Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22.041
Filter
1.
Environ Geochem Health ; 46(7): 238, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849627

ABSTRACT

Microplastics (MPs) are defined as plastic particles or fragments with a diameter of less than 5 mm. These particles have been identified as causing male reproductive toxicity, although the precise mechanism behind this association is yet to be fully understood. Recent research has found that exposure to polystyrene microplastics (PS-MPs) can disrupt spermatogenesis by impacting the integrity of the blood-testis barrier (BTB), a formidable barrier within mammalian blood tissues. The BTB safeguards germ cells from harmful substances and infiltration by immune cells. However, the disruption of the BTB leads to the entry of environmental pollutants and immune cells into the seminiferous tubules, resulting in adverse reproductive effects. Additionally, PS-MPs induce reproductive damage by generating oxidative stress, inflammation, autophagy, and alterations in the composition of intestinal flora. Despite these findings, the precise mechanism by which PS-MPs disrupt the BTB remains inconclusive, necessitating further investigation into the underlying processes. This review aims to enhance our understanding of the pernicious effects of PS-MP exposure on the BTB and explore potential mechanisms to offer novel perspectives on BTB damage caused by PS-MPs.


Subject(s)
Blood-Testis Barrier , Microplastics , Polystyrenes , Microplastics/toxicity , Polystyrenes/toxicity , Male , Humans , Blood-Testis Barrier/drug effects , Animals , Spermatogenesis/drug effects , Oxidative Stress/drug effects , Environmental Pollutants/toxicity
2.
JAMA Netw Open ; 7(6): e2414709, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38833248

ABSTRACT

Importance: Concerns exist about teratogenic and long-term neurodevelopmental outcomes of paternal use of valproate during spermatogenesis. Objective: To evaluate the association between paternal use of valproate during spermatogenesis and offspring risk of congenital malformations and neurodevelopmental disorders. Design, Setting, and Participants: This nationwide cohort study included 1 235 353 singletons born in Denmark between January 1, 1997, and December 31, 2017, identified in the Medical Birth Register; 1336 children had fathers who had filled prescriptions for valproate during spermatogenesis. Congenital malformations were identified in the first year of life and neurodevelopmental disorders were identified from 1 year of age until December 31, 2018. Statistical analysis was performed March 2024. Exposures: Paternal valproate exposure was defined as fathers who filled 1 or more prescriptions for valproate immediately before or during the time of spermatogenesis (ie, 3 months prior to conception). Main Outcomes and Measures: Children with major congenital malformations in the first year of life and with neurodevelopmental disorders before death or end of follow-up were identified in Danish health registers. Log-binomial regression was used to estimate adjusted relative risks (ARRs) of congenital malformations, and Cox proportional hazards regression was used to estimate adjusted hazards ratios (AHRs) of neurodevelopmental disorders, adjusted for relevant confounders. Results: Among 1 235 353 live births (634 415 boys [51.4%] and 600 938 girls [48.6%]), 1336 children (0.1%) had fathers who filled prescriptions for valproate during spermatogenesis. The median follow-up was 10.1 years (IQR, 5.1-14.8 years) for valproate-exposed children and 10.3 years (IQR, 5.2-15.6 years) for valproate-unexposed children. A total of 43 903 children (3.6%) received a diagnosis of major congenital malformations in the first year of life, and 51 633 children (4.2%) received a diagnosis of neurodevelopmental disorders during follow-up. When comparing the risk among valproate-exposed children with that among unexposed children, the ARR of major congenital malformations was 0.89 (95% CI, 0.67-1.18), the AHR of neurodevelopmental disorders was 1.10 (95% CI, 0.88-1.37), and the AHR of autism spectrum disorder was 0.92 (95% CI, 0.65-1.30). In analyses addressing the robustness of the findings (ie, dose-response analyses, sibling analyses, analyses restricted to children of fathers with epilepsy, analyses that used children with paternal lamotrigine exposure as active comparator, and analyses that used children with paternal exposure to valproate only before spermatogenesis as a negative control exposure), there still was no increased risk of any of the included end points. Conclusions and Relevance: In all analyses based on this large Danish cohort study, results suggest that exposure to valproate during spermatogenesis was not associated with offspring risk of congenital malformations or neurodevelopmental disorders, including autism spectrum disorder.


Subject(s)
Neurodevelopmental Disorders , Spermatogenesis , Valproic Acid , Humans , Valproic Acid/adverse effects , Valproic Acid/therapeutic use , Male , Denmark/epidemiology , Spermatogenesis/drug effects , Female , Neurodevelopmental Disorders/epidemiology , Neurodevelopmental Disorders/chemically induced , Infant , Adult , Cohort Studies , Child, Preschool , Child , Paternal Exposure/adverse effects , Anticonvulsants/adverse effects , Anticonvulsants/therapeutic use , Registries , Infant, Newborn , Abnormalities, Drug-Induced/epidemiology , Risk Factors , Congenital Abnormalities/epidemiology , Prenatal Exposure Delayed Effects/epidemiology , Prenatal Exposure Delayed Effects/chemically induced
3.
Sci Data ; 11(1): 573, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38834587

ABSTRACT

Obesity is accompanied by multiple known health risks and increased morbidity, and obese men display reduced reproductive health. However, the impact of obesity on the testes at the molecular levels remain inadequately explored. This is partially attributed to the lack of monitoring tools for tracking alterations within cell clusters in testes associated with obesity. Here, we utilized single-cell RNA sequencing to analyze over 70,000 cells from testes of obese and lean mice, and to study changes related to obesity in non-spermatogenic cells and spermatogenesis. The Testicular Library encompasses all non-spermatogenic cells and spermatogenic cells spanning from spermatogonia to spermatozoa, which will significantly aid in characterizing alterations in cellular niches and the testicular microenvironment during high-fat diet (HFD)-induced obesity. This comprehensive dataset is indispensable for studying how HFD disrupts cell-cell communication networks within the testis and impacts alterations in the testicular microenvironment that regulate spermatogenesis. Being the inaugural dataset of single-cell RNA-seq in the testes of diet-induced obese (DIO) mice, this holds the potential to offer innovative insights and directions in the realm of single-cell transcriptomics concerning male reproductive injury associated with HFD.


Subject(s)
Diet, High-Fat , Obesity , Single-Cell Analysis , Testis , Transcriptome , Animals , Male , Diet, High-Fat/adverse effects , Mice , Testis/metabolism , Obesity/genetics , Obesity/etiology , Spermatogenesis
4.
Cell Death Dis ; 15(6): 396, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38839795

ABSTRACT

Klinefelter syndrome (47,XXY) causes infertility with a testicular histology comprising two types of Sertoli cell-only tubules, representing mature and immature-like Sertoli cells, and occasionally focal spermatogenesis. Here, we show that the immature-like Sertoli cells highly expressed XIST and had two X-chromosomes, while the mature Sertoli cells lacked XIST expression and had only one X-chromosome. Sertoli cells supporting focal spermatogenesis also lacked XIST expression and the additional X-chromosome, while the spermatogonia expressed XIST despite having only one X-chromosome. XIST was expressed in Sertoli cells until puberty, where a gradual loss was observed. Our results suggest that a micro-mosaic loss of the additional X-chromosome is needed for Sertoli cells to mature and to allow focal spermatogenesis.


Subject(s)
Klinefelter Syndrome , RNA, Long Noncoding , Sertoli Cells , Spermatogenesis , Klinefelter Syndrome/genetics , Klinefelter Syndrome/pathology , Klinefelter Syndrome/metabolism , Male , Sertoli Cells/metabolism , Sertoli Cells/pathology , Spermatogenesis/genetics , Animals , Humans , Mice , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Chromosomes, Human, X/genetics , X Chromosome/genetics
5.
Anat Histol Embryol ; 53(4): e13062, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38837469

ABSTRACT

Although the order Rodentia does not present a high risk of extinction compared to mammals as a whole, several families demonstrate high levels of threat and/or data deficiency, therefore highlighting the need for targeted research and the application of ecological and reproductive data to the development of conservation actions. The order Rodentia, the largest among mammals, includes 9 families, and the family Cricetidae is the most diverse of the Brazilian rodents. In Brazil, 12 of the 16 genera of Oecomys are found. Oecomys bicolor is known in Brazil as the 'arboreal rat' and is, found in dry, deciduous and tropical forests. The mean body weight of Oecomys bicolor was 35.8 g and the gonadal, tubular and epithelial somatic indexes were, 0.53%, 0.47% and 0.37%, respectively. Seminiferous tubules volume density was 89.72% and the mitotic and meiotic indexes corresponded to 8.59 and 2.45 cells, respectively, and the yield of spermatogenesis was 23.83 cells. The intertubular compartment represented 10.28% of the testis parenchyma and around 5% of the interstitial space was occupied by Leydig cells, whose number per gram of testis was 11.10 × 107 cells. By evaluating the biometric and histomorphometric characteristics of the testis, there is evidence that this species has a high investment in reproduction. Due to the high contribution of the seminiferous epithelium and the intertubular compartment in this species, compared to the others of the same family, it is possible to infer that the species Oecomys bicolor has a promiscuous reproductive behaviour.


Subject(s)
Arvicolinae , Leydig Cells , Spermatogenesis , Testis , Animals , Spermatogenesis/physiology , Male , Testis/anatomy & histology , Testis/physiology , Leydig Cells/cytology , Leydig Cells/physiology , Arvicolinae/anatomy & histology , Arvicolinae/physiology , Seminiferous Tubules/anatomy & histology , Brazil
6.
Article in English | MEDLINE | ID: mdl-38862425

ABSTRACT

Gametogenesis plays an important role in the reproduction and evolution of species. The transcriptomic and epigenetic alterations in this process can influence the reproductive capacity, fertilization, and embryonic development. The rapidly increasing single-cell studies have provided valuable multi-omics resources. However, data from different layers and sequencing platforms have not been uniformed and integrated, which greatly limits their use for exploring the molecular mechanisms that underlie oogenesis and spermatogenesis. Here, we develop GametesOmics, a comprehensive database that integrates the data of gene expression, DNA methylation, and chromatin accessibility during oogenesis and spermatogenesis in humans and mice. GametesOmics provides a user-friendly website and various tools, including Search and Advanced Search for querying the expression and epigenetic modification(s) of each gene; Tools with Differentially expressed gene (DEG) analysis for identifying DEGs, Correlation analysis for demonstrating the genetic and epigenetic changes, Visualization for displaying single-cell clusters and screening marker genes as well as master transcription factors (TFs), and MethylView for studying the genomic distribution of epigenetic modifications. GametesOmics also provides Genome Browser and Ortholog for tracking and comparing gene expression, DNA methylation, and chromatin accessibility between humans and mice. GametesOmics offers a comprehensive resource for biologists and clinicians to decipher the cell fate transition in germ cell development, and can be accessed at http://gametesomics.cn/.


Subject(s)
DNA Methylation , Databases, Genetic , Gametogenesis , Animals , Humans , Mice , Gametogenesis/genetics , DNA Methylation/genetics , Epigenesis, Genetic/genetics , Male , Germ Cells/metabolism , Female , Spermatogenesis/genetics , Oogenesis/genetics , Genomics/methods , Multiomics
7.
Parasit Vectors ; 17(1): 252, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38858789

ABSTRACT

BACKGROUND: Toxoplasma gondii is an intracellular protozoan parasite that is widely distributed in humans and warm-blooded animals. T. gondii chronic infections can cause toxoplasmic encephalopathy, adverse pregnancy, and male reproductive disorders. In male reproduction, the main function of the testis is to provide a stable place for spermatogenesis and immunological protection. The disorders affecting testis tissue encompass abnormalities in the germ cell cycle, spermatogenic retardation, or complete cessation of sperm development. However, the mechanisms of interaction between T. gondii and the reproductive system is unclear. The aims were to study the expression levels of genes related to spermatogenesis, following T. gondii infection, in mouse testicular tissue. METHODS: RNA-seq sequencing was carried out on mouse testicular tissues from mice infected or uninfected with the T. gondii type II Prugniaud (PRU) strain and validated in combination with real-time quantitative PCR and immunofluorescence assays. RESULTS: The results showed that there were 250 significant differentially expressed genes (DEGs) (P < 0.05, |log2fold change| â‰§ 1). Bioinformatics analysis showed that 101 DEGs were annotated to the 1696 gene ontology (GO) term. While there was a higher number of DEGs in the biological process classification as a whole, the GO enrichment revealed a significant presence of DEGs in the cellular component classification. The Arhgap18 and Syne1 genes undergo regulatory changes following T. gondii infection, and both were involved in shaping the cytoskeleton of the blood-testis barrier (BTB). The number of DEGs enriched in the MAPK signaling pathway, the ERK1/2 signaling pathway, and the JNK signaling pathway were significant. The PTGDS gene is located in the Arachidonic acid metabolism pathway, which plays an important role in the formation and maintenance of BTB in the testis. The expression of PTGDS is downregulated subsequent to T. gondii infection, potentially exerting deleterious effects on the integrity of the BTB and the spermatogenic microenvironment within the testes. CONCLUSIONS: Overall, our research provides in-depth insights into how chronic T. gondii infection might affect testicular tissue and potentially impact male fertility. These findings offer a new perspective on the impact of T. gondii infection on the male reproductive system.


Subject(s)
Testis , Toxoplasma , Toxoplasmosis, Animal , Transcriptome , Animals , Male , Mice , Testis/parasitology , Testis/metabolism , Toxoplasma/genetics , Toxoplasmosis, Animal/parasitology , Spermatogenesis/genetics , Gene Expression Profiling , Chronic Disease , Computational Biology
8.
PLoS One ; 19(6): e0304475, 2024.
Article in English | MEDLINE | ID: mdl-38848382

ABSTRACT

Cystic spermatogenesis in the subadult, maturing and adult Greenland shark (Somniosus microcephalus) displays multiple novel features, characterized early on by an unorganized internal cellular environment of the spermatocysts (anatomically discrete follicle-like units containing a single germ cell stage and its complement of co-developing Sertoli cells). These typically show polar asymmetries due to asymmetrically distributed germ and Sertoli cells. These arise from several novel cellular rearrangements at the immature pole, including fusion of a cluster of somatic cells with newly formed cysts containing only one to three spermatogonia and that already display an excess of Sertoli cells. The subadult's germinative zone revealed an additional novelty, namely numerous previously formed somatic cell-lined rings into which spermatogonia were incorporated. A striking finding was the conspicuous rarity of the routinely discernible Sertoli mitotic figures in the hallmark cyst stage of diametric elasmobranch spermatogenesis that is known for the peak display of the latter. Scrutiny of sequentially unfolding phenomena in the linearly arranged spermatogonial generations revealed that the cellular developments at the most common type of cyst-duct transition area (comprising slender to spindle-like basophilic cells with pointed ends) were concurrent with the discreet appearance of a second dark Sertoli nucleus, a development that persisted in spermiated cysts. Spermatogenically active mature males displayed vigorous meiotic divisions. However, a scattering of their spermatid cysts also displayed shark-atypical asynchronous passage through spermiogenesis, phenomena which were exacerbated as arrested spermiogenesis in an archival collection of tissues from 13 maturing specimens. Subadult specimens revealed meiotic arrest, and foci of infiltration of leukocytes that originate from a mass of eosinophilic, granule-laden immune cells dorsally under the testis capsule. This tissue was identical to the testis-affixed bone marrow equivalent in other shark species. This tissue is likely developmentally regulated in the Greenland shark as it is absent in adults.


Subject(s)
Sertoli Cells , Sharks , Spermatogenesis , Animals , Male , Sharks/physiology , Sertoli Cells/cytology , Sertoli Cells/physiology , Spermatogenesis/physiology , Spermatogonia/cytology , Testis/cytology
9.
Front Endocrinol (Lausanne) ; 15: 1393111, 2024.
Article in English | MEDLINE | ID: mdl-38846492

ABSTRACT

Non-obstructive azoospermia (NOA) is a disease characterized by spermatogenesis failure and comprises phenotypes such as hypospermatogenesis, mature arrest, and Sertoli cell-only syndrome. Studies have shown that FA cross-linked anemia (FA) pathway is closely related to the occurrence of NOA. There are FA gene mutations in male NOA patients, which cause significant damage to male germ cells. The FA pathway is activated in the presence of DNA interstrand cross-links; the key step in activating this pathway is the mono-ubiquitination of the FANCD2-FANCI complex, and the activation of the FA pathway can repair DNA damage such as DNA double-strand breaks. Therefore, we believe that the FA pathway affects germ cells during DNA damage repair, resulting in minimal or even disappearance of mature sperm in males. This review summarizes the regulatory mechanisms of FA-related genes in male azoospermia, with the aim of providing a theoretical reference for clinical research and exploration of related genes.


Subject(s)
Azoospermia , Fanconi Anemia Complementation Group Proteins , Signal Transduction , Animals , Humans , Male , Azoospermia/genetics , Azoospermia/metabolism , Azoospermia/pathology , DNA Damage , DNA Repair , Fanconi Anemia Complementation Group Proteins/metabolism , Fanconi Anemia Complementation Group Proteins/genetics , Spermatogenesis
10.
Nat Commun ; 15(1): 4983, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38862555

ABSTRACT

Engineered sex ratio distorters (SRDs) have been proposed as a powerful component of genetic control strategies designed to suppress harmful insect pests. Two types of CRISPR-based SRD mechanisms have been proposed: X-shredding, which eliminates X-bearing sperm, and X-poisoning, which eliminates females inheriting disrupted X-chromosomes. These differences can have a profound impact on the population dynamics of SRDs when linked to the Y-chromosome: an X-shredder is invasive, constituting a classical meiotic Y-drive, whereas X-poisoning is self-limiting, unable to invade but also insulated from selection. Here, we establish X-poisoning strains in the malaria vector Anopheles gambiae targeting three X-linked genes during spermatogenesis, resulting in male bias. We find that sex distortion is primarily driven by a loss of X-bearing sperm, with limited evidence for postzygotic lethality of female progeny. By leveraging a Drosophila melanogaster model, we show unambiguously that engineered SRD traits can operate differently in these two insects. Unlike X-shredding, X-poisoning could theoretically operate at early stages of spermatogenesis. We therefore explore premeiotic Cas9 expression to target the mosquito X-chromosome. We find that, by pre-empting the onset of meiotic sex chromosome inactivation, this approach may enable the development of Y-linked SRDs if mutagenesis of spermatogenesis-essential genes is functionally balanced.


Subject(s)
Anopheles , Drosophila melanogaster , Gene Drive Technology , Sex Ratio , Spermatogenesis , X Chromosome , Animals , Male , Female , Anopheles/genetics , X Chromosome/genetics , Drosophila melanogaster/genetics , Gene Drive Technology/methods , Spermatogenesis/genetics , Mosquito Vectors/genetics , Genes, X-Linked , CRISPR-Cas Systems , Spermatozoa/metabolism , Animals, Genetically Modified
11.
Sci Rep ; 14(1): 13466, 2024 06 12.
Article in English | MEDLINE | ID: mdl-38866815

ABSTRACT

CRISPR-Cas9 technology has facilitated development of strategies that can potentially provide more humane and effective methods to control invasive vertebrate species, such as mice. One promising strategy is X chromosome shredding which aims to bias offspring towards males, resulting in a gradual and unsustainable decline of females. This method has been explored in insects with encouraging results. Here, we investigated this strategy in Mus musculus by targeting repeat DNA sequences on the X chromosome with the aim of inducing sufficient DNA damage to specifically eliminate X chromosome-bearing sperm during gametogenesis. We tested three different guide RNAs (gRNAs) targeting different repeats on the X chromosome, together with three male germline-specific promoters for inducing Cas9 expression at different stages of spermatogenesis. A modest bias towards mature Y-bearing sperm was detected in some transgenic males, although this did not translate into significant male-biasing of offspring. Instead, cleavage of the X chromosome during meiosis typically resulted in a spermatogenic block, manifest as small testes volume, empty tubules, low sperm concentration, and sub/infertility. Our study highlights the importance of controlling the timing of CRISPR-Cas9 activity during mammalian spermatogenesis and the sensitivity of spermatocytes to X chromosome disruption.


Subject(s)
CRISPR-Cas Systems , Spermatogenesis , X Chromosome , Animals , Male , Mice , Spermatogenesis/genetics , X Chromosome/genetics , Female , RNA, Guide, CRISPR-Cas Systems/genetics , Spermatozoa/metabolism , Mice, Transgenic , Meiosis/genetics
12.
Lipids Health Dis ; 23(1): 180, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38862993

ABSTRACT

BACKGROUND: The management of male infertility continues to encounter an array of challenges and constraints, necessitating an in-depth exploration of novel therapeutic targets to enhance its efficacy. As an eight-carbon medium-chain fatty acid, octanoic acid (OCA) shows promise for improving health, yet its impact on spermatogenesis remains inadequately researched. METHODS: Mass spectrometry was performed to determine the fatty acid content and screen for a pivotal lipid component in the serum of patients with severe spermatogenesis disorders. The sperm quality was examined, and histopathological analysis and biotin tracer tests were performed to assess spermatogenesis function and the integrity of the blood-testis barrier (BTB) in vivo. Cell-based in vitro experiments were carried out to investigate the effects of OCA administration on Sertoli cell dysfunction. This research aimed to elucidate the mechanism by which OCA may influence the function of Sertoli cells. RESULTS: A pronounced reduction in OCA content was observed in the serum of patients with severe spermatogenesis disorders, indicating that OCA deficiency is related to spermatogenic disorders. The protective effect of OCA on reproduction was tested in a mouse model of spermatogenic disorder induced by busulfan at a dose 30 mg/kg body weight (BW). The mice in the study were separated into distinct groups and administered varying amounts of OCA, specifically at doses of 32, 64, 128, and 256 mg/kg BW. After evaluating sperm parameters, the most effective dose was determined to be 32 mg/kg BW. In vivo experiments showed that treatment with OCA significantly improved sperm quality, testicular histopathology and BTB integrity, which were damaged by busulfan. Moreover, OCA intervention reduced busulfan-induced oxidative stress and autophagy in mouse testes. In vitro, OCA pretreatment (100 µM) significantly ameliorated Sertoli cell dysfunction by alleviating busulfan (800 µM)-induced oxidative stress and autophagy. Moreover, rapamycin (5 µM)-induced autophagy led to Sertoli cell barrier dysfunction, while OCA administration exerted a protective effect by alleviating autophagy. CONCLUSIONS: This study demonstrated that OCA administration suppressed oxidative stress and autophagy to alleviate busulfan-induced BTB damage. These findings provide a deeper understanding of the toxicology of busulfan and a promising avenue for the development of novel OCA-based therapies for male infertility.


Subject(s)
Autophagy , Blood-Testis Barrier , Busulfan , Caprylates , Oxidative Stress , Sertoli Cells , Spermatogenesis , Male , Animals , Blood-Testis Barrier/drug effects , Blood-Testis Barrier/metabolism , Busulfan/adverse effects , Caprylates/pharmacology , Oxidative Stress/drug effects , Mice , Sertoli Cells/drug effects , Sertoli Cells/metabolism , Humans , Spermatogenesis/drug effects , Autophagy/drug effects , Infertility, Male/drug therapy , Infertility, Male/chemically induced , Infertility, Male/pathology , Testis/drug effects , Testis/pathology , Testis/metabolism , Spermatozoa/drug effects , Spermatozoa/metabolism , Adult
13.
Food Chem Toxicol ; 189: 114773, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823497

ABSTRACT

Fluoride, a ubiquitous environmental compound, carries significant health risks at excessive levels. This study investigated the reproductive toxicity of fluoride exposure during puberty in mice, focusing on its impact on testicular development, spermatogenesis, and underlying mechanisms. The results showed that fluoride exposure during puberty impaired testicular structure, induced germ cell apoptosis, and reduced sperm counts in mice. Additionally, the SOD activity and GSH content were significantly decreased, while MDA content was significantly elevated in the NaF group. Immunohistochemistry showed an increase in the number of cells positive for GRP78, a key ER stress marker. Moreover, qRT-PCR and Western blot analyses confirmed the upregulation of both Grp78 mRNA and protein expression, as well as increased mRNA expression of other ER stress-associated genes (Grp94, chop, Atf6, Atf4, and Xbp1) and enhanced protein expression of phosphorylated PERK, IRE1α, eIF2α, JNK, XBP-1, ATF-6α, ATF-4, and CHOP. In conclusion, our findings demonstrate that fluoride exposure during puberty impairs testicular structure, induces germ cell apoptosis, and reduces sperm counts in mice. ER stress may participate in testicular cell apoptosis, and contribute to the testicular damage and decreased sperm counts induced by fluoride.


Subject(s)
Apoptosis , Endoplasmic Reticulum Chaperone BiP , Endoplasmic Reticulum Stress , Fluorides , Testis , Animals , Male , Endoplasmic Reticulum Stress/drug effects , Apoptosis/drug effects , Testis/drug effects , Testis/metabolism , Fluorides/toxicity , Mice , Sexual Maturation/drug effects , Heat-Shock Proteins/metabolism , Heat-Shock Proteins/genetics , Sperm Count , Spermatogenesis/drug effects
14.
Zool Res ; 45(3): 601-616, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38766744

ABSTRACT

Meiosis is a highly complex process significantly influenced by transcriptional regulation. However, studies on the mechanisms that govern transcriptomic changes during meiosis, especially in prophase I, are limited. Here, we performed single-cell ATAC-seq of human testis tissues and observed reprogramming during the transition from zygotene to pachytene spermatocytes. This event, conserved in mice, involved the deactivation of genes associated with meiosis after reprogramming and the activation of those related to spermatogenesis before their functional onset. Furthermore, we identified 282 transcriptional regulators (TRs) that underwent activation or deactivation subsequent to this process. Evidence suggested that physical contact signals from Sertoli cells may regulate these TRs in spermatocytes, while secreted ENHO signals may alter metabolic patterns in these cells. Our results further indicated that defective transcriptional reprogramming may be associated with non-obstructive azoospermia (NOA). This study revealed the importance of both physical contact and secreted signals between Sertoli cells and germ cells in meiotic progression.


Subject(s)
Cell Communication , Meiosis , Animals , Male , Mice , Meiosis/physiology , Humans , Sertoli Cells/metabolism , Sertoli Cells/physiology , Testis/metabolism , Testis/cytology , Spermatogenesis/physiology , Gene Expression Regulation , Azoospermia/genetics , Transcription, Genetic , RNA, Small Cytoplasmic/genetics , RNA, Small Cytoplasmic/metabolism , Single-Cell Gene Expression Analysis
15.
Genes (Basel) ; 15(5)2024 04 25.
Article in English | MEDLINE | ID: mdl-38790168

ABSTRACT

Male fertility can be affected by oxidative stress (OS), which occurs when an imbalance between the production of reactive oxygen species (ROS) and the body's ability to neutralize them arises. OS can damage cells and influence sperm production. High levels of lipid peroxidation have been linked to reduced sperm motility and decreased fertilization ability. This literature review discusses the most commonly used biomarkers to measure sperm damage caused by ROS, such as the high level of OS in seminal plasma as an indicator of imbalance in antioxidant activity. The investigated biomarkers include 8-hydroxy-2-deoxyguanosine acid (8-OHdG), a marker of DNA damage caused by ROS, and F2 isoprostanoids (8-isoprostanes) produced by lipid peroxidation. Furthermore, this review focuses on recent methodologies including the NGS polymorphisms and differentially expressed gene (DEG) analysis, as well as the epigenetic mechanisms linked to ROS during spermatogenesis along with new methodologies developed to evaluate OS biomarkers. Finally, this review addresses a valuable insight into the mechanisms of male infertility provided by these advances and how they have led to new treatment possibilities. Overall, the use of biomarkers to evaluate OS in male infertility has supplied innovative diagnostic and therapeutic approaches, enhancing our understanding of male infertility mechanisms.


Subject(s)
Biomarkers , Infertility, Male , Oxidative Stress , Reactive Oxygen Species , Male , Humans , Infertility, Male/genetics , Infertility, Male/metabolism , Infertility, Male/diagnosis , Biomarkers/metabolism , Reactive Oxygen Species/metabolism , Lipid Peroxidation/genetics , Spermatozoa/metabolism , DNA Damage , 8-Hydroxy-2'-Deoxyguanosine/metabolism , Spermatogenesis/genetics
16.
Mol Cell Endocrinol ; 591: 112278, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38795826

ABSTRACT

The testicular stem cell niche is the central regulator of spermatogenesis in Drosophila melanogaster. However, the underlying regulatory mechanisms are unclear. This study demonstrated the crucial role of lethal (1) 10Bb [l(1)10Bb] in regulating the testicular stem cell niche. Dysfunction of l(1)10Bb in early-stage cyst cells led to male fertility disorders and compromised cyst stem cell maintenance. Moreover, the dysfunction of l(1)10Bb in early-stage cyst cells exerted non-autonomous effects on germline stem cell differentiation, independently of hub signals. Notably, our study highlights the rescue of testicular defects through ectopic expression of L(1)10Bb and the human homologous protein BUD31 homolog (BUD31). In addition, l(1)10Bb dysfunction in early-stage cyst cells downregulated the expression of spliceosome subunits in the Sm and the precursor RNA processing complexes. Collectively, our findings established l(1)10Bb as a pivotal factor in the modulation of Drosophila soma-germline communications within the testicular stem cell niche.


Subject(s)
Drosophila Proteins , Drosophila melanogaster , Stem Cell Niche , Testis , Animals , Male , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Testis/metabolism , Testis/cytology , Drosophila melanogaster/metabolism , Drosophila melanogaster/genetics , Cell Communication , Germ Cells/metabolism , Germ Cells/cytology , Spermatogenesis/genetics , Cell Differentiation/genetics , Humans , Spliceosomes/metabolism , Stem Cells/metabolism , Stem Cells/cytology
17.
Environ Int ; 188: 108771, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38805914

ABSTRACT

Microcystins (MCs) and nitrites are coexisted in the environment and have reproductive toxicity. The combined toxic effect and mechanism of MCs and nitrite on spermatogenesis remain largely unclear. In the present study, co-exposure to microcystin-leucine arginine (MC-LR) and sodium nitrite (NaNO2) aggravated testicular damage of Balb/c mice and mitochondrial impairment of spermatogonia, Sertoli cells, and sperm. Furthermore, MC-LR and NaNO2 reduced sperm density with a synergistic effect. In addition, MC-LR and NaNO2 synergistically induced oxidative stress in the reproductive system by decreasing superoxide dismutase (SOD) activity and glutathione (GSH) levels and increasing levels of mitochondrial reactive oxygen species (mtROS) and reactive oxygen species (ROS). More importantly, mitoquidone mesylate (MitoQ), an inhibitor of mtROS, blocked MC-LR and NaNO2-induced spermatogonia and Sertoli cell apoptosis by inhibiting high expression of Bax, Fadd, Caspase-8, and cleaved-Caspase-3. On the other hand, MitoQ suppressed pyroptosis of Sertoli cells by inhibiting the expression of NLRP3, N-GSDMD, and cleaved-Caspase-1. Additionally, MitoQ alleviated co-exposure-induced sperm density reduction and organ index disorders in F1 generation mice. Together, co-exposure of MC-LR and NaNO2 can enhance spermatogenic disorders by mitochondrial oxidative impairment-mediated germ cell death. This study emphasizes the potential risks of MC-LR and NaNO2 on reproduction in realistic environments and highlights new insights into the cause and treatment of spermatogenic disorders.


Subject(s)
Apoptosis , Mice, Inbred BALB C , Microcystins , Pyroptosis , Reactive Oxygen Species , Spermatogenesis , Microcystins/toxicity , Animals , Male , Mice , Apoptosis/drug effects , Spermatogenesis/drug effects , Reactive Oxygen Species/metabolism , Pyroptosis/drug effects , Oxidative Stress/drug effects , Mitochondria/drug effects , Mitochondria/metabolism , Testis/drug effects , Testis/metabolism , Spermatozoa/drug effects , Sertoli Cells/drug effects , Sertoli Cells/metabolism , Sodium Nitrite , Marine Toxins , Spermatogonia/drug effects , Spermatogonia/metabolism
18.
Clin Genitourin Cancer ; 22(3): 102089, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38728792

ABSTRACT

INTRODUCTION: We aimed to evaluate the status of spermatogenesis detected by histological examination of non-tumoral testicular tissues in tumor bearing testis and its association with advanced stage disease. PATIENTS AND METHODS: We retrospectively reviewed patients with testicular germ cell tumors (TGCTs) that undergone radical orchiectomy. All non-tumoral areas of the orchiectomy specimens were examined for the status of spermatogenesis. Patients were divided into two groups as localized (stage I) and metastatic (stage II-III) disease and analyzed separately for seminomatous (SGCT) and nonseminomatous germ cell tumors (NSGCT). RESULTS: Four hundred fifty-four patients were included in our final analysis. Of those, 195 patients had SGCT, and 259 patients had NSGCT. Three hundred and six patients had localized disease at the time of diagnosis. Median (Q1-Q3) age was 31 (26 - 38) years and 102 (22.5%) patients had normal spermatogenesis, 177 (39.0%) patients had hypospermatogenesis and 175 (38.5%) patients had no mature spermatozoa. On multivariate logistic regression analysis, embryonal carcinoma >50% (1.944, 95 %CI 1.054-3.585, P = .033) and spermatogenesis status (2.796 95% CI 1.251-6.250, P = .012 for hypospermatogenesis, and 3.907, 95% CI 1.692-9.021, P = .001 for absence of mature spermatozoa) were independently associated with metastatic NSGCT. However, there was not any variables significantly associated with metastatic SGCT on multivariate logistic regression analysis. CONCLUSION: Our study demonstrated that only 22.5% of patients with TGCTs had normal spermatogenesis in tumor bearing testis. Impaired spermatogenesis (hypospermatogenesis or no mature spermatozoa) and predominant embryonal carcinoma are associated with advanced stage NSGCT.


Subject(s)
Neoplasms, Germ Cell and Embryonal , Spermatogenesis , Testicular Neoplasms , Humans , Male , Testicular Neoplasms/pathology , Testicular Neoplasms/surgery , Neoplasms, Germ Cell and Embryonal/pathology , Neoplasms, Germ Cell and Embryonal/surgery , Retrospective Studies , Adult , Orchiectomy , Testis/pathology , Testis/surgery , Neoplasm Metastasis , Neoplasm Staging
19.
Reprod Biol ; 24(2): 100891, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38733656

ABSTRACT

Azoospermia constitutes a significant factor in male infertility, defined by the absence of spermatozoa in the ejaculate, afflicting 15% of infertile men. However, a subset of azoospermic cases remains unattributed to known genetic variants. Prior investigations have identified the chibby family member 2 (CBY2) as prominently and specifically expressed in the testes of both humans and mice, implicating its potential involvement in spermatogenesis. In this study, we conducted whole exome sequencing (WES) on an infertile family to uncover novel genetic factors contributing to azoospermia. Our analysis revealed a homozygous c .355 C>A variant of CBY2 in a non-obstructive azoospermic patient. This deleterious variant significantly diminished the protein expression of CBY2 both in vivo and in vitro, leading to a pronounced disruption of spermatogenesis at the early round spermatid stage post-meiosis. This disruption was characterized by a nearly complete loss of elongating and elongated spermatids. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) and co-immunoprecipitation assays demonstrated the interaction between CBY2 and Piwi-like protein 1 (PIWIL1). Immunofluorescence staining further confirmed the co-localization of CBY2 and PIWIL1 in the testes during the spermatogenic process in both humans and mice. Additionally, diminished PIWIL1 expression was observed in the testicular tissue from the affected patient. Our findings suggest that the homozygous c .355 C>A variant of CBY2 compromises CBY2 function, contributing to defective spermatogenesis at the round spermiogenic stage and implicating its role in the pathogenesis of azoospermia.


Subject(s)
Azoospermia , Spermatogenesis , Male , Azoospermia/genetics , Humans , Spermatogenesis/genetics , Mutation , Animals , Mice , Testis/metabolism , Testis/pathology , Adult , Exome Sequencing , Pedigree , Argonaute Proteins/genetics , Argonaute Proteins/metabolism
20.
Cells ; 13(10)2024 May 14.
Article in English | MEDLINE | ID: mdl-38786055

ABSTRACT

Infertility is an important personal and society disease, of which the male factor represents half of all causes. One of the aspects less studied in male infertility is the immunological testicular microenvironment. Mast cells (MCs), having high potential for regulating spermatogenesis due to fine-tuning the state of the integrative buffer metabolic environment, are one of the most crucial cellular subpopulations of the testicular interstitium. One important component of the MC secretome is proteases that can act as proinflammatory agents and in extracellular matrix (ECM) remodeling. In the testis, MCs are an important cell component of the testicular interstitial tissue (TIT). However, there are still no studies addressing the analysis of a specific MC protease-carboxypeptidase A3 (CPA3)-in cases with altered spermatogenesis. The cytological and histotopographic features of testicular CPA3+ MCs were examined in a study involving 34 men with azoospermia. As revealed, in cases with non-obstructive azoospermia, a higher content of CPA3+ MCs in the TIT and migration to the microvasculature and peritubular tissue of seminiferous tubules were observed when compared with cases with obstructive azoospermia. Additionally, a high frequency of CPA3+ MCs colocalization with fibroblasts, Leydig cells, and elastic fibers was detected in cases with NOA. Thus, CPA3 seems to be of crucial pathogenetic significance in the formation of a profibrogenic background of the tissue microenvironment, which may have direct and indirect effects on spermatogenesis.


Subject(s)
Azoospermia , Mast Cells , Testis , Male , Humans , Mast Cells/metabolism , Mast Cells/pathology , Azoospermia/pathology , Azoospermia/metabolism , Testis/metabolism , Testis/pathology , Adult , Carboxypeptidases A/metabolism , Spermatogenesis
SELECTION OF CITATIONS
SEARCH DETAIL
...