Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.451
Filter
1.
PLoS One ; 19(5): e0302028, 2024.
Article in English | MEDLINE | ID: mdl-38718094

ABSTRACT

Determining the dietary spectrum of European insectivorous bats over time is the cornerstone of their conservation, as it will aid our understanding of foraging behavior plasticity in response to plummeting insect populations. Despite the global decline in insects, a restricted number of arthropod pest species thrive. Yet past research has overlooked the potential of European bats to suppress pests harmful to woodlands or livestock, in spite of their economic relevance. Here we investigated the diet composition, its breeding season variations and pest consumption of an insectivorous bat species (Myotis emarginatus), at the northern edge of its range (Wallonia, Belgium). We also explored the prey ecology to gain insight into the hunting strategies and foraging habitats of this bat species. We used DNA metabarcoding to amplify two COI markers within 195 bat droppings collected in June, July and August, thereby identifying 512 prey taxa predominated by Diptera, Araneae and Lepidoptera. Overall, in 97% of the samples we detected at least one of the 58 potential pest taxa, 41 of which targeting trees. The June samples were marked by a diet rich in orb-weaver spiders, in accordance with the archetypal diet of M. emarginatus bats. However, during the highly energy demanding July-August parturition and lactation period, roughly 55% of the dropping samples contained two cattle fly pests (Stomoxys calcitrans and Musca domestica). Moreover, among the 88 Diptera species preyed upon by M. emarginatus in July and August, these flies accounted for around 50% of the taxa occurrences. This plasticity-the switch from a spider-rich to a fly-rich diet-seems providential considering the dramatic ongoing drop in insect populations but this involves ensuring bat-friendly cattle farming. Our results revealed that bats widely consume pest entomofauna, thereby highlighting their potential role as allies of forest managers and farmers.


Subject(s)
Chiroptera , Predatory Behavior , Spiders , Animals , Chiroptera/parasitology , Chiroptera/physiology , Cattle , Spiders/physiology , Feeding Behavior , Seasons , Diet , Diptera/physiology , Belgium , Ecosystem
2.
Biol Lett ; 20(5): 20230505, 2024 May.
Article in English | MEDLINE | ID: mdl-38746981

ABSTRACT

Factors that increase reproductive variance among individuals act to reduce effective population size (Ne), which accelerates the loss of genetic diversity and decreases the efficacy of purifying selection. These factors include sexual cannibalism, offspring investment and mating system. Pre-copulatory sexual cannibalism, where the female consumes the male prior to mating, exacerbates this effect. We performed comparative transcriptomics in two spider species, the cannibalistic Trechaleoides biocellata and the non-cannibalistic T. keyserlingi, to generate genomic evidence to support these predictions. First, we estimated heterozygosity and found that genetic diversity is relatively lower in the cannibalistic species. Second, we calculated dN/dS ratios as a measure of purifying selection; a higher dN/dS ratio indicated relaxed purifying selection in the cannibalistic species. These results are consistent with the hypothesis that sexual cannibalism impacts operational sex ratio and demographic processes, which interact with evolutionary forces to shape the genetic structure of populations. However, other factors such as the mating system and life-history traits contribute to shaping Ne. Comparative analyses across multiple contrasting species pairs would be required to disentangle these effects. Our study highlights that extreme behaviours such as pre-copulatory cannibalism may have profound eco-evolutionary effects.


Subject(s)
Cannibalism , Genetic Variation , Selection, Genetic , Sexual Behavior, Animal , Spiders , Animals , Spiders/genetics , Spiders/physiology , Male , Female , Biological Evolution
3.
Sci Rep ; 14(1): 11736, 2024 05 22.
Article in English | MEDLINE | ID: mdl-38778018

ABSTRACT

Behaviors can vary throughout an animal's life and this variation can often be explained by changes associated with learning and/or maturing. Currently, there is little consensus regarding how these processes interact to affect behaviors. Here we proposed a heuristic approach to disentangle the effects of learning and maturation on behavior and applied it to the predatory behaviors of Physocyclus globosus spiderlings. We varied the degree of prey difficulty and familiarity spiderlings received along the first instar and across the molt to the second instar and quantified the time spiderlings spent wrapping prey, as a proxy for prey capture efficiency. We found no overall evidence for learning or maturation. Changes in efficiency were mainly due to the switch from difficult to easy prey, or vice versa. However, there was one treatment where spiderlings improved in efficiency before and after the molt, without a switch in prey type. This provides some indication that difficult prey may offer more opportunity for learning or maturation to impact behavior. Although we found little effect of learning or maturation on prey capture efficiency, we suggest that our heuristic approach is effective and could be useful in investigating these processes in other behaviors and other animals.


Subject(s)
Learning , Predatory Behavior , Spiders , Animals , Spiders/physiology , Predatory Behavior/physiology , Learning/physiology , Heuristics
4.
Biol Lett ; 20(4): 20240009, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38653332

ABSTRACT

Heatwaves are increasingly prevalent and can constrain investment into important life-history traits. In addition to heatwaves, animals regularly encounter threats from other organisms in their environments, such as predators. The combination of these two environmental factors introduces a decision-making conflict-heat exposure requires more food intake to fuel investment into fitness-related traits, but foraging in the presence of predators increases the threat of mortality. Thus, we used female variable field crickets (Gryllus lineaticeps) to investigate the effects of heatwaves in conjunction with predation risk (exposed food and water sources, and exposure to scent from black widow spiders, Latrodectus hesperus) on resource acquisition (food intake) and allocation (investment into ovarian and somatic tissues). A simulated heatwave increased food intake and the allocation of resources to reproductive investment. Crickets exposed to high predation risk reduced food intake, but they were able to maintain reproductive investment at an expense to investment into somatic tissue. Thus, heatwaves and predation risk deprioritized investment into self-maintenance, which may impair key physiological processes. This study is an important step towards understanding the ecology of fear in a warming world.


Subject(s)
Gryllidae , Predatory Behavior , Spiders , Animals , Gryllidae/physiology , Female , Spiders/physiology , Hot Temperature/adverse effects , Reproduction/physiology , Eating
5.
Oecologia ; 204(4): 789-804, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38561554

ABSTRACT

Worldwide, with the decline of natural habitats, species with reduced niche breadth (specialists) are at greater risk of extinction as they cannot colonise or persist in disturbed habitat types. However, the role of thermal tolerance as a critical trait in understanding changes in species diversity in disturbed habitats, e.g., due to forest replacement by tree plantations, is still understudied. To examine the role of thermal tolerance on the responses of specialist and generalist species to habitat disturbances, we measured and compared local temperature throughout the year and thermotolerance traits [upper (CTmax) and lower (CTmin) thermal limits] of the most abundant species of spiders from different guilds inhabiting pine tree plantations and native Atlantic Forests in South America. Following the thermal adaptation hypothesis, we predicted that generalist species would show a wider thermal tolerance range (i.e., lower CTmin and higher CTmax) than forest specialist species. As expected, generalist species showed significantly higher CTmax and lower CTmin values than specialist species with wider thermal tolerance ranges than forest specialist species. These differences are more marked in orb weavers than in aerial hunter spiders. Our study supports the specialisation disturbance and thermal hypotheses. It highlights that habitat-specialist species are more vulnerable to environmental changes associated with vegetation structure and microclimatic conditions. Moreover, thermal tolerance is a key response trait to explain the Atlantic Forest spider's ability (or inability) to colonise and persist in human-productive land uses.


Subject(s)
Ecosystem , Forests , Spiders , Thermotolerance , Trees , Animals , Spiders/physiology
6.
Ecol Lett ; 27(3): e14394, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38511320

ABSTRACT

Functional responses describe foraging rates across prey densities and underlie many fundamental ecological processes. Most functional response knowledge comes from simplified lab experiments, but we do not know whether these experiments accurately represent foraging in nature. In addition, the difficulty of conducting multispecies functional response experiments means that it is unclear whether interaction strengths are weakened in the presence of multiple prey types. We developed a novel method to estimate wild predators' foraging rates from metabarcoding data and use this method to present functional responses for wild wolf spiders foraging on 27 prey families. These field functional responses were considerably reduced compared to lab functional responses. We further find that foraging is sometimes increased in the presence of other prey types, contrary to expectations. Our novel method for estimating field foraging rates will allow researchers to determine functional responses for wild predators and address long-standing questions about foraging in nature.


Subject(s)
Animals, Poisonous , Predatory Behavior , Spiders , Animals , Humans , Predatory Behavior/physiology , Spiders/physiology
7.
J Anim Ecol ; 93(5): 540-553, 2024 May.
Article in English | MEDLINE | ID: mdl-38509643

ABSTRACT

Understanding how anthropogenic activities induce changes in the functional traits of arthropod communities is critical to assessing their ecological consequences. However, we largely lack comprehensive assessments of the long-term impact of global-change drivers on the trait composition of arthropod communities across a large number of species and sites. This knowledge gap critically hampers our ability to predict human-driven impacts on communities and ecosystems. Here, we use a dataset of 1.73 million individuals from 877 species to study how four functionally important traits of carabid beetles and spiders (i.e. body size, duration of activity period, tolerance to drought, and dispersal capacity) have changed at the community level across ~40 years in different types of land use and as a consequence of land use changes (that is, urbanisation and loss of woody vegetation) at the landscape scale in Switzerland. The results show that the mean body size in carabid communities declined in all types of land use, with particularly stronger declines in croplands compared to forests. Furthermore, the length of the activity period and the tolerance to drought of spider communities decreased in most land use types. The average body size of carabid communities in landscapes with increased urbanisation in the last ~40 years tended to decrease. However, the length of the activity period, the tolerance to drought, and the dispersal capacity did not change significantly. Furthermore, urbanisation promoted increases in the average dispersal capacities of spider communities. Additionally, urbanisation favoured spider communities with larger body sizes and longer activity periods. The loss of woody areas at the landscape level was associated with trait shifts to carabid communities with larger body sizes, shorter activity periods, higher drought tolerances and strongly decreased dispersal capacities. Decreases in activity periods and dispersal capacities were also found in spider communities. Our study demonstrates that human-induced changes in land use alter key functional traits of carabid and spider communities in the long term. The detected trait shifts in arthropod communities likely have important consequences for their functional roles in ecosystems.


Subject(s)
Spiders , Animals , Spiders/physiology , Switzerland , Coleoptera/physiology , Body Size , Urbanization , Ecosystem , Droughts , Arthropods/physiology , Forests
8.
Psychophysiology ; 61(6): e14546, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38406863

ABSTRACT

The current registered report focused on the temporal dynamics of the relationship between expectancy and attention toward threat, to better understand the mechanisms underlying the prioritization of threat detection over expectancy. In the current event-related potentials experiment, a-priori expectancy was manipulated, and attention bias was measured, using a well-validated paradigm. A visual search array was presented, with one of two targets: spiders (threatening) or birds (neutral). A verbal cue stating the likelihood of encountering a target preceded the array, creating congruent and incongruent trials. Following cue presentation, preparatory processes were examined using the contingent negative variation (CNV) component. Following target presentation, two components were measured: early posterior negativity (EPN) and late positive potential (LPP), reflecting early and late stages of natural selective attention toward emotional stimuli, respectively. Behaviorally, spiders were found faster than birds, and congruency effects emerged for both targets. For the CNV, a non-significant trend of more negative amplitudes following spider cues emerged. As expected, EPN and LPP amplitudes were larger for spider targets compared to bird targets. Data-driven, exploratory, topographical analyses revealed different patterns of activation for bird cues compared to spider cues. Furthermore, 400-500 ms post-target, a congruency effect was revealed only for bird targets. Together, these results demonstrate that while expectancy for spider appearance is evident in differential neural preparation, the actual appearance of spider target overrides this expectancy effect and only in later stages of processing does the cueing effect come again into play.


Subject(s)
Anticipation, Psychological , Attentional Bias , Electroencephalography , Evoked Potentials , Spiders , Humans , Female , Animals , Spiders/physiology , Evoked Potentials/physiology , Male , Young Adult , Adult , Attentional Bias/physiology , Anticipation, Psychological/physiology , Cues , Attention/physiology , Birds/physiology , Fear/physiology
9.
J Anim Ecol ; 93(6): 755-768, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38404168

ABSTRACT

Species in one ecosystem can indirectly affect multiple biodiversity components and ecosystem functions of adjacent ecosystems. The magnitude of these cross-ecosystem effects depends on the attributes of the organisms involved in the interactions, including traits of the predator, prey and basal resource. However, it is unclear how predators with cross-ecosystem habitat interact with predators with single-ecosystem habitat to affect their shared ecosystem. Also, unknown is how such complex top-down effects may be mediated by the anti-predatory traits of prey and quality of the basal resource. We used the aquatic invertebrate food webs in tank bromeliads as a model system to investigate these questions. We manipulated the presence of a strictly aquatic predator (damselfly larvae) and a predator with both terrestrial and aquatic habitats (spider), and examined effects on survival of prey (detritivores grouped by anti-predator defence), detrital decomposition (of two plant species differing in litter quality), nitrogen flux and host plant growth. To evaluate the direct and indirect effects each predator type on multiple detritivore groups and ultimately on multiple ecosystem processes, we used piecewise structural equation models. For each response variable, we isolated the contribution of different detritivore groups to overall effects by comparing alternate model formulations. Alone, damselfly larvae and spiders each directly decreased survival of detritivores and caused multiple indirect negative effects on detritus decomposition, nutrient cycling and host plant growth. However, when predators co-occurred, the spider caused a negative non-consumptive effect on the damselfly larva, diminishing the net direct and indirect top-down effects on the aquatic detritivore community and ecosystem functioning. Both detritivore traits and detritus quality modulated the strength and mechanism of these trophic cascades. Predator interference was mediated by undefended or partially defended detritivores as detritivores with anti-predatory defences evaded consumption by damselfly larvae but not spiders. Predators and detritivores affected ecosystem decomposition and nutrient cycling only in the presence of high-quality detritus, as the low-quality detritus was consumed more by microbes than invertebrates. The complex responses of this system to predators from both recipient and adjacent ecosystems highlight the critical role of maintaining biodiversity components across multiple ecosystems.


As espécies em um ecossistema podem afetar indiretamente múltiplos componentes da biodiversidade e funções ecossistêmicas em ecossistemas adjacentes. A magnitude destes efeitos entre ecossistemas depende dos atributos dos organismos envolvidos nas interações, incluindo características do predador, da presa e do recurso basal. No entanto, não está claro como os predadores com habitat em múltiplos ecossistemas interagem com predadores de um ecossistema único, e como isso afeta o ecossistema partilhado entre eles. Além disso, não se sabe como esses efeitos complexos do tipo top­down podem ser mediados pelas características antipredatórias da presa e pela qualidade do recurso basal. Usamos as teias alimentares de invertebrados aquáticos de bromélias­tanque como um sistema modelo para investigar essas questões. Nós manipulamos a presença de um predador estritamente aquático (larvas de zigópteros) e um predador com habitats terrestre e aquático (aranha), e examinamos os efeitos na sobrevivência de presas (grupos de detritívoros com diferentes estratégias de defesa antipredatória), decomposição de detritos foliares (de duas espécies de plantas diferindo na qualidade foliar), fluxo de nitrogênio e crescimento da planta hospedeira. Para avaliar os efeitos diretos e indiretos de cada tipo de predador em múltiplos grupos de detritívoros e, finalmente, em múltiplos processos ecossistêmicos, utilizamos modelos de equações estruturais por partes (piecewiseSEM). Para cada variável resposta, isolamos a contribuição de diferentes grupos de detritívoros bem como seus efeitos globais, comparando modelos alternativos. Larvas de zigópteros e aranhas diminuíram diretamente a sobrevivência dos detritívoros e causaram múltiplos efeitos negativos indiretos na decomposição de detritos, na ciclagem de nutrientes e no crescimento da planta hospedeira. No entanto, quando os predadores coocorreram, a aranha causou um efeito negativo não consumível na larva de zigóptero, diminuindo os efeitos líquidos, diretos e indiretos, do tipo top­down na comunidade de detritívoros aquáticos e no funcionamento do ecossistema. Tanto os atributos antipredatórios dos detritívoros quanto a qualidade dos detritos modularam a força e o mecanismo dessas cascatas tróficas. A interferência do predador foi mediada por detritívoros indefesos ou com defesa parcial. Entretanto, os detritívoros com defesas antipredatórias escaparam do consumo por larvas de zigópteros, mas não por aranhas. Predadores e detritívoros afetaram a decomposição do ecossistema e a ciclagem de nutrientes apenas na presença de detritos de alta qualidade, uma vez que os detritos de baixa qualidade foram consumidos mais por micróbios do que por invertebrados. As respostas complexas deste sistema aos predadores tanto de ecossistemas receptores quanto adjacentes destacam o papel crítico da manutenção dos componentes da biodiversidade em múltiplos ecossistemas.


Subject(s)
Food Chain , Larva , Predatory Behavior , Spiders , Animals , Larva/physiology , Larva/growth & development , Spiders/physiology , Bromeliaceae/physiology , Ecosystem , Invertebrates/physiology
10.
Biol Lett ; 20(2): 20230330, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38351747

ABSTRACT

Adaptive evolution relies on both heritable variation and selection. Variation is the raw material upon which selection acts, so any mechanism that limits or prevents the generation of heritable variation reduces the power of selection to lead to adaptation. Such limitations are termed evolutionary constraints. While it is widely accepted that constraints play an important role in shaping evolutionary outcomes, their relative importance, as opposed to adaptation, in determining evolutionary outcomes remains a subject of debate. Evolutionary constraints are often evoked as the reason behind the persistence of inaccurate mimicry. Here, we compared the variation and accuracy of body-shape mimicry in ant-mimicking spiders with that of ant-mimicking insects, predicting greater constraints, and hence inaccuracy, in spiders mimicking ants, due to their evolutionary distance from the ant model. We found high inter-species variation in mimetic accuracy, but dorsally, no overall difference in mimetic accuracy between spider and insect mimics, which is inconsistent with a constraint causing inaccurate mimicry. Our study provides empirical evidence suggesting that imperfect mimicry in spiders and insects is predominantly shaped by adaptive processes rather than constraints or chance. Our findings contribute to our understanding of the mechanisms underlying evolutionary diversity and the processes that shape phenotypic outcomes.


Subject(s)
Predatory Behavior , Spiders , Animals , Predatory Behavior/physiology , Spiders/physiology
11.
Evolution ; 78(4): 612-623, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38280203

ABSTRACT

Female spiders and praying mantises are renowned for their cannibalism of male partners before, during, or after mating. While several hypotheses have been proposed to explain species-specific examples of sexual cannibalism, much variation remains unexplained, including why the timing of cannibalism varies across taxa. Here, I outline how sexually cannibalistic behavior could evolve via sexually antagonistic selection as a type of behavioral resistance to male-imposed mating costs, and how such a generalizable interpretation provides a framework for understanding the evolution of both sexual cannibalism in females and anti-cannibalistic traits in males. I discuss how differences between mating systems that physiologically constrain males to mate only once (monogyny) or twice (bigyny) and systems where the sexes can potentially mate multiply (polygyny and polyandry) are likely to influence how sexual conflict shapes cannibalistic behavior. I review key examples from the literature that suggest how sexually cannibalistic behavior might function as a female resistance trait and provide comprehensive predictions for testing this hypothesis empirically.


Subject(s)
Sexual Behavior, Animal , Spiders , Animals , Female , Male , Sexual Behavior, Animal/physiology , Cannibalism , Reproduction , Sex , Spiders/physiology
12.
J Exp Biol ; 227(1)2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38054359

ABSTRACT

Motion and camouflage were previously considered to be mutually exclusive, as sudden movements can be easily detected. Background matching, for instance, is a well-known, effective camouflage strategy where the colour and pattern of a stationary animal match its surrounding background. However, background matching may lose its efficacy when the animal moves, as the boundaries of the animal become more defined against its background. Recent evidence shows otherwise, as camouflaged objects can be less detectable than uncamouflaged objects even while in motion. Here, we explored whether the detectability of computer-generated stimuli varies with the speed of motion, background (matching and unmatching) and size of stimuli in six species of jumping spiders (Araneae: Salticidae). Our results showed that, in general, the responsiveness of all six salticid species tested decreased with increasing stimulus speed regardless of whether the stimuli were conspicuous or camouflaged. Importantly, salticid responses to camouflaged stimuli were significantly lower compared with those to conspicuous stimuli. There were significant differences in motion detectability across species when the stimuli were conspicuous, suggesting differences in visual acuity in closely related species of jumping spiders. Furthermore, small stimuli elicited significantly lower responses than large stimuli across species and speeds. Our results thus suggest that background matching is effective even when stimuli are in motion, reducing the detectability of moving stimuli.


Subject(s)
Motion Perception , Spiders , Animals , Motion Perception/physiology , Movement , Motion , Visual Acuity , Spiders/physiology
13.
Mater Horiz ; 11(3): 822-834, 2024 02 06.
Article in English | MEDLINE | ID: mdl-38018413

ABSTRACT

Recent advances in bioelectronics in mechanical and electrophysiological signal detection are remarkable, but there are still limitations because they are inevitably affected by environmental noise and motion artifacts. Thus, we develop a gel damper-integrated crack sensor inspired by the vibration response of the viscoelastic cuticular pad and slit organs in a spider. Benefitting from the specific crack structure design, the sensor possesses excellent sensing behaviors, including a low detection limit (0.05% strain), ultrafast response ability (3.4 ms) and superior durability (>300 000 cycles). Such typical low-amplitude fast response properties allow the ability to accurately perceive vibration frequency and waveform. In addition, the gel damper exhibits frequency-dependent dynamic mechanical behavior that results in improved stability and reliability of signal acquisition by providing shock resistance and isolating external factors. They effectively attenuate external motion artifacts and low-frequency mechanical noise, resulting in cleaner and more reliable signal acquisition. When the gel damper is combined with the crack-based vibration sensor, the integrated sensor exhibits superior anti-interference capability and frequency selectivity, demonstrating its effectiveness in extracting genuine vocal vibration signals from raw voice recordings. The integration of damping materials with sensors offers an efficient approach to improving signal acquisition and signal quality in various applications.


Subject(s)
Spiders , Vibration , Animals , Spiders/physiology , Reproducibility of Results , Motion
14.
Proc Biol Sci ; 290(2009): 20232035, 2023 10 25.
Article in English | MEDLINE | ID: mdl-37876190

ABSTRACT

Many animals use self-built structures (extended phenotypes) to enhance body functions, such as thermoregulation, prey capture or defence. Yet, it is unclear whether the evolution of animal constructions supplements or substitutes body functions-with disparate feedbacks on trait evolution. Here, using brown spiders (Araneae: marronoid clade), we explored if the evolutionary loss and gain of silken webs as extended prey capture devices correlates with alterations in traits known to play an important role in predatory strikes-locomotor performance (sprint speed) and leg spination (expression of capture spines on front legs). We found that in this group high locomotor performance, with running speeds of over 100 body lengths per second, evolved repeatedly-both in web-building and cursorial spiders. There was no correlation with running speed, and leg spination only poorly correlated, relative to the use of extended phenotypes, indicating that web use does not reduce selective pressures on body functions involved in prey capture and defence per se. Consequently, extended prey capture devices serve as supplements rather than substitutions to body traits and may only be beneficial in conjunction with certain life-history traits, possibly explaining the rare evolution and repeated loss of trapping strategies in predatory animals.


Subject(s)
Running , Spiders , Animals , Spiders/physiology , Predatory Behavior/physiology , Silk
15.
Sci Rep ; 13(1): 17219, 2023 10 11.
Article in English | MEDLINE | ID: mdl-37821480

ABSTRACT

Miniaturization is an evolutionary trend observed in many animals. Some arachnid groups, such as spiders and mites, demonstrate a strong tendency toward miniaturization. Some of the most miniaturized spiders belong to the family Anapidae. In this study, using light and confocal microscopy and 3D modelling, we provide the first detailed description of the anatomy of a spider of the genus Rayforstia, which is only 900 µm long. In comparison with larger spiders, Rayforstia has no branching of the midgut in the prosoma and an increased relative brain volume. In contrast to many miniature insects and mites, the spider shows no reduction of whole organ systems, no allometry of the digestive and reproductive systems, and also no reduction of the set of muscles. Thus, miniature spider shows a more conserved anatomy than insects of a similar size. These findings expand our knowledge of miniaturization in terrestrial arthropods.


Subject(s)
Arachnida , Spiders , Animals , Spiders/physiology , Biological Evolution , Insecta , Miniaturization
16.
Oecologia ; 202(4): 729-742, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37552361

ABSTRACT

Predators play a fundamental role in cycling nutrients through ecosystems, by altering the amount and compositions of waste products and uneaten prey parts available to decomposers. Different prey can vary in their elemental content and the deposition of elements in predator waste can vary depending on which elements are preferentially retained versus eliminated as waste products. We tested how feeding on different prey (caterpillars, cockroaches, crickets, and flies) affected the concentrations of 23 elements in excreta deposited by wolf spider across 2 seasons (spring versus fall). Spider excreta had lower concentrations of carbon and higher concentrations of many other elements (Al, B, Ba, K, Li, P, S, Si, and Sr) compared to prey remains and whole prey carcasses. In addition, elemental concentrations in unconsumed whole prey carcasses and prey remains varied between prey species, while spider excreta had the lowest variation among prey species. Finally, the concentrations of elements deposited differed between seasons, with wolf spiders excreting greater concentrations of Fe, Mg, Mn, Mo, S, and V in the fall. However, in the spring, spiders excreted higher concentrations of Al, B, Ba, Ca, Cd, Cu, K, P, Na, Si, Sr, and Zn. These results highlight that prey identity and environmental variation can determine the role that predators play in regulating the cycling of many elements. A better understanding of these convoluted nutritional interactions is critical to disentangle specific consumer-driven effects on ecosystem function.


Subject(s)
Ecosystem , Spiders , Animals , Predatory Behavior/physiology , Spiders/physiology , Nutrients , Seasons
17.
Oecologia ; 202(4): 669-684, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37540236

ABSTRACT

Lures and other adaptations for prey attraction are particularly interesting from an evolutionary viewpoint because they are characterized by correlational selection, involve multicomponent signals, and likely reflect a compromise between maximizing conspicuousness to prey while avoiding drawing attention of enemies and predators. Therefore, investigating the evolution of lure and prey-attraction adaptations can help us understand a larger set of traits governing interactions among organisms. We review the literature focusing on spiders (Araneae), which is the most diverse animal group using prey attraction and show that the evolution of prey-attraction strategies must be driven by a trade-off between foraging and predator avoidance. This is because increasing detectability by potential prey often also results in increased detectability by predators higher in the food chain. Thus increasing prey attraction must come at a cost of increased risk of predation. Given this trade-off, we should expect lures and other prey-attraction traits to remain suboptimal despite a potential to reach an optimal level of attractiveness. We argue that the presence of this trade-off and the multivariate nature of prey-attraction traits are two important mechanisms that might maintain the diversity of prey-attraction strategies within and between species. Overall, we aim to stimulate research on this topic and progress in our general understanding of the diversity of predator and prey interactions.


Subject(s)
Spiders , Animals , Spiders/anatomy & histology , Spiders/classification , Spiders/physiology , Predatory Behavior , Behavior, Animal , Adaptation, Physiological , Selection, Genetic
18.
Ecology ; 104(8): e4116, 2023 08.
Article in English | MEDLINE | ID: mdl-37263980

ABSTRACT

Human actions are decreasing the diversity and complexity of forests, and a mechanistic understanding of how these changes affect predators is needed to maintain ecosystem services, including pest regulation. Using a large-scale tree diversity experiment, we investigate how spiders respond to trees growing in plots of single or mixed species combinations (4 or 12) by repeatedly sampling 540 trees spanning 15 species. In 2019 (6 years post-establishment), spider responses to tree diversity varied by tree species. By 2021, diversity had a more consistently positive effect, with trees in 4- or 12-species plots supporting 23% or 50% more spiders, respectively, compared to conspecifics in monocultures. Spiders showed stronger tree species preferences in late summer, and the positive impact of plot diversity doubled. In early summer, the positive diversity effect was tied to higher canopy cover in diverse plots, leading to higher spider densities. This indirect path strengthened in late summer, with an additional direct effect of plot diversity on spiders. Prey availability was higher in diverse plots but was not tied to spider density. Overall, diverse plots supported more predators, partly by increasing available habitat. Adopting planting strategies focused on species mixtures may better maintain higher trophic levels and ecosystem functions.


Subject(s)
Spiders , Trees , Animals , Humans , Trees/physiology , Ecosystem , Biodiversity , Spiders/physiology , Forests
19.
Environ Sci Technol ; 57(21): 8085-8095, 2023 05 30.
Article in English | MEDLINE | ID: mdl-37200151

ABSTRACT

Freshwater ecosystems are exposed to engineered nanoparticles (NPs) through discharge from wastewater and agricultural runoff. We conducted a 9-month mesocosm experiment to examine the combined effects of chronic NP additions on insect emergence and insect-mediated contaminant flux to riparian spiders. Two NPs (copper, gold, plus controls) were crossed by two levels of nutrients in 18 outdoor mesocosms open to natural insect and spider colonization. We collected adult insects and two riparian spider genera, Tetragnatha and Dolomedes, for 1 week on a monthly basis. We estimated a significant decrease in cumulative insect emergence of 19% and 24% after exposure to copper and gold NPs, irrespective of nutrient level. NP treatments led to elevated copper and gold tissue concentrations in adult insects, which resulted in terrestrial fluxes of metals. These metal fluxes were associated with increased gold and copper tissue concentrations for both spider genera. We also observed about 25% fewer spiders in the NP mesocosms, likely due to reduced insect emergence and/or NP toxicity. These results demonstrate the transfer of NPs from aquatic to terrestrial ecosystems via emergence of aquatic insects and predation by riparian spiders, as well as significant reductions in insect and spider abundance in response to NP additions.


Subject(s)
Nanoparticles , Spiders , Animals , Ecosystem , Food Chain , Copper/pharmacology , Rivers , Insecta , Spiders/physiology , Gold/pharmacology
20.
Proc Biol Sci ; 290(1997): 20230089, 2023 04 26.
Article in English | MEDLINE | ID: mdl-37122254

ABSTRACT

In many regions fire regimes are changing due to anthropogenic factors. Understanding the responses of species to fire can help to develop predictive models and inform fire management decisions. Spiders are a diverse and ubiquitous group and can offer important insights into the impacts of fire on invertebrates and whether these depend on environmental factors, phylogenetic history or functional traits. We conducted phylogenetic comparative analyses of data from studies investigating the impacts of fire on spiders. We investigated whether fire affects spider abundance or presence and whether ecologically relevant traits or site-specific factors influence species' responses to fire. Although difficult to make broad generalizations about the impacts of fire due to variation in site- and fire-specific factors, we find evidence that short fire intervals may be a threat to some spiders, and that fire affects abundance and species compositions in forests relative to other vegetation types. Orb and sheet web weavers were also more likely to be absent after fire than ambush hunters, ground hunters and other hunters suggesting functional traits may affect responses. Finally, we show that analyses of published data can be used to detect broad-scale patterns and provide an alternative to traditional meta-analytical approaches.


Subject(s)
Fires , Spiders , Animals , Spiders/physiology , Ecosystem , Phylogeny , Forests
SELECTION OF CITATIONS
SEARCH DETAIL
...