology , Lactobacillales/metabolism , Lactobacillales/growth & development , Polysaccharides, Bacterial/metabolism , Polysaccharides, Bacterial/chemistry
3.
PLoS One ; 19(5): e0303946, 2024.
Article in English | MEDLINE | ID: mdl-38820309

ABSTRACT

The aims of this study were to predict carcass and meat traits, as well as the chemical composition of the 9th to 11th rib sections of beef cattle from portable NIR spectra. The 9th to 11th rib section was obtained from 60 Nellore bulls and cull cows. NIR spectra were acquired at: P1 -center of Longissimus muscle; and P2 -subcutaneous fat cap. The models accurately estimated (P ≥ 0.083) all carcass and meat quality traits, except those for predicting red (a*) and yellow (b*) intensity from P1, and 12th-rib fat from P2. However, precision was highly variable among the models; those for the prediction of carcass pHu, 12th rib fat, toughness from P1, and those for 12th rib fat, a* and b* from P2 presented high precision (R2 ≥ 0.65 or CCC ≥ 0.63), whereas all other models evaluated presented moderate to low precision (R2 ≤ 0.39). Models built from P1 and P2 accurately estimated (P ≥ 0.066) the chemical composition of the meat plus fat, bones and, meat plus fat plus bones, except those for predicting the ether extract (EE) and crude protein (CP) of bones and the EE of Meat plus bones fraction from P2. However, precision was highly variable among the models (-0.08 ≤ R2 ≤ 0.86) of the 9th and 11th rib section. Those models for the prediction of dry matter (DM) and EE of the bones from P1; of EE from P1; and of EE, mineral matter (MM), CP from P2 of meat plus fat plus bones presented high precision (R2 ≥ 0.76 or CCC ≥ 0.62), whereas all other models evaluated presented moderate to low precision (R2 ≤ 0.45). Thus, models built from portable NIR spectra acquired at different points of the 9th to 11th rib section were recommended for predicting carcass and muscle quality traits as well as for predicting the chemical composition of this section of beef cattle. However, it is noteworthy, that the small sample size was one of the limitations of this study.


Subject(s)
Red Meat , Spectroscopy, Near-Infrared , Cattle , Animals , Spectroscopy, Near-Infrared/methods , Red Meat/analysis , Meat/analysis , Male , Regression Analysis , Female , Muscle, Skeletal/chemistry
4.
Cereb Cortex ; 34(5)2024 May 02.
Article in English | MEDLINE | ID: mdl-38725293

ABSTRACT

Numerous studies reported inconsistent results concerning gender influences on the functional organization of the brain for language in children and adults. However, data for the gender differences in the functional language networks at birth are sparse. Therefore, we investigated gender differences in resting-state functional connectivity in the language-related brain regions in newborns using functional near-infrared spectroscopy. The results revealed that female newborns demonstrated significantly stronger functional connectivities between the superior temporal gyri and middle temporal gyri, the superior temporal gyri and the Broca's area in the right hemisphere, as well as between the right superior temporal gyri and left Broca's area. Nevertheless, statistical analysis failed to reveal functional lateralization of the language-related brain areas in resting state in both groups. Together, these results suggest that the onset of language system might start earlier in females, because stronger functional connectivities in the right brain in female neonates were probably shaped by the processing of prosodic information, which mainly constitutes newborns' first experiences of speech in the womb. More exposure to segmental information after birth may lead to strengthened functional connectivities in the language system in both groups, resulting in a stronger leftward lateralization in males and a more balanced or leftward dominance in females.


Subject(s)
Language , Sex Characteristics , Spectroscopy, Near-Infrared , Humans , Female , Spectroscopy, Near-Infrared/methods , Male , Infant, Newborn , Brain/physiology , Brain/diagnostic imaging , Rest/physiology , Functional Laterality/physiology , Neural Pathways/physiology , Brain Mapping/methods
5.
J Biomed Opt ; 29(Suppl 3): S33302, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38707651

ABSTRACT

Significance: Cerebral oximeters have the potential to detect abnormal cerebral blood oxygenation to allow for early intervention. However, current commercial systems have two major limitations: (1) spatial coverage of only the frontal region, assuming that surgery-related hemodynamic effects are global and (2) susceptibility to extracerebral signal contamination inherent to continuous-wave near-infrared spectroscopy (NIRS). Aim: This work aimed to assess the feasibility of a high-density, time-resolved (tr) NIRS device (Kernel Flow) to monitor regional oxygenation changes across the cerebral cortex during surgery. Approach: The Flow system was assessed using two protocols. First, digital carotid compression was applied to healthy volunteers to cause a rapid oxygenation decrease across the ipsilateral hemisphere without affecting the contralateral side. Next, the system was used on patients undergoing shoulder surgery to provide continuous monitoring of cerebral oxygenation. In both protocols, the improved depth sensitivity of trNIRS was investigated by applying moment analysis. A dynamic wavelet filtering approach was also developed to remove observed temperature-induced signal drifts. Results: In the first protocol (28±5 years; five females, five males), hair significantly impacted regional sensitivity; however, the enhanced depth sensitivity of trNIRS was able to separate brain and scalp responses in the frontal region. Regional sensitivity was improved in the clinical study given the age-related reduction in hair density of the patients (65±15 years; 14 females, 13 males). In five patients who received phenylephrine to treat hypotension, different scalp and brain oxygenation responses were apparent, although no regional differences were observed. Conclusions: The Kernel Flow has promise as an intraoperative neuromonitoring device. Although regional sensitivity was affected by hair color and density, enhanced depth sensitivity of trNIRS was able to resolve differences in scalp and brain oxygenation responses in both protocols.


Subject(s)
Cerebrovascular Circulation , Spectroscopy, Near-Infrared , Humans , Spectroscopy, Near-Infrared/methods , Spectroscopy, Near-Infrared/instrumentation , Female , Male , Adult , Cerebrovascular Circulation/physiology , Hemodynamics/physiology , Oximetry/methods , Oximetry/instrumentation , Oxygen/blood , Oxygen/metabolism , Brain/diagnostic imaging , Brain/blood supply , Equipment Design
6.
J Tradit Chin Med ; 44(3): 505-514, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38767634

ABSTRACT

OBJECTIVE: To evaluate the quality of Moyao (Myrrh) in the identification of the geographical origin and processing of the products. METHODS: Raw Moyao (Myrrh) and two kinds of Moyao (Myrrh) processed with vinegar from three countries were identified using near-infrared (NIR) spectroscopy combined with chemometric techniques. Principal component analysis (PCA) was used to reduce the dimensionality of the data and visualize the clustering of samples from different categories. A classical chemometric algorithm (PLS-DA) and two machine learning algorithms [K-nearest neighbor (KNN) and support vector machine] were used to conduct a classification analysis of the near-infrared spectra of the Moyao (Myrrh) samples, and their discriminative performance was evaluated. RESULTS: Based on the accuracy, precision, recall rate, and F1 value in each model, the results showed that the classical chemometric algorithm and the machine learning algorithm obtained positive results. In all of the chemometric analyses, the NIR spectrum of Moyao (Myrrh) preprocessed by standard normal variation or Multivariate scattering correction combined with KNN achieved the highest accuracy in identifying the geographical origins, and the accuracy of identifying the processing technology established by the KNN method after first-order derivative pretreatment was the best. The best accuracy of geographical origin discrimination and processing technology discrimination were 0.9853 and 0.9706 respectively. CONCLUSIONS: NIR spectroscopy combined with chemometric technology can be an important tool for tracking the origin and processing technology of Moyao (Myrrh) and can also provide a reference for evaluations of its quality and the clinical use.


Subject(s)
Spectroscopy, Near-Infrared , Spectroscopy, Near-Infrared/methods , Principal Component Analysis , Chemometrics/methods , Drugs, Chinese Herbal/chemistry , Geography , Algorithms , China
7.
Sci Rep ; 14(1): 11287, 2024 05 17.
Article in English | MEDLINE | ID: mdl-38760449

ABSTRACT

Spectrum power analysis in the low frequency oscillations (LFO) region of functional near infrared spectroscopy (fNIRS) is a promising method to deliver information about brain activation and therefore might be used for prognostication in patients with disorders of consciousness in the neurocritical care unit alongside with established methods. In this study, we measure the cortical hemodynamic response measured by fNIRS in the LFO region following auditory and somatosensory stimulation in healthy subjects. The significant hemodynamic reaction in the contralateral hemisphere correlation with the physiologic electric response suggests neurovascular coupling. In addition, we investigate power spectrum changes in steady state measurements of cerebral death patients and healthy subjects in the LFO region, the frequency of the heartbeat and respiration. The spectral power within the LFO region was lower in the patients with cerebral death compared to the healthy subjects, whereas there were no differences in spectral power for physiological activities such as heartbeat and respiration rate. This finding indicates the cerebral origin of our low frequency measurements. Therefore, LFO measurements are a potential method to detect brain activation in patients with disorders of consciousness and cerebral death. However, further studies in patients are needed to investigate its potential clinical use.


Subject(s)
Brain Death , Neurovascular Coupling , Spectroscopy, Near-Infrared , Humans , Male , Female , Adult , Neurovascular Coupling/physiology , Spectroscopy, Near-Infrared/methods , Brain Death/physiopathology , Middle Aged , Hemodynamics/physiology , Aged , Brain/physiopathology , Brain/physiology , Brain/diagnostic imaging , Heart Rate/physiology
8.
PLoS One ; 19(5): e0287088, 2024.
Article in English | MEDLINE | ID: mdl-38771771

ABSTRACT

A variety of costly research-grade imaging devices are available for the detection of spectroscopic features. Here we present an affordable, open-source and versatile device, suitable for a range of applications. We provide the files to print the imaging chamber with commonly available 3D printers and instructions to assemble it with easily available hardware. The imager is suitable for rapid sample screening in research, as well as for educational purposes. We provide details and results for an already proven set-up which suits the needs of a research group and students interested in UV-induced near-infrared fluorescence detection of microbial colonies grown on Petri dishes. The fluorescence signal confirms the presence of bacteriochlorophyll a in aerobic anoxygenic phototrophic bacteria (AAPB). The imager allows for the rapid detection and subsequent isolation of AAPB colonies on Petri dishes with diverse environmental samples. To this date, 15 devices have been build and more than 7000 Petri dishes have been analyzed for AAPB, leading to over 1000 new AAPB isolates. Parts can be modified depending on needs and budget. The latest version with automated switches and double band pass filters costs around 350€ in materials and resolves bacterial colonies with diameters of 0.5 mm and larger. The low cost and modular build allow for the integration in high school classes to educate students on light properties, fluorescence and microbiology. Computer-aided design of 3D-printed parts and programming of the employed Raspberry Pi computer could be incorporated in computer sciences classes. Students have been also inspired to do agar art with microbes. The device is currently used in seven different high schools in Finland. Additionally, a science education network of Finnish universities has incorporated it in its program for high school students. Video guides have been produced to facilitate easy operation and accessibility of the device.


Subject(s)
Spectroscopy, Near-Infrared , Spectroscopy, Near-Infrared/methods , Fluorescence , Phototrophic Processes , Optical Imaging/methods , Optical Imaging/instrumentation
9.
Opt Lett ; 49(10): 2669-2672, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38748132

ABSTRACT

Central venous oxygen saturation (ScvO2) is an important parameter for assessing global oxygen usage and guiding clinical interventions. However, measuring ScvO2 requires invasive catheterization. As an alternative, we aim to noninvasively and continuously measure changes in oxygen saturation of the internal jugular vein (SijvO2) by a multi-channel near-infrared spectroscopy system. The relation between the measured reflectance and changes in SijvO2 is modeled by Monte Carlo simulations and used to build a prediction model using deep neural networks (DNNs). The prediction model is tested with simulated data to show robustness to individual variations in tissue optical properties. The proposed technique is promising to provide a noninvasive tool for monitoring the stability of brain oxygenation in broad patient populations.


Subject(s)
Jugular Veins , Monte Carlo Method , Oxygen Saturation , Jugular Veins/physiology , Humans , Oxygen Saturation/physiology , Neural Networks, Computer , Oxygen/metabolism , Spectroscopy, Near-Infrared/methods , Male
10.
Phys Chem Chem Phys ; 26(19): 14228-14243, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38690612

ABSTRACT

The development of chromophores that absorb in the near-infrared (NIR) region beyond 1000 nm underpins numerous applications in medical and energy sciences, yet also presents substantial challenges to molecular design and chemical synthesis. Here, the core bacteriochlorin chromophore of nature's NIR absorbers, bacteriochlorophylls, has been adapted and tailored by annulation in an effort to achieve absorption in the NIR-II region. The resulting bacteriochlorin, Phen2,1-BC, contains two annulated naphthalene groups spanning meso,ß-positions of the bacteriochlorin and the 1,2-positions of the naphthalene. Phen2,1-BC was prepared via a new synthetic route. Phen2,1-BC is an isomer of previously examined Phen-BC, which differs only in attachment via the 1,8-positions of the naphthalene. Despite identical π-systems, the two bacteriochlorins have distinct spectroscopic and photophysical features. Phen-BC has long-wavelength absorption maximum (912 nm), oscillator strength (1.0), and S1 excited-state lifetime (150 ps) much different than Phen2,1-BC (1292 nm, 0.23, and 0.4 ps, respectively). These two molecules and an analogue with intermediate characteristics bearing annulated phenyl rings have unexpected properties relative to those of non-annulated counterparts. Understanding the distinctions requires extending concepts beyond the four-orbital-model description of tetrapyrrole spectroscopic features. In particular, a reduction in symmetry resulting from annulation results in electronic mixing of x- and y-polarized transitions/states, as well as vibronic coupling that together reduce oscillator strength of the long-wavelength absorption manifold and shorten the S1 excited-state lifetime. Collectively, the results suggest a heuristic for the molecular design of tetrapyrrole chromophores for deep penetration into the relatively unutilized NIR-II region.


Subject(s)
Porphyrins , Spectroscopy, Near-Infrared , Porphyrins/chemistry , Naphthalenes/chemistry , Molecular Structure , Bacteriochlorophylls/chemistry
11.
Crit Care Explor ; 6(5): e1094, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38727717

ABSTRACT

OBJECTIVES: Near-infrared spectroscopy (NIRS) is a potentially valuable modality to monitor the adequacy of oxygen delivery to the brain and other tissues in critically ill patients, but little is known about the physiologic determinants of NIRS-derived tissue oxygen saturations. The purpose of this study was to assess the contribution of routinely measured physiologic parameters to tissue oxygen saturation measured by NIRS. DESIGN: An observational sub-study of patients enrolled in the Role of Active Deresuscitation After Resuscitation-2 (RADAR-2) randomized feasibility trial. SETTING: Two ICUs in the United Kingdom. PATIENTS: Patients were recruited for the RADAR-2 study, which compared a conservative approach to fluid therapy and deresuscitation with usual care. Those included in this sub-study underwent continuous NIRS monitoring of cerebral oxygen saturations (SctO2) and quadriceps muscle tissue saturations (SmtO2). INTERVENTION: Synchronized and continuous mean arterial pressure (MAP), heart rate (HR), and pulse oximetry (oxygen saturation, Spo2) measurements were recorded alongside NIRS data. Arterial Paco2, Pao2, and hemoglobin concentration were recorded 12 hourly. Linear mixed effect models were used to investigate the association between these physiologic variables and cerebral and muscle tissue oxygen saturations. MEASUREMENTS AND MAIN RESULTS: Sixty-six patients were included in the analysis. Linear mixed models demonstrated that Paco2, Spo2, MAP, and HR were weakly associated with SctO2 but only explained 7.1% of the total variation. Spo2 and MAP were associated with SmtO2, but together only explained 0.8% of its total variation. The remaining variability was predominantly accounted for by between-subject differences. CONCLUSIONS: Our findings demonstrated that only a small proportion of variability in NIRS-derived cerebral and tissue oximetry measurements could be explained by routinely measured physiologic variables. We conclude that for NIRS to be a useful monitoring modality in critical care, considerable further research is required to understand physiologic determinants and prognostic significance.


Subject(s)
Critical Illness , Oximetry , Oxygen Saturation , Spectroscopy, Near-Infrared , Humans , Spectroscopy, Near-Infrared/methods , Male , Female , Oxygen Saturation/physiology , Middle Aged , Aged , Oximetry/methods , Monitoring, Physiologic/methods , Brain/metabolism , Brain/blood supply , United Kingdom , Oxygen/metabolism , Oxygen/blood , Oxygen/analysis , Intensive Care Units , Quadriceps Muscle/metabolism , Quadriceps Muscle/blood supply
12.
Article in English | MEDLINE | ID: mdl-38717876

ABSTRACT

Neurovascular coupling (NVC) provides important insights into the intricate activity of brain functioning and may aid in the early diagnosis of brain diseases. Emerging evidences have shown that NVC could be assessed by the coupling between electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS). However, this endeavor presents significant challenges due to the absence of standardized methodologies and reliable techniques for coupling analysis of these two modalities. In this study, we introduced a novel method, i.e., the collaborative multi-output variational Gaussian process convergent cross-mapping (CMVGP-CCM) approach to advance coupling analysis of EEG and fNIRS. To validate the robustness and reliability of the CMVGP-CCM method, we conducted extensive experiments using chaotic time series models with varying noise levels, sequence lengths, and causal driving strengths. In addition, we employed the CMVGP-CCM method to explore the NVC between EEG and fNIRS signals collected from 26 healthy participants using a working memory (WM) task. Results revealed a significant causal effect of EEG signals, particularly the delta, theta, and alpha frequency bands, on the fNIRS signals during WM. This influence was notably observed in the frontal lobe, and its strength exhibited a decline as cognitive demands increased. This study illuminates the complex connections between brain electrical activity and cerebral blood flow, offering new insights into the underlying NVC mechanisms of WM.


Subject(s)
Algorithms , Electroencephalography , Memory, Short-Term , Neurovascular Coupling , Spectroscopy, Near-Infrared , Humans , Electroencephalography/methods , Male , Female , Spectroscopy, Near-Infrared/methods , Adult , Normal Distribution , Neurovascular Coupling/physiology , Young Adult , Memory, Short-Term/physiology , Healthy Volunteers , Reproducibility of Results , Multivariate Analysis , Frontal Lobe/physiology , Frontal Lobe/diagnostic imaging , Brain Mapping/methods , Theta Rhythm/physiology , Brain/physiology , Brain/diagnostic imaging , Brain/blood supply , Nonlinear Dynamics , Delta Rhythm/physiology , Alpha Rhythm/physiology
13.
Cereb Cortex ; 34(13): 104-111, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38696603

ABSTRACT

Autism is characterized by atypical social communication styles. To investigate whether individuals with high autistic traits could still have effective social communication among each other, we compared the behavioral patterns and communication quality within 64 dyads of college students paired with both high, both low, and mixed high-low (HL) autistic traits, with their gender matched. Results revealed that the high-high (HH) autistic dyads exhibited atypical behavioral patterns during conversations, including reduced mutual gaze, communicational turns, and emotional sharing compared with the low-low and/or HL autistic dyads. However, the HH autistic dyads displayed enhanced interpersonal neural synchronization during social communications measured by functional near-infrared spectroscopy, suggesting an effective communication style. Besides, they also provided more positive subjective evaluations of the conversations. These findings highlight the potential for alternative pathways to effectively communicate with the autistic community, contribute to a deeper understanding of how high autistic traits influence social communication dynamics among autistic individuals, and provide important insights for the clinical practices for supporting autistic people.


Subject(s)
Autistic Disorder , Communication , Spectroscopy, Near-Infrared , Humans , Male , Female , Young Adult , Autistic Disorder/psychology , Autistic Disorder/physiopathology , Interpersonal Relations , Social Behavior , Social Interaction , Brain/physiopathology , Brain/physiology , Adult , Cortical Synchronization/physiology , Adolescent
14.
PLoS One ; 19(5): e0303144, 2024.
Article in English | MEDLINE | ID: mdl-38718035

ABSTRACT

Charitable fundraising increasingly relies on online crowdfunding platforms. Project images of charitable crowdfunding use emotional appeals to promote helping behavior. Negative emotions are commonly used to motivate helping behavior because the image of a happy child may not motivate donors to donate as willingly. However, some research has found that happy images can be more beneficial. These contradictory results suggest that the emotional valence of project imagery and how fundraisers frame project images effectively remain debatable. Thus, we compared and analyzed brain activation differences in the prefrontal cortex governing human emotions depending on donation decisions using functional near-infrared spectroscopy, a neuroimaging device. We advance existing theory on charitable behavior by demonstrating that little correlation exists in donation intentions and brain activity between negative and positive project images, which is consistent with survey results on donation intentions by victim image. We also discovered quantitative brain hemodynamic signal variations between donors and nondonors, which can predict and detect donor mental brain functioning using functional connectivity, that is, the statistical dependence between the time series of electrophysiological activity and oxygenated hemodynamic levels in the prefrontal cortex. These findings are critical in developing future marketing strategies for online charitable crowdfunding platforms, especially project images.


Subject(s)
Emotions , Fund Raising , Spectroscopy, Near-Infrared , Humans , Emotions/physiology , Spectroscopy, Near-Infrared/methods , Fund Raising/methods , Female , Male , Adult , Charities , Prefrontal Cortex/physiology , Prefrontal Cortex/diagnostic imaging , Intention , Young Adult , Brain Mapping/methods , Crowdsourcing , Brain/physiology , Brain/diagnostic imaging
15.
BMJ Open ; 14(5): e079858, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724058

ABSTRACT

INTRODUCTION: Anastomotic leakage (AL) is defined as the failure of complete healing or disruption of the anastomosis subsequent to rectal cancer surgery, resulting in the extravasation of intestinal contents into the intra-abdominal or pelvic cavity. It is a serious complication of rectal cancer surgery, accounting for a considerable increase in morbidity and mortality. The use of fluorescence imaging technology in surgery allows surgeons to better evaluate blood perfusion. However, the conclusions of some existing studies are not consistent, so a consensus on whether the near-infrared indocyanine green (NIR-ICG) imaging system can reduce the incidence of AL is needed. METHODS: This POSTER trial is designed as a multicentre, prospective, randomised controlled clinical study adhering to the "population, interventions, comparisons, outcomes (PICO)" principles. It is scheduled to take place from August 2019 to December 2024 across eight esteemed hospitals in China. The target population consists of patients diagnosed with rectal cancer through pathological confirmation, with tumours located≤10 cm from the anal verge, eligible for laparoscopic surgery. Enrolled patients will be randomly assigned to either the intervention group or the control group. The intervention group will receive intravenous injections of ICG twice, with intraoperative assessment of anastomotic blood flow using the near-infrared NIR-ICG system during total mesorectal excision (TME) surgery. Conversely, the control group will undergo conventional TME surgery without the use of the NIR-ICG system. A 30-day follow-up period postoperation will be conducted to monitor and evaluate occurrences of AL. The primary endpoint of this study is the incidence of AL within 30 days postsurgery in both groups. The primary outcome investigators will be blinded to the application of ICG angiography. Based on prior literature, we hypothesise an AL rate of 10.3% in the control group and 3% in the experimental group for this study. With a planned ratio of 2:1 between the number of cases in the experimental and control groups, and an expected 20% lost-to-follow-up rate, the initial estimated sample size for this study is 712, comprising 474 in the experimental group and 238 in the control group. ETHICS AND DISSEMINATION: This study has been approved by Ethics committee of Beijing Friendship Hospital, Capital Medical University (approval number: 2019-P2-055-02). The results will be disseminated in major international conferences and peer-reviewed journals. TRIAL REGISTRATION NUMBER: NCT04012645.


Subject(s)
Anastomotic Leak , Indocyanine Green , Laparoscopy , Rectal Neoplasms , Humans , Indocyanine Green/administration & dosage , Rectal Neoplasms/surgery , Rectal Neoplasms/diagnostic imaging , Laparoscopy/methods , Prospective Studies , Anastomotic Leak/prevention & control , Coloring Agents , Female , Multicenter Studies as Topic , Randomized Controlled Trials as Topic , Male , China , Spectroscopy, Near-Infrared/methods , Adult , Middle Aged
16.
Med Eng Phys ; 127: 104170, 2024 May.
Article in English | MEDLINE | ID: mdl-38692767

ABSTRACT

Recently, functional Near-Infrared Spectroscopy (fNIRS) was applied to obtain, non-invasively, the human peri­spinal Neuro-Vascular Response (NVR) under a non-noxious electrical stimulation of a peripheral nerve. This method allowed the measurements of changes in the concentration of oxyhemoglobin (O2Hb) and deoxyhemoglobin (HHb) from the peri­spinal vascular network. However, there is a lack of clarity about the potential differences in perispinal NVR recorded by the different fNIRS technologies currently available. In this work, the two main noninvasive fNIRS technologies were compared, i.e., LED and LASER-based. The recording of the human peri­spinal NVR induced by non-noxious electrical stimulation of a peripheral nerve was recorded simultaneously at C7 and T10 vertebral levels. The amplitude, rise time, and full width at half maximum duration of the perispinal NVRs were characterized in healthy volunteers and compared between both systems. The main difference was that the LED-based system shows about one order of magnitude higher values of amplitude than the LASER-based system. No statistical differences were found for rise time and for duration parameters (at thoracic level). The comparison of point-to-point wave patterns did not show significant differences between both systems. In conclusion, the peri­spinal NRV response obtained by different fNIRS technologies was reproducible, and only the amplitude showed differences, probably due to the power of the system which should be considered when assessing the human peri­spinal vascular network.


Subject(s)
Lasers , Spectroscopy, Near-Infrared , Spinal Cord , Humans , Spectroscopy, Near-Infrared/methods , Male , Spinal Cord/blood supply , Spinal Cord/diagnostic imaging , Spinal Cord/physiology , Adult , Female , Young Adult , Electric Stimulation , Hemoglobins/analysis , Hemoglobins/metabolism
17.
Cereb Cortex ; 34(5)2024 May 02.
Article in English | MEDLINE | ID: mdl-38715408

ABSTRACT

Speech comprehension in noise depends on complex interactions between peripheral sensory and central cognitive systems. Despite having normal peripheral hearing, older adults show difficulties in speech comprehension. It remains unclear whether the brain's neural responses could indicate aging. The current study examined whether individual brain activation during speech perception in different listening environments could predict age. We applied functional near-infrared spectroscopy to 93 normal-hearing human adults (20 to 70 years old) during a sentence listening task, which contained a quiet condition and 4 different signal-to-noise ratios (SNR = 10, 5, 0, -5 dB) noisy conditions. A data-driven approach, the region-based brain-age predictive modeling was adopted. We observed a significant behavioral decrease with age under the 4 noisy conditions, but not under the quiet condition. Brain activations in SNR = 10 dB listening condition could successfully predict individual's age. Moreover, we found that the bilateral visual sensory cortex, left dorsal speech pathway, left cerebellum, right temporal-parietal junction area, right homolog Wernicke's area, and right middle temporal gyrus contributed most to prediction performance. These results demonstrate that the activations of regions about sensory-motor mapping of sound, especially in noisy conditions, could be sensitive measures for age prediction than external behavior measures.


Subject(s)
Aging , Brain , Comprehension , Noise , Spectroscopy, Near-Infrared , Speech Perception , Humans , Adult , Speech Perception/physiology , Male , Female , Spectroscopy, Near-Infrared/methods , Middle Aged , Young Adult , Aged , Comprehension/physiology , Brain/physiology , Brain/diagnostic imaging , Aging/physiology , Brain Mapping/methods , Acoustic Stimulation/methods
18.
Sci Rep ; 14(1): 9996, 2024 05 01.
Article in English | MEDLINE | ID: mdl-38693184

ABSTRACT

Tracking a moving object with the eyes seems like a simple task but involves areas of prefrontal cortex (PFC) associated with attention, working memory and prediction. Increasing the demand on these processes with secondary tasks can affect eye movements and/or perceptual judgments. This is particularly evident in chronic or acute neurological conditions such as Alzheimer's disease or mild traumatic brain injury. Here, we combined near infrared spectroscopy and video-oculography to examine the effects of concurrent upper limb movement, which provides additional afference and efference that facilitates tracking of a moving object, in a novel dual-task pursuit protocol. We confirmed the expected effects on judgement accuracy in the primary and secondary tasks, as well as a reduction in eye velocity when the moving object was occluded. Although there was limited evidence of oculo-manual facilitation on behavioural measures, performing concurrent upper limb movement did result in lower activity in left medial PFC, as well as a change in PFC network organisation, which was shown by Graph analysis to be locally and globally more efficient. These findings extend upon previous work by showing how PFC is functionally organised to support eye-hand coordination when task demands more closely replicate daily activities.


Subject(s)
Prefrontal Cortex , Upper Extremity , Humans , Prefrontal Cortex/physiology , Male , Female , Upper Extremity/physiology , Adult , Young Adult , Movement/physiology , Psychomotor Performance/physiology , Eye Movements/physiology , Spectroscopy, Near-Infrared , Attention/physiology
19.
PLoS One ; 19(5): e0302375, 2024.
Article in English | MEDLINE | ID: mdl-38701103

ABSTRACT

There are numerous reports of enhanced or emerged visual arts abilities in patients with semantic impairment. These reports led to the theory that a loss of function on the language side of the brain can result in changes of ability to draw and/or to paint. Further, the left posterior middle temporal gyrus (l-pMTG) has been revealed to contribute to the higher control semantic mechanisms with objects recognition and integration of visual information, within a widely distributed network of the left hemisphere. Nevertheless, the theory has not been fully studied in neural bases. The aim of this study is to examine role of the l-pMTG on shape recognition and its reconstruction within drawing behavior, by using a combining method of the repetitive transcranial magnetic stimulation (rTMS) and functional near-infrared spectroscopy (fNIRS). Eighteen healthy participants received a low frequency inhibitory rTMS to their l-pMTG during the drawing task of the Benton Visual Retention Test (BVRT). There was a significant decrease of the mean accuracy of reproductions in the Complex designs of the BVRT, compared to the Simple and Medium designs. The fNIRS data showed strong negative correlations with the results of the BVRT. Though our hypothesis had a contradiction that rTMS would have inhibited the brain activity in the stimulated site, the results suggest that shape recognition and its reconstruction such as the BVRT require neural activations of the l-TL as well as that of the l-pMTG.


Subject(s)
Spectroscopy, Near-Infrared , Temporal Lobe , Transcranial Magnetic Stimulation , Humans , Transcranial Magnetic Stimulation/methods , Temporal Lobe/physiology , Temporal Lobe/diagnostic imaging , Spectroscopy, Near-Infrared/methods , Male , Female , Adult , Young Adult , Pattern Recognition, Visual/physiology , Brain Mapping/methods
20.
J Vis Exp ; (207)2024 May 10.
Article in English | MEDLINE | ID: mdl-38801263

ABSTRACT

The detection of levels of impairment in microvascular oxygen consumption and reactive hyperemia is vital in critical care. However, there are no practical means for a robust and quantitative evaluation. This paper describes a protocol to evaluate these impairments using a hybrid near-infrared diffuse optical device. The device contains modules for near-infrared time-resolved and diffuse correlation spectroscopies and pulse-oximetry. These modules allow the non-invasive, continuous, and real-time measurement of the absolute, microvascular blood/tissue oxygen saturation (StO2) and the blood flow index (BFI) along with the peripheral arterial oxygen saturation (SpO2). This device uses an integrated, computer-controlled tourniquet system to execute a standardized protocol with optical data acquisition from the brachioradialis muscle. The standardized vascular occlusion test (VOT) takes care of the variations in the occlusion duration and pressure reported in the literature, while the automation minimizes inter-operator differences. The protocol we describe focuses on a 3-min occlusion period but the details described in this paper can readily be adapted to other durations and cuff pressures, as well as other muscles. The inclusion of an extended baseline and post-occlusion recovery period measurement allows the quantification of the baseline values for all the parameters and the blood/tissue deoxygenation rate that corresponds to the metabolic rate of oxygen consumption. Once the cuff is released, we characterize the tissue reoxygenation rate, magnitude, and duration of the hyperemic response in BFI and StO2. These latter parameters correspond to the quantification of the reactive hyperemia, which provides information about the endothelial function. Furthermore, the above-mentioned measurements of the absolute concentration of oxygenated and deoxygenated hemoglobin, BFI, the derived metabolic rate of oxygen consumption, StO2, and SpO2 provide a yet-to-be-explored rich data set that can exhibit disease severity, personalized therapeutics, and management interventions.


Subject(s)
Critical Care , Hyperemia , Spectroscopy, Near-Infrared , Spectroscopy, Near-Infrared/methods , Hyperemia/metabolism , Humans , Critical Care/methods , Oxygen/metabolism , Oxygen/blood , Oxygen Consumption/physiology , Oximetry/methods , Oximetry/instrumentation , Muscle, Skeletal/metabolism , Muscle, Skeletal/blood supply , Microcirculation/physiology , Microvessels/metabolism , Oxygen Saturation/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...