Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.090
Filter
1.
ACS Appl Mater Interfaces ; 16(19): 24162-24171, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38696548

ABSTRACT

Molecular carriers are necessary for the controlled release of drugs and genes to achieve the desired therapeutic outcomes. DNA hydrogels can be a promising candidate in this application with their distinctive sequence-dependent programmability, which allows precise encapsulation of specific cargo molecules and stimuli-responsive release of them at the target. However, DNA hydrogels are inherently susceptible to the degradation of nucleases, making them vulnerable in a physiological environment. To be an effective molecular carrier, DNA hydrogels should be able to protect encapsulated cargo molecules until they reach the target and release them once they are reached. Here, we develop a simple way of controlling the enzyme resistance of DNA hydrogels for cargo protection and release by using cation-mediated condensation and expansion. We found that DNA hydrogels condensed by spermine are highly resistant to enzymatic degradation. They become degradable again if expanded back to their original, uncondensed state by sodium ions interfering with the interaction between spermine and DNA. These controllable condensation, expansion, and degradation of DNA hydrogels pave the way for the development of DNA hydrogels as an effective molecular carrier.


Subject(s)
DNA , Hydrogels , Spermine , Hydrogels/chemistry , DNA/chemistry , DNA/metabolism , Spermine/chemistry , Drug Carriers/chemistry
2.
Spectrochim Acta A Mol Biomol Spectrosc ; 317: 124389, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38710137

ABSTRACT

Over the years, osteosarcoma therapy has had a significative improvement with the use of a multidrug regime strategy, increasing the survival rates from less than 20 % to circa 70 %. Different types of development of new antineoplastic agents are critical to achieve irreversible damage to cancer cells, while preserving the integrity of their healthy counterparts. In the present study, complexes with two and three Pd(II) centres linked by the biogenic polyamines: spermine (Pd2SpmCl4) and spermidine (Pd3Spd2Cl6) were tested against non-malignant (osteoblasts, HOb) and cancer (osteosarcoma, MG-63) human cell lines. Either alone or in combination according to the EURAMOS-1 protocol, they were used versus cisplatin as a drug reference. By evaluating the cytotoxic effects of both therapeutic approaches (single and drug combination) in HOb and MG-63 cell lines, the selective anti-tumoral potential is assessed. To understand the different treatments at a molecular level, Synchrotron Radiation Fourier Transform Infrared and Raman microspectroscopies were applied. Principal component analysis and hierarchical cluster analysis are applied to the vibrational data, revealing the major metabolic changes caused by each drug, which were found to rely on DNA, lipids, and proteins, acting as biomarkers of drug-to-cell impact. The main changes were observed for the B-DNA native conformation to either Z-DNA (higher in the presence of polynuclear complexes) or A-DNA (preferably after cisplatin exposure). Additionally, a higher effect upon variation in proteins content was detected in drug combination when compared to single drug administration proving the efficacy of the EURAMOS-1 protocol with the new drugs tested.


Subject(s)
Antineoplastic Agents , Osteosarcoma , Spectrum Analysis, Raman , Humans , Osteosarcoma/drug therapy , Osteosarcoma/pathology , Osteosarcoma/metabolism , Spectrum Analysis, Raman/methods , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Cell Line, Tumor , Spectroscopy, Fourier Transform Infrared/methods , Vibration , Spermine/pharmacology , Spermine/chemistry , Bone Neoplasms/drug therapy , Bone Neoplasms/pathology , Bone Neoplasms/metabolism , Spermidine/pharmacology , Spermidine/chemistry , Principal Component Analysis , Cell Survival/drug effects
3.
Chem Biol Interact ; 396: 111059, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38761875

ABSTRACT

Chronic inflammation, oxidative stress, and airway remodelling represent the principal pathophysiological features of chronic respiratory disorders. Inflammation stimuli like lipopolysaccharide (LPS) activate macrophages and dendritic cells, with concomitant M1 polarization and release of pro-inflammatory cytokines. Chronic inflammation and oxidative stress lead to airway remodelling causing irreversible functional and structural alterations of the lungs. Airway remodelling is multifactorial, however, the hormone transforming growth factor-ß (TGF-ß) is one of the main contributors to fibrotic changes. The signalling pathways mediating inflammation and remodelling rely both on the transcription factor nuclear factor-κB (NFκB), underlying the potential of NFκB inhibition as a therapeutic strategy for chronic respiratory disorders. In this study, we encapsulated an NFκB-inhibiting decoy oligodeoxynucleotide (ODN) in spermine-functionalized acetalated dextran (SpAcDex) nanoparticles and tested the in vitro anti-inflammatory and anti-remodelling activity of this formulation. We show that NF-κB ODN nanoparticles counteract inflammation by reversing LPS-induced expression of the activation marker CD40 in myeloid cells and counteracts remodelling features by reversing the TGF-ß-induced expression of collagen I and α-smooth muscle actin in human dermal fibroblast. In summary, our study highlights the great potential of inhibiting NFκB via decoy ODN as a therapeutic strategy tackling multiple pathophysiological features underlying chronic respiratory conditions.


Subject(s)
Anti-Inflammatory Agents , Lipopolysaccharides , NF-kappa B , Nanoparticles , Oligodeoxyribonucleotides , Spermine , Oligodeoxyribonucleotides/pharmacology , Oligodeoxyribonucleotides/chemistry , Humans , Nanoparticles/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , NF-kappa B/metabolism , Spermine/pharmacology , Spermine/chemistry , Lipopolysaccharides/pharmacology , Transforming Growth Factor beta/metabolism , Fibroblasts/drug effects , Fibroblasts/metabolism , Fibrosis/drug therapy
4.
New Phytol ; 242(6): 2669-2681, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38587066

ABSTRACT

Norspermine (Nspm), one of the uncommon polyamines (PAs), was detected in bryophytes and lycophytes; therefore, the aminopropyltransferases involved in the synthesis of Nspm were investigated. The enzymatic activity was evaluated by the transient high expression of various aminopropyltransferase genes in Nicotiana benthamiana, followed by quantification of PA distribution in the leaves using gas chromatography-mass spectrometry. The bryophyte orthologues of ACL5, which is known to synthesise thermospermine (Tspm) in flowering plants, were found to have strong Nspm synthesis activity. In addition, two ACL5 orthologous with different substrate specificities were conserved in Selaginella moellendorffii, one of which was involved in Tspm synthesis and the other in Nspm synthesis. Therefore, further detailed analysis using these two factors revealed that the ß-hairpin structural region consisting of ß-strands 1 and 2 at the N-terminus of ACL5 is involved in substrate specificity. Through functional analysis of a total of 40 ACL5 genes in 33 organisms, including algae, it was shown that ACL5 has changed its substrate specificity several times during plant evolution and diversification. Furthermore, it was strongly suggested that ACL5 acquired strict Tspm synthesis activity during the emergence of vascular plants, especially through major changes around the ß-hairpin structural region.


Subject(s)
Spermine , Spermine/metabolism , Spermine/analogs & derivatives , Substrate Specificity , Phylogeny , Nicotiana/genetics , Nicotiana/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Gene Expression Regulation, Plant , Amino Acid Sequence
5.
mSystems ; 9(5): e0024624, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38564708

ABSTRACT

Dietary fiber deprivation is linked to probiotic extinction, mucus barrier dysbiosis, and the overgrowth of mucin-degrading bacteria. However, whether and how mucin could rescue fiber deprivation-induced intestinal barrier defects remains largely unexplored. Here, we sought to investigate the potential role and mechanism by which exogenous mucin maintains the gut barrier function. The results showed that dietary mucin alleviated fiber deprivation-induced disruption of colonic barrier integrity and reduced spermine production in vivo. Importantly, we highlighted that microbial-derived spermine production, but not host-produced spermine, increased significantly after mucin supplementation, with a positive association with upgraded colonic Lactobacillus abundance. After employing an in vitro model, the microbial-derived spermine was consistently dominated by both mucin and Lactobacillus spp. Furthermore, Limosilactobacillus mucosae was identified as an essential spermine-producing Lactobacillus spp., and this isolated strain was responsible for spermine accumulation, especially after adhering to mucin in vitro. Specifically, the mucin-supplemented bacterial supernatant of Limosilactobacillus mucosae was verified to promote intestinal barrier functions through the increased spermine production with a dependence on enhanced arginine metabolism. Overall, these findings collectively provide evidence that mucin-modulated microbial arginine metabolism bridged the interplay between microbes and gut barrier function, illustrating possible implications for host gut health. IMPORTANCE: Microbial metabolites like short-chain fatty acids produced by dietary fiber fermentation have been demonstrated to have beneficial effects on intestinal health. However, it is essential to acknowledge that certain amino acids entering the colon can be metabolized by microorganisms to produce polyamines. The polyamines can promote the renewal of intestinal epithelial cell and maintain host-microbe homeostasis. Our study highlighted the specific enrichment by mucin on promoting the arginine metabolism in Limosilactobacillus mucosae to produce spermine, suggesting that microbial-derived polyamines support a significant enhancement on the goblet cell proliferation and barrier function.


Subject(s)
Arginine , Colon , Gastrointestinal Microbiome , Intestinal Mucosa , Mucins , Spermine , Spermine/metabolism , Mucins/metabolism , Arginine/metabolism , Arginine/pharmacology , Intestinal Mucosa/metabolism , Intestinal Mucosa/microbiology , Animals , Gastrointestinal Microbiome/physiology , Colon/microbiology , Colon/metabolism , Male , Mice , Lactobacillus/metabolism , Humans , Dietary Fiber/metabolism , Mice, Inbred C57BL
6.
J Biol Chem ; 300(5): 107281, 2024 May.
Article in English | MEDLINE | ID: mdl-38588807

ABSTRACT

Spermine synthase is an aminopropyltransferase that adds an aminopropyl group to the essential polyamine spermidine to form tetraamine spermine, needed for normal human neural development, plant salt and drought resistance, and yeast CoA biosynthesis. We functionally identify for the first time bacterial spermine synthases, derived from phyla Bacillota, Rhodothermota, Thermodesulfobacteriota, Nitrospirota, Deinococcota, and Pseudomonadota. We also identify bacterial aminopropyltransferases that synthesize the spermine same mass isomer thermospermine, from phyla Cyanobacteriota, Thermodesulfobacteriota, Nitrospirota, Dictyoglomota, Armatimonadota, and Pseudomonadota, including the human opportunistic pathogen Pseudomonas aeruginosa. Most of these bacterial synthases were capable of synthesizing spermine or thermospermine from the diamine putrescine and so possess also spermidine synthase activity. We found that most thermospermine synthases could synthesize tetraamine norspermine from triamine norspermidine, that is, they are potential norspermine synthases. This finding could explain the enigmatic source of norspermine in bacteria. Some of the thermospermine synthases could synthesize norspermidine from diamine 1,3-diaminopropane, demonstrating that they are potential norspermidine synthases. Of 18 bacterial spermidine synthases identified, 17 were able to aminopropylate agmatine to form N1-aminopropylagmatine, including the spermidine synthase of Bacillus subtilis, a species known to be devoid of putrescine. This suggests that the N1-aminopropylagmatine pathway for spermidine biosynthesis, which bypasses putrescine, may be far more widespread than realized and may be the default pathway for spermidine biosynthesis in species encoding L-arginine decarboxylase for agmatine production. Some thermospermine synthases were able to aminopropylate N1-aminopropylagmatine to form N12-guanidinothermospermine. Our study reveals an unsuspected diversification of bacterial polyamine biosynthesis and suggests a more prominent role for agmatine.


Subject(s)
Bacteria , Bacterial Proteins , Spermidine Synthase , Spermine Synthase , Bacteria/enzymology , Bacteria/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Spermidine/metabolism , Spermidine/analogs & derivatives , Spermidine/biosynthesis , Spermidine Synthase/metabolism , Spermidine Synthase/genetics , Spermine/metabolism , Spermine/analogs & derivatives , Spermine/biosynthesis , Spermine Synthase/metabolism , Spermine Synthase/genetics , Polyamines/metabolism , Alkyl and Aryl Transferases/biosynthesis , Alkyl and Aryl Transferases/genetics , Agmatine/chemistry , Agmatine/metabolism
7.
J Med Chem ; 67(8): 6839-6853, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38590144

ABSTRACT

Cisplatin (cDDP) resistance is a matter of concern in triple-negative breast cancer therapeutics. We measured the metabolic response of cDDP-sensitive (S) and -resistant (R) MDA-MB-231 cells to Pd2Spermine(Spm) (a possible alternative to cDDP) compared to cDDP to investigate (i) intrinsic response/resistance mechanisms and (ii) the potential cytotoxic role of Pd2Spm. Cell extracts were analyzed by untargeted nuclear magnetic resonance metabolomics, and cell media were analyzed for particular metabolites. CDDP-exposed S cells experienced enhanced antioxidant protection and small deviations in the tricarboxylic acid cycle (TCA), pyrimidine metabolism, and lipid oxidation (proposed cytotoxicity signature). R cells responded more strongly to cDDP, suggesting a resistance signature of activated TCA cycle, altered AMP/ADP/ATP and adenine/uracil fingerprints, and phospholipid biosynthesis (without significant antioxidant protection). Pd2Spm impacted more markedly on R/S cell metabolisms, inducing similarities to cDDP/S cells (probably reflecting high cytotoxicity) and strong additional effects indicative of amino acid depletion, membrane degradation, energy/nucleotide adaptations, and a possible beneficial intracellular γ-aminobutyrate/glutathione-mediated antioxidant mechanism.


Subject(s)
Antineoplastic Agents , Cisplatin , Drug Resistance, Neoplasm , Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/metabolism , Cisplatin/pharmacology , Drug Resistance, Neoplasm/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Cell Line, Tumor , Female , Spermine/pharmacology , Spermine/metabolism , Palladium/chemistry , Palladium/pharmacology
8.
Int J Mol Sci ; 25(7)2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38612774

ABSTRACT

D-arginine (D-Arg) can promote embryogenic callus (EC) proliferation and increase the rate of somatic embryo induction of litchi (Litchi chinensis Sonn.), yet the mechanism underlying the processes is incompletely understood. To investigate the mechanism, physiological responses of polyamines (PAs) [putrescine (Put), spermidine (Spd), and spermine (Spm)] were investigated for D-Arg-treated litchi EC and enzyme activity related to polyamine metabolism, plant endogenous hormones, and polyamine- and embryogenic-related genes were explored. Results showed that the exogenous addition of D-Arg reduces the activity of diamine oxidase (DAO) and polyamine oxidase (PAO) in EC, reduces the production of H2O2, promotes EC proliferation, and increases the (Spd + Spm)/Put ratio to promote somatic embryo induction. Exogenous D-Arg application promoted somatic embryogenesis (SE) by increasing indole-3-acetyl glycine (IAA-Gly), kinetin-9-glucoside (K9G), and dihydrozeatin-7-glucoside (DHZ7G) levels and decreasing trans-zeatin riboside (tZR), N-[(-)-jasmonoyl]-(L)-valine (JA-Val), jasmonic acid (JA), and jasmonoyl-L-isoleucine (Ja-ILE) levels on 18 d, as well as promoting cell division and differentiation. The application of exogenous D-Arg regulated EC proliferation and somatic embryo induction by altering gene expression levels of the WRKY family, AP2/ERF family, C3H family, and C2H2 family. These results indicate that exogenous D-Arg could regulate the proliferation of EC and the SE induction of litchi by changing the biosynthesis of PAs through the alteration of gene expression pattern and endogenous hormone metabolism.


Subject(s)
Cyclopentanes , Isoleucine/analogs & derivatives , Litchi , Oxylipins , Litchi/genetics , Hydrogen Peroxide , Embryonic Development , Polyamines , Spermidine , Putrescine , Spermine , Arginine , Cell Division , Glucosides
9.
Int J Med Sci ; 21(5): 904-913, 2024.
Article in English | MEDLINE | ID: mdl-38617002

ABSTRACT

Dysregulation of cellular metabolism is a key marker of cancer, and it is suggested that metabolism should be considered as a targeted weakness of colorectal cancer. Increased polyamine metabolism is a common metabolic change in tumors. Thus, targeting polyamine metabolism for anticancer therapy, particularly polyamine blockade therapy, has gradually become a hot topic. Quercetin-3-methyl ether is a natural compound existed in various plants with diverse biological activities like antioxidant and antiaging. Here, we reported that Quercetin-3-methyl ether inhibits colorectal cancer cell viability, and promotes apoptosis in a dose-dependent and time-dependent manner. Intriguingly, the polyamine levels, including spermidine and spermine, in colorectal cancer cells were reduced upon treatment of Quercetin-3-methyl ether. This is likely resulted from the downregulation of SMOX, a key enzyme in polyamine metabolism that catalyzes the oxidation of spermine to spermidine. These findings suggest Quercetin-3-methyl ether decreases cellular polyamine level by suppressing SMOX expression, thereby inducing colorectal cancer cell apoptosis. Our results also reveal a correlation between the anti-tumor activity of Quercetin-3-methyl ether and the polyamine metabolism modulation, which may provide new insights into a better understanding of the pharmacological activity of Quercetin-3-methyl ether and how it reprograms cellular polyamine metabolism.


Subject(s)
Biological Products , Colorectal Neoplasms , Quercetin/analogs & derivatives , Humans , Polyamines , Spermidine , Spermine , Apoptosis , Colorectal Neoplasms/drug therapy
10.
Int J Nanomedicine ; 19: 3405-3421, 2024.
Article in English | MEDLINE | ID: mdl-38617795

ABSTRACT

Background: Natural nanoparticles have been found to exist in traditional Chinese medicine (TCM) decoctions. However, whether natural nanoparticles can influence the oral bioavailability of active compounds has not been elucidated. Using Xie-Bai-San decoction (XBSD) as an example, the purpose of this study was to isolate, characterize and elucidate the mechanism of the nanoparticles (N-XBSD) in XBSD, and further to explore whether the bioavailability of the main active compounds could be enhanced by N-XBSD. Methods: N-XBSD were isolated from XBSD, and investigated its characterization and study of its formation mechanism, and evaluation of its ability to enhance bioavailability of active compounds. Results: The N-XBSD was successfully isolated with the average particle size of 104.53 nm, PDI of 0.27 and zeta potential of -5.14 mV. Meanwhile, all the eight active compounds were most presented in N-XBSD. Kukoamine B could self-assemble with mulberroside A or liquiritin to form nanoparticles, respectively. And the FT-IR and HRMS results indicated the possible binding of the ammonium group of kukoamine B with the phenolic hydroxyl group of mulberroside A or liquiritin, respectively. The established UPLC-MS/MS method was accurate and reliable and met the quantitative requirements. The pharmacokinetic behaviors of the N-XBSD and decoction were similar in rats. Most notably, compared to that of free drugs, the Cmax, AUC0-∞, AUC0-t, T1/2 and MRT0-∞ values of index compounds were the higher in N-XBSD, with a slower plasma clearance rate in rats. Conclusion: The major active compounds of XBSD were mainly distributed in N-XBSD, and N-XBSD was formed through self-assembly among active compounds. N-XBSD could obviously promote the bioavailability of active compounds, indicating natural nanoparticles of decoctions play an important role in therapeutic effects.


Subject(s)
Caffeic Acids , Disaccharides , Nanoparticles , Spermine/analogs & derivatives , Stilbenes , Tandem Mass Spectrometry , Animals , Rats , Biological Availability , Chromatography, Liquid , Spectroscopy, Fourier Transform Infrared
11.
Proc Natl Acad Sci U S A ; 121(13): e2319429121, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38513095

ABSTRACT

Polyamines are a class of small polycationic alkylamines that play essential roles in both normal and cancer cell growth. Polyamine metabolism is frequently dysregulated and considered a therapeutic target in cancer. However, targeting polyamine metabolism as monotherapy often exhibits limited efficacy, and the underlying mechanisms are incompletely understood. Here we report that activation of polyamine catabolism promotes glutamine metabolism, leading to a targetable vulnerability in lung cancer. Genetic and pharmacological activation of spermidine/spermine N1-acetyltransferase 1 (SAT1), the rate-limiting enzyme of polyamine catabolism, enhances the conversion of glutamine to glutamate and subsequent glutathione (GSH) synthesis. This metabolic rewiring ameliorates oxidative stress to support lung cancer cell proliferation and survival. Simultaneous glutamine limitation and SAT1 activation result in ROS accumulation, growth inhibition, and cell death. Importantly, pharmacological inhibition of either one of glutamine transport, glutaminase, or GSH biosynthesis in combination with activation of polyamine catabolism synergistically suppresses lung cancer cell growth and xenograft tumor formation. Together, this study unveils a previously unappreciated functional interconnection between polyamine catabolism and glutamine metabolism and establishes cotargeting strategies as potential therapeutics in lung cancer.


Subject(s)
Lung Neoplasms , Humans , Glutamine , Polyamines/metabolism , Lung/metabolism , Cell Death , Acetyltransferases/genetics , Acetyltransferases/metabolism , Spermine/metabolism
12.
J Chromatogr A ; 1720: 464820, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38507872

ABSTRACT

Highly polar low molecular weight organic molecules are still very challenging to analyze by liquid chromatography. Yet, with the steadily increasing application of metabolomics and similar approaches in chemical analysis, separating polar compounds might be even more important. However, almost all established liquid chromatography techniques (i.e., normal and reversed phase, hydrophilic interaction liquid chromatography (HILIC), ion chromatography) struggle with either carry-over, low sensitivity, or a lack of retention. For improving these shortcomings, electrostatic repulsion hydrophilic interaction chromatography (ERLIC) might be an alternative. By combining a HILIC mobile phase, that is highly organic with a low water content, and an ion exchange column, a distinct layer system develops. When the analyte's charge is of the same direction as the stationary phase, retention and elution are determined by two antagonistic forces: electrostatic repulsion and hydrophilicity. One prominent group of challenging polar analytes are the polyamines cadaverine, putrescine, spermidine, and spermine. Carrying charges from +2 to +4 at physiological pH, these compounds are essential cell constituents and found in all living organisms. However, they are still notoriously challenging to analyze via the established liquid chromatography methods. In the present work, an ERLIC tandem mass spectrometry method has been exemplarily developed, optimized, and validated for the quantitative determination of cadaverine, putrescine, spermidine, and spermine. This method enables symmetrical peak shapes and good separation of analytes with different charges while simultaneously selectively detecting the co-eluting diamines by MS/MS. Furthermore, high linearity (R > 0.998) and sensitivity (LODs ≤ 2 ng/mL) have been proven. Thus, ERLIC may be interesting for both targeted and untargeted analysis approaches of highly charged low molecular weight organic molecules.


Subject(s)
Polyamines , Tandem Mass Spectrometry , Tandem Mass Spectrometry/methods , Static Electricity , Putrescine , Spermidine , Spermine , Cadaverine , Gas Chromatography-Mass Spectrometry , Chromatography, Liquid/methods , Hydrophobic and Hydrophilic Interactions
13.
Zool Res ; 45(2): 367-380, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38485506

ABSTRACT

Osteoporosis is a prevalent metabolic bone disease. While drug therapy is essential to prevent bone loss in osteoporotic patients, current treatments are limited by side effects and high costs, necessitating the development of more effective and safer targeted therapies. Utilizing a zebrafish ( Danio rerio) larval model of osteoporosis, we explored the influence of the metabolite spermine on bone homeostasis. Results showed that spermine exhibited dual activity in osteoporotic zebrafish larvae by increasing bone formation and decreasing bone resorption. Spermine not only demonstrated excellent biosafety but also mitigated prednisolone-induced embryonic neurotoxicity and cardiotoxicity. Notably, spermine showcased protective attributes in the nervous systems of both zebrafish embryos and larvae. At the molecular level, Rac1 was identified as playing a pivotal role in mediating the anti-osteoporotic effects of spermine, with P53 potentially acting downstream of Rac1. These findings were confirmed using mouse ( Mus musculus) models, in which spermine not only ameliorated osteoporosis but also promoted bone formation and mineralization under healthy conditions, suggesting strong potential as a bone-strengthening agent. This study underscores the beneficial role of spermine in osteoporotic bone homeostasis and skeletal system development, highlighting pivotal molecular mediators. Given their efficacy and safety, human endogenous metabolites like spermine are promising candidates for new anti-osteoporotic drug development and daily bone-fortifying agents.


Subject(s)
Osteoporosis , Rodent Diseases , Humans , Mice , Animals , Zebrafish , Spermine/therapeutic use , Osteoporosis/drug therapy , Osteoporosis/metabolism , Osteoporosis/prevention & control , Osteoporosis/veterinary , Prednisolone/adverse effects , Glucocorticoids , Rodent Diseases/chemically induced , Rodent Diseases/drug therapy
14.
Int J Mol Sci ; 25(5)2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38473823

ABSTRACT

The work presents the synthesis of a series of linear polyamidoamines by polycondensation of sebacoyl dichloride with endogenous polyamines: putrescine, spermidine, spermine, and norspermidine-a biogenic polyamine not found in the human body. During the synthesis carried out via interfacial reaction, hydrophilic, semi-crystalline polymers with an average viscosity molecular weight of approximately 20,000 g/mol and a melting point of approx. 130 °C were obtained. The structure and composition of the synthesized polymers were confirmed based on NMR and FTIR studies. The cytotoxicity tests performed on human fibroblasts and keratinocytes showed that the polymers obtained with spermine and norspermidine were strongly cytotoxic, but only in high concentrations. All the other examined polymers did not show cytotoxicity even at concentrations of 2000 µg/mL. Simultaneously, the antibacterial activity of the obtained polyamides was confirmed. These polymers are particularly active against E. Coli, and virtually all the polymers obtained demonstrated a strong inhibitory effect on the growth of cells of this strain. Antimicrobial activity of the tested polymer was found against strains like Staphylococcus aureus, Staphylococcus epidermidis, and Pseudomonas aeruginosa. The broadest spectrum of bactericidal action was demonstrated by polyamidoamines obtained from spermine, which contains two amino groups in the repeating unit of the chain. The obtained polymers can be used as a material for forming drug carriers and other biologically active compounds in the form of micro- and nanoparticles, especially as a component of bactericidal creams and ointments used in dermatology or cosmetology.


Subject(s)
Escherichia coli , Spermidine/analogs & derivatives , Spermine , Humans , Spermine/pharmacology , Polyamines/pharmacology , Anti-Bacterial Agents/pharmacology , Polymers/pharmacology
15.
Neurobiol Dis ; 194: 106471, 2024 May.
Article in English | MEDLINE | ID: mdl-38461868

ABSTRACT

Emerging evidence has implicated an important role of synapse-associated protein-97 (SAP97)-regulated GluA1-containing AMPARs membrane trafficking in cocaine restate and in contextual episodic memory of schizophrenia. Herein, we investigated the role of SAP97 in neuropathic pain following lumbar 5 spinal nerve transection (SNT) in rats. Our results showed that SNT led to upregulation of SAP97, enhanced the interaction between SAP97 and GluA1, and increased GluA1-containing AMPARs membrane trafficking in the dorsal horn. Microinjection of AAV-EGFP-SAP97 shRNA in lumbar 5 spinal dorsal horn inhibited SAP97 production, decreased SAP97-GluA1 interaction, reduced the membrane trafficking of GluA1-containing AMPARs, and partially attenuated neuropathic pain following SNT. Intrathecal injections of SAP97 siRNA or NASPM, an antagonist of GluA1-containing AMPARs, also partially reversed neuropathic pain on day 7, but not on day 14, after SNT. Spinal overexpression of SAP97 by AAV-EGFP-SAP97 enhanced SAP97-GluA1 interaction, increased the membrane insertion of GluA1-containing AMPARs, and induced abnormal pain in naïve rats. In addition, treatment with SAP97 siRNA or NASPM i.t. injection alleviated SNT-induced allodynia and hyperalgesia and exhibited a longer effect in female rats. Together, our results indicate that the SNT-induced upregulation of SAP97 via promoting GluA1-containing AMPARs membrane trafficking in the dorsal horn contributes to the pathogenesis of neuropathic pain. Targeting spinal SAP97 might be a promising therapeutic strategy to treatment of chronic pain.


Subject(s)
Neuralgia , Receptors, AMPA , Spermine , Animals , Female , Rats , Hyperalgesia , Rats, Sprague-Dawley , Receptors, AMPA/metabolism , RNA, Small Interfering , Spermine/analogs & derivatives , Spinal Cord Dorsal Horn/metabolism , Spinal Nerves , Up-Regulation
16.
Braz J Biol ; 84: e273999, 2024.
Article in English | MEDLINE | ID: mdl-38451628

ABSTRACT

The production of seedlings of the passion fruit tree, usually, is sexual, and the seeds are not uniform in the seedling emergence, and soaking treatments of seeds can provide faster and more uniform germination. It was aimed to study the action of plant growth regulators and the mobilization of reserves in the stages of soaking of yellow passion fruit seeds. The seeds were soaked for five hours in solutions containing plant growth regulators, in a completely randomized design, in a factorial 8 x 4, with four replications. The first factor corresponds to eight plant growth regulators: T1 - distilled water (control); T2 - 6-benzylaminepurine ​​500 mg L-1; T3 - 4-(3-indolyl) butyric acid 500 mg L-1; T4 - gibberellic acid 500 mg L-1; T5 - spermine 250 mg L-1; T6 - spermine 750 mg L-1; T7 - spermidine 750 mg L-1; T8 - spermidine 1250 mg L-1; and the second factor, to the four soaking times: zero, four, 72 and 120 hours, corresponding, respectively, to the dry seed, and to phases I, II, and III of the imbibition curve. It was evaluated the biochemical composition of seeds (lipids, soluble sugars and starch). The seeds showed accumulation of lipids in phase III; the content of soluble sugars increased in phase I and decreased in phase II. The starch content increased until the phase II and decreased in phase III. Starch is the main reserve in the seeds and the main source of energy used in phase III; soaking the seeds in polyamines generates an accumulation of lipids in the seeds and soaking in plant growth regulators increases the burning of starch.


Subject(s)
Passiflora , Plant Growth Regulators , Plant Growth Regulators/pharmacology , Fruit , Spermidine , Spermine , Butyric Acid , Seedlings , Starch , Sugars
17.
Int J Mol Sci ; 25(5)2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38473716

ABSTRACT

Despite the well-known relevance of polyamines to many forms of life, little is known about how polyamines regulate osteogenesis and skeletal homeostasis. Here, we report a series of in vitro studies conducted with human-bone-marrow-derived pluripotent stromal cells (MSCs). First, we show that during osteogenic differentiation, mRNA levels of most polyamine-associated enzymes are relatively constant, except for the catabolic enzyme spermidine/spermine N1-acetyltransferase 1 (SAT1), which is strongly increased at both mRNA and protein levels. As a result, the intracellular spermidine to spermine ratio is significantly reduced during the early stages of osteoblastogenesis. Supplementation of cells with exogenous spermidine or spermine decreases matrix mineralization in a dose-dependent manner. Employing N-cyclohexyl-1,3-propanediamine (CDAP) to chemically inhibit spermine synthase (SMS), the enzyme catalyzing conversion of spermidine into spermine, also suppresses mineralization. Intriguingly, this reduced mineralization is rescued with DFMO, an inhibitor of the upstream polyamine enzyme ornithine decarboxylase (ODC1). Similarly, high concentrations of CDAP cause cytoplasmic vacuolization and alter mitochondrial function, which are also reversible with the addition of DFMO. Altogether, these studies suggest that excess polyamines, especially spermidine, negatively affect hydroxyapatite synthesis of primary MSCs, whereas inhibition of polyamine synthesis with DFMO rescues most, but not all of these defects. These findings are relevant for patients with Snyder-Robinson syndrome (SRS), as the presenting skeletal defects-associated with SMS deficiency-could potentially be ameliorated by treatment with DFMO.


Subject(s)
Mesenchymal Stem Cells , Spermidine , Humans , Spermidine/metabolism , Spermine/metabolism , Spermine Synthase/genetics , Ornithine Decarboxylase/metabolism , Osteogenesis , Polyamines/metabolism , Mesenchymal Stem Cells/metabolism , RNA, Messenger
18.
Sci Rep ; 14(1): 5765, 2024 03 08.
Article in English | MEDLINE | ID: mdl-38459140

ABSTRACT

Autism spectrum disorder (ASD) is a complicated, lifelong neurodevelopmental disorder affecting verbal and non-verbal communication and social interactions. ASD signs and symptoms appear early in development before the age of 3 years. It is unlikely for a person to acquire autism after a period of normal development. However, we encountered an 8-year-old child who developed ASD later in life although his developmental milestones were normal at the beginning of life. Sequencing the complete coding part of the genome identified a hemizygous nonsense mutation (NM_001367857.2):c.1803C>G; (p.Tyr601Ter) in the gene (SATL1) encoding spermidine/spermine N1-acetyl transferase like 1. Screening an ASD cohort of 28 isolated patients for the SATL1 gene identified another patient with the same variant. Although SATL1 mutations have not been associated with any human diseases, our data suggests that a mutation in SATL1 is the underlying cause of ASD in our cases. In mammals, mutations in spermine synthase (SMS), an enzyme needed for the synthesis of spermidine polyamine, have been reported in a syndromic form of the X-linked mental retardation. Moreover, SATL1 gene expression studies showed a relatively higher expression of SATL1 transcripts in ASD related parts of the brain including the cerebellum, amygdala and frontal cortex. Additionally, spermidine has been characterized in the context of learning and memory and supplementations with spermidine increase neuroprotective effects and decrease age-induced memory impairment. Furthermore, spermidine biosynthesis is required for spontaneous axonal regeneration and prevents α-synuclein neurotoxicity in invertebrate models. Thus, we report, for the first time, that a mutation in the SATL1 gene could be a contributing factor in the development of autistic symptoms in our patients.


Subject(s)
Autism Spectrum Disorder , Spermidine , Animals , Child , Humans , Autism Spectrum Disorder/genetics , Polyamines/metabolism , Spermidine/metabolism , Spermine/metabolism , Transferases
19.
J Agric Food Chem ; 72(10): 5089-5106, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38416110

ABSTRACT

Polyamines and their derivatives are ubiquitously present in free or conjugated forms in various foods from animal, plant, and microbial origins. The current knowledge of free polyamines in foods and their contents is readily available; furthermore, conjugated polyamines generate considerable recent research interest due to their potential health benefits. The structural diversity of conjugated polyamines results in challenging their qualitative and quantitative analysis in food. Herein, we review and summarize the knowledge published on polyamines and their derivatives in foods, including their identification, sources, quantities, and health benefits. Particularly, facing the inherent challenges of isomer identification in conjugated polyamines, this paper provides a comprehensive overview of conjugated polyamines' structural characteristics, including the cleavage patterns and characteristic ion fragments of MS/MS for isomer identification. Free polyamines are present in all types of food, while conjugated polyamines are limited to plant-derived foods. Spermidine is renowned for antiaging properties, acclaimed as antiaging vitamins. Conjugated polyamines highlight their anti-inflammatory properties and have emerged as the mainstream drugs for antiprostatitis. This paper will likely help us gain better insight into polyamines and their derivatives to further develop functional foods and personalized nutraceuticals.


Subject(s)
Polyamines , Tandem Mass Spectrometry , Animals , Spermidine , Plants , Spermine
20.
Plant Cell Physiol ; 65(3): 460-471, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38179828

ABSTRACT

Thermospermine suppresses auxin-inducible xylem differentiation, whereas its structural isomer, spermine, is involved in stress responses in angiosperms. The thermospermine synthase, ACAULIS5 (ACL5), is conserved from algae to land plants, but its physiological functions remain elusive in non-vascular plants. Here, we focused on MpACL5, a gene in the liverwort Marchantia polymorpha, that rescued the dwarf phenotype of the acl5 mutant in Arabidopsis. In the Mpacl5 mutants generated by genome editing, severe growth retardation was observed in the vegetative organ, thallus, and the sexual reproductive organ, gametangiophore. The mutant gametangiophores exhibited remarkable morphological defects such as short stalks, fasciation and indeterminate growth. Two gametangiophores fused together, and new gametangiophores were often initiated from the old ones. Furthermore, Mpacl5 showed altered responses to heat and salt stresses. Given the absence of spermine in bryophytes, these results suggest that thermospermine has a dual primordial function in organ development and stress responses in M. polymorpha. The stress response function may have eventually been assigned to spermine during land plant evolution.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Marchantia , Spermine/analogs & derivatives , Plant Growth Regulators , Arabidopsis Proteins/genetics , Marchantia/genetics , Arabidopsis/genetics , Plants
SELECTION OF CITATIONS
SEARCH DETAIL
...