Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.862
Filter
1.
J Neuroinflammation ; 21(1): 146, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824594

ABSTRACT

T cells play an important role in the acquired immune response, with regulatory T cells (Tregs) serving as key players in immune tolerance. Tregs are found in nonlymphoid and damaged tissues and are referred to as "tissue Tregs". They have tissue-specific characteristics and contribute to immunomodulation, homeostasis, and tissue repair through interactions with tissue cells. However, important determinants of Treg tissue specificity, such as antigen specificity, tissue environment, and pathology, remain unclear. In this study, we analyzed Tregs in the central nervous system of mice with ischemic stroke and experimental autoimmune encephalomyelitis (EAE), a mouse model of multiple sclerosis. The gene expression pattern of brain Tregs in the EAE model was more similar to that of ischemic stroke Tregs in the brain than to that of spinal cord Tregs. In addition, most T-cell receptors (TCRs) with high clonality were present in both the brain and spinal cord. Furthermore, Gata3+ and Rorc+ Tregs expressed TCRs recognizing MOG in the spinal cord, suggesting a tissue environment conducive to Rorc expression. Tissue-specific chemokine/chemokine receptor interactions in the spinal cord and brain influenced Treg localization. Finally, spinal cord- or brain-derived Tregs had greater anti-inflammatory capacities in EAE mice, respectively. Taken together, these findings suggest that the tissue environment, rather than pathogenesis or antigen specificity, is the primary determinant of the tissue-specific properties of Tregs. These findings may contribute to the development of novel therapies to suppress inflammation through tissue-specific Treg regulation.


Subject(s)
Brain , Encephalomyelitis, Autoimmune, Experimental , Mice, Inbred C57BL , Spinal Cord , T-Lymphocytes, Regulatory , Animals , T-Lymphocytes, Regulatory/immunology , Mice , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/pathology , Spinal Cord/immunology , Spinal Cord/pathology , Spinal Cord/metabolism , Brain/immunology , Brain/metabolism , Brain/pathology , Female , Disease Models, Animal
2.
Int Immunopharmacol ; 134: 112246, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38759372

ABSTRACT

BACKGROUND: A wide array of histone deacetylase (HDAC) inhibitors and aryl hydrocarbon receptor (AHR) agonists commonly arrest experimental autoimmune encephalomyelitis (EAE). However, it is not known whether HDAC inhibition is linked to the AHR signaling pathway in EAE. METHODS: We investigated how the pan-HDAC inhibitor SB939 (pracinostat) exerted immunoregulatory action in the myelin oligodendrocyte glycoprotein 35-55 (MOG35-55)-induced EAE mouse model by evaluating changes in of signal transducer and activator of transcription 3 (STAT3) acetylation and the expression of indoleamine 2,3-dioxygenase 1 (IDO1) and AHR in inflamed spinal cords during EAE evolution. We proved the involvement of IDO1 and the AHR in SB939-mediated immunosuppression using Ido1-/- and Ahr-/- mice. RESULTS: Administration with SB939 halted EAE progression, which depended upon IDO1 expression in neurons of the central nervous system (CNS). Our in vitro and in vivo studies demonstrated that SB939 sustained the interleukin-6-induced acetylation of STAT3, resulting in the stable transcriptional activation of Ido1. The therapeutic effect of SB939 also required the AHR, which is expressed mainly in CD4+ T cells and macrophages in CNS disease lesions. Finally, SB939 was shown to markedly reduce the proliferation of CD4+ T cells in inflamed neuronal tissues but not in the spleen or draining lymph nodes. CONCLUSIONS: Overall, our results suggest that IDO1 tryptophan metabolites produced by neuronal cells may act on AHR in pathogenic CD4+ T cells in a paracrine fashion in the CNS and that the specific induction of IDO1 expression in neurons at disease-afflicted sites can be considered a therapeutic approach to block the progression of multiple sclerosis without affecting systemic immunity.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Histone Deacetylase Inhibitors , Indoleamine-Pyrrole 2,3,-Dioxygenase , Mice, Inbred C57BL , Mice, Knockout , Neurons , STAT3 Transcription Factor , Animals , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Encephalomyelitis, Autoimmune, Experimental/immunology , Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Indoleamine-Pyrrole 2,3,-Dioxygenase/antagonists & inhibitors , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/therapeutic use , STAT3 Transcription Factor/metabolism , Neurons/drug effects , Neurons/pathology , Neurons/metabolism , Mice , Receptors, Aryl Hydrocarbon/metabolism , Receptors, Aryl Hydrocarbon/genetics , Female , Spinal Cord/pathology , Spinal Cord/metabolism , Spinal Cord/immunology , Spinal Cord/drug effects , Myelin-Oligodendrocyte Glycoprotein/immunology , Central Nervous System/immunology , Central Nervous System/drug effects , Central Nervous System/metabolism , Central Nervous System/pathology , Hydroxamic Acids/pharmacology , Hydroxamic Acids/therapeutic use , Disease Progression , Histone Deacetylases/metabolism , Histone Deacetylases/genetics , Peptide Fragments/pharmacology , Basic Helix-Loop-Helix Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Interleukin-6/metabolism , Interleukin-6/genetics
3.
Immun Inflamm Dis ; 12(4): e1256, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38652010

ABSTRACT

BACKGROUND: Spinal cord injury (SCI) is a traumatic neurological disorder with limited therapeutic options. Tumor protein p53-inducible nuclear protein 2 (TP53INP2) is involved in the occurrence and development of various diseases, and it may play a role during SCI via affecting inflammation and neuronal apoptosis. This study investigated the associated roles and mechanisms of TP53INP2 in SCI. METHODS: Mouse and lipopolysaccharide (LPS)-induced SCI BV-2 cell models were constructed to explore the role of TP53INP2 in SCI and the associated mechanisms. Histopathological evaluation of spinal cord tissue was detected by hematoxylin and eosin staining. The Basso, Beattie, and Bresnahan score was used to measure the motor function of the mice, while the spinal cord water content was used to assess spinal cord edema. The expression of TP53INP2 was measured using RT-qPCR. In addition, inflammatory factors in the spinal cord tissue of SCI mice and LPS-treated BV-2 cells were measured using enzyme-linked immunosorbent assay. Apoptosis and related protein expression levels were detected by flow cytometry and western blot analysis, respectively. RESULTS: TP53INP2 levels increased in SCI mice and LPS-treated BV-2 cells. The results of in vivo and in vitro experiments showed that TP53INP2 knockdown inhibited the inflammatory response and neuronal apoptosis in mouse spinal cord tissue or LPS-induced BV-2 cells. CONCLUSIONS: After spinal cord injury, TP53INP2 was upregulated, and TP53INP2 knockdown inhibited the inflammatory response and apoptosis.


Subject(s)
Apoptosis , Inflammation , Spinal Cord Injuries , Animals , Male , Mice , Cell Line , Disease Models, Animal , Gene Knockdown Techniques , Inflammation/pathology , Inflammation/metabolism , Inflammation/genetics , Inflammation/immunology , Lipopolysaccharides , Mice, Inbred C57BL , Spinal Cord/pathology , Spinal Cord/metabolism , Spinal Cord/immunology , Spinal Cord Injuries/metabolism , Spinal Cord Injuries/pathology , Spinal Cord Injuries/immunology , Spinal Cord Injuries/genetics
4.
Glia ; 72(7): 1319-1339, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38577970

ABSTRACT

Neuroinflammation and chronic activation of microglial cells are the prominent features of amyotrophic lateral sclerosis (ALS) pathology. While alterations in the mRNA profile of diseased microglia have been well documented, the actual microglia proteome remains poorly characterized. Here we performed a functional characterization together with proteome analyses of microglial cells at different stages of disease in the SOD1-G93A model of ALS. Functional analyses of microglia derived from the lumbar spinal cord of symptomatic mice revealed: (i) remarkably high mitotic index (close to 100% cells are Ki67+) (ii) significant decrease in phagocytic capacity when compared to age-matched control microglia, and (iii) diminished response to innate immune challenges in vitro and in vivo. Proteome analysis revealed a development of two distinct molecular signatures at early and advanced stages of disease. While at early stages of disease, we identified several proteins implicated in microglia immune functions such as GPNMB, HMBOX1, at advanced stages of disease microglia signature at protein level was characterized with a robust upregulation of several unconventional proteins including rootletin, major vaults proteins and STK38. Upregulation of GPNMB and rootletin has been also found in the spinal cord samples of sporadic ALS. Remarkably, the top biological functions of microglia, in particular in the advanced disease, were not related to immunity/immune response, but were highly enriched in terms linked to RNA metabolism. Together, our results suggest that, over the course of disease, chronically activated microglia develop unconventional protein signatures and gradually lose their immune identity ultimately turning into functionally inefficient immune cells.


Subject(s)
Amyotrophic Lateral Sclerosis , Mice, Transgenic , Microglia , Proteome , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/immunology , Amyotrophic Lateral Sclerosis/pathology , Amyotrophic Lateral Sclerosis/genetics , Microglia/metabolism , Microglia/immunology , Animals , Proteome/metabolism , Mice , Spinal Cord/metabolism , Spinal Cord/pathology , Spinal Cord/immunology , Disease Models, Animal , Phagocytosis/physiology , Humans , Female , Mice, Inbred C57BL , Male
5.
Eur J Immunol ; 54(6): e2350761, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38566526

ABSTRACT

In multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis (EAE), early pathological features include immune cell infiltration into the central nervous system (CNS) and blood-brain barrier (BBB) disruption. We investigated the role of junctional adhesion molecule-A (JAM-A), a tight junction protein, in active EAE (aEAE) pathogenesis. Our study confirms JAM-A expression at the blood-brain barrier and its luminal redistribution during aEAE. JAM-A deficient (JAM-A-/-) C57BL/6J mice exhibited milder aEAE, unrelated to myelin oligodendrocyte glycoprotein-specific CD4+ T-cell priming. While JAM-A absence influenced macrophage behavior on primary mouse brain microvascular endothelial cells (pMBMECs) under flow in vitro, it did not impact T-cell extravasation across primary mouse brain microvascular endothelial cells. At aEAE onset, we observed reduced lymphocyte and CCR2+ macrophage infiltration into the spinal cord of JAM-A-/- mice compared to control littermates. This correlated with increased CD3+ T-cell accumulation in spinal cord perivascular spaces and brain leptomeninges, suggesting JAM-A absence leads to T-cell trapping in central nervous system border compartments. In summary, JAM-A plays a role in immune cell infiltration and clinical disease progression in aEAE.


Subject(s)
Blood-Brain Barrier , Encephalomyelitis, Autoimmune, Experimental , Endothelial Cells , Macrophages , Mice, Inbred C57BL , Mice, Knockout , Animals , Encephalomyelitis, Autoimmune, Experimental/immunology , Mice , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/immunology , Blood-Brain Barrier/pathology , Macrophages/immunology , Macrophages/metabolism , Endothelial Cells/metabolism , Endothelial Cells/immunology , Spinal Cord/pathology , Spinal Cord/immunology , Spinal Cord/metabolism , CD4-Positive T-Lymphocytes/immunology , Receptors, Cell Surface/genetics , Receptors, Cell Surface/metabolism , Multiple Sclerosis/immunology , Multiple Sclerosis/pathology , Cell Adhesion Molecules/genetics , Cell Adhesion Molecules/metabolism , Disease Models, Animal
6.
Immunol Lett ; 267: 106852, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38508497

ABSTRACT

We have recently characterized experimental autoimmune encephalomyelitis (EAE) induced in DA rats with spinal cord homogenate without complete Freund's adjuvant (CFA). The main advantage of this multiple sclerosis model is the lack of CFA-related confounding effects which represent the major obstacles in translating findings from EAE to multiple sclerosis. Here, antigen specificity of the cellular and humoral immune response directed against the central nervous system was explored. The reactivity of T and B cells to myelin basic protein, myelin oligodendrocyte glycoprotein, and ß-synuclein was detected. Having in mind that reactivity against ß-synuclein was previously associated with autoimmunity against the brain, the infiltration of immune cells into different brain compartments, i.e. pons, cerebellum, hippocampus, and cortex was determined. T cell infiltration was observed in all structures examined. This finding stimulated investigation of the effects of immunization on DA rat behavior using the elevated plus maze and the open field test. Rats recovered from EAE displayed increased anxiety-like behavior. These data support CFA-free EAE in DA rats as a useful model for multiple sclerosis research.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Spinal Cord , Animals , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/pathology , Encephalomyelitis, Autoimmune, Experimental/metabolism , Rats , Spinal Cord/immunology , Spinal Cord/metabolism , Spinal Cord/pathology , Disease Models, Animal , Myelin-Oligodendrocyte Glycoprotein/immunology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Multiple Sclerosis/immunology , Multiple Sclerosis/pathology , Multiple Sclerosis/metabolism , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Myelin Basic Protein/immunology , Myelin Basic Protein/metabolism , Brain/pathology , Brain/immunology , Brain/metabolism , Female , Encephalitis/immunology , Encephalitis/etiology , Encephalitis/pathology , Encephalitis/metabolism , Freund's Adjuvant/immunology , Neuroinflammatory Diseases/immunology , Neuroinflammatory Diseases/etiology , Neuroinflammatory Diseases/pathology
7.
Immunol Lett ; 267: 106855, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38537720

ABSTRACT

We examined the role of endoplasmic reticulum (ER) stress and the ensuing unfolded protein response (UPR) in the development of the central nervous system (CNS)-directed immune response in the rat model of experimental autoimmune encephalomyelitis (EAE). The induction of EAE with syngeneic spinal cord homogenate in complete Freund's adjuvant (CFA) caused a time-dependent increase in the expression of ER stress/UPR markers glucose-regulated protein 78 (GRP78), X-box-binding protein 1 (XBP1), C/EBP homologous protein (CHOP), and phosphorylated eukaryotic initiation factor 2α (eIF2α) in the draining lymph nodes of both EAE-susceptible Dark Agouti (DA) and EAE-resistant Albino Oxford (AO) rats. However, the increase in ER stress markers was more pronounced in AO rats. CFA alone also induced ER stress, but the effect was weaker and less sustained compared to full immunization. The ultrastructural analysis of DA lymph node tissue by electron microscopy revealed ER dilatation in lymphocytes, macrophages, and plasma cells, while immunoblot analysis of CD3-sorted lymph node cells demonstrated the increase in ER stress/UPR markers in both CD3+ (T cell) and CD3- (non-T) cell compartments. A positive correlation was observed between the levels of ER stress/UPR markers in the CNS-infiltrated mononuclear cells and the clinical activity of the disease. Finally, the reduction of EAE clinical signs by ER stress inhibitor ursodeoxycholic acid was associated with the decrease in the expression of mRNA encoding pro-inflammatory cytokines TNF and IL-1ß, and encephalitogenic T cell cytokines IFN-γ and IL-17. Collectively, our data indicate that ER stress response in immune cells might be an important pathogenetic factor and a valid therapeutic target in the inflammatory damage of the CNS.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Endoplasmic Reticulum Stress , Unfolded Protein Response , Animals , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/metabolism , Endoplasmic Reticulum Stress/immunology , Rats , Unfolded Protein Response/immunology , Lymph Nodes/immunology , Lymph Nodes/metabolism , Disease Models, Animal , Female , Cytokines/metabolism , Spinal Cord/immunology , Spinal Cord/metabolism , Spinal Cord/pathology
8.
Int Immunol ; 36(6): 303-316, 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38387051

ABSTRACT

Lymphocyte homing to peripheral lymph nodes (PLN) is critical for immune surveillance. However, autoimmune diseases such as multiple sclerosis (MS) can occur due to excessive immune responses in the PLN. Here we show that 6-sulfo sialyl Lewis X (6-sulfo sLex) glycans on high endothelial venules that function as ligands for l-selectin on lymphocytes play a critical role in the pathogenesis of experimental autoimmune encephalomyelitis (EAE), an animal model of MS. In N-acetylglucosamine-6-O-sulfotransferase (GlcNAc6ST)-1 and GlcNAc6ST-2 double-knockout mice lacking the expression of 6-sulfo sLeX glycans, the EAE symptoms and the numbers of effector Th1 and Th17 cells in the draining lymph nodes (dLN) and spinal cords (SC) were significantly reduced. To determine whether 6-sulfo sLeX could serve as a target for MS, we also examined the effects of anti-glycan monoclonal antibody (mAb) SF1 against 6-sulfo sLeX in EAE. Administration of mAb SF1 significantly reduced EAE symptoms and the numbers of antigen-specific effector T cells in the dLN and SC in association with suppression of critical genes including Il17a and Il17f that are involved in the pathogenesis of EAE. Taken together, these results suggest that 6-sulfo sLeX glycan would serve as a novel target for MS.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Mice, Inbred C57BL , Mice, Knockout , Sialyl Lewis X Antigen , Sialyl Lewis X Antigen/analogs & derivatives , Th17 Cells , Animals , Encephalomyelitis, Autoimmune, Experimental/immunology , Mice , Th17 Cells/immunology , Sialyl Lewis X Antigen/metabolism , Polysaccharides/metabolism , Interleukin-17/metabolism , Interleukin-17/immunology , Oligosaccharides , Carbohydrate Sulfotransferases , Th1 Cells/immunology , Sulfotransferases/metabolism , Sulfotransferases/genetics , Sulfotransferases/immunology , Lymph Nodes/immunology , Lymph Nodes/metabolism , Female , Multiple Sclerosis/immunology , Multiple Sclerosis/metabolism , Spinal Cord/immunology , Spinal Cord/metabolism , Cell Movement/immunology
9.
Nature ; 612(7940): 417-429, 2022 12.
Article in English | MEDLINE | ID: mdl-36517712

ABSTRACT

The concept of immune privilege suggests that the central nervous system is isolated from the immune system. However, recent studies have highlighted the borders of the central nervous system as central sites of neuro-immune interactions. Although the nervous and immune systems both function to maintain homeostasis, under rare circumstances, they can develop pathological interactions that lead to neurological or psychiatric diseases. Here we discuss recent findings that dissect the key anatomical, cellular and molecular mechanisms that enable neuro-immune responses at the borders of the brain and spinal cord and the implications of these interactions for diseases of the central nervous system.


Subject(s)
Brain , Immune System , Neuroimmunomodulation , Brain/immunology , Brain/physiology , Brain/physiopathology , Immune System/immunology , Immune System/physiology , Immune System/physiopathology , Neuroimmunomodulation/immunology , Neuroimmunomodulation/physiology , Spinal Cord/immunology , Spinal Cord/physiology , Spinal Cord/physiopathology , Humans , Nervous System Diseases/immunology , Nervous System Diseases/physiopathology , Nervous System Diseases/psychology
11.
PLoS One ; 17(1): e0262677, 2022.
Article in English | MEDLINE | ID: mdl-35061807

ABSTRACT

Development of a novel, animal model for multiple sclerosis (MS) with reproducible and predictable lesion placement would enhance the discovery of effective treatments. Therefore, we would like to combine the advantages of the demyelination model with experimental autoimmune encephalomyelitis (EAE) to provide a local autoimmune encephalomyelitis (LAE) inside rat brain. We induced a demyelinating lesion by immunizing male Wistar rats, followed by blood-brain barrier opening protein (vascular endothelial growth factor) by stereotactic injection. We confirmed the immunization against myelin epitopes and minor neurological impairment. Histological assessment confirmed the lesion development after both 3- and 7 days post-injection. Our approach was sufficient to develop a demyelinating lesion with high reproducibility and low morbidity.


Subject(s)
Brain/pathology , Encephalomyelitis, Autoimmune, Experimental/etiology , Animals , Antibodies/immunology , Cattle , Encephalomyelitis, Autoimmune, Experimental/pathology , Injections, Intraventricular , Male , Rats , Rats, Wistar , Spinal Cord/immunology
12.
Fitoterapia ; 156: 105099, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34896483

ABSTRACT

The aim of this study is to investigate the potential preventive and therapeutic effects of nobiletin by evaluating the expression of cytokines associated with inflammatory reactions in an autoimmune encephalomyelitis mouse model. A total of 60 male C57BL/6 mice aged between 8 and 10 weeks were used. Mice were divided into six groups (n = 10 mice per group): control, EAE, low-prophylaxis, high-prophylaxis, low-treatment and high-treatment. Experimental autoimmune encephalomyelitis (EAE) was induced by myelin oligodendrocyte glycoprotein (MOG) and pertussis toxin. Nobiletin was administered in low (25 mg/kg) and high (50 mg/kg) doses, intraperitoneally. The prophylactic and therapeutic effects of nobiletin on brain tissue and spinal cord were evaluated by expression of interleukin-1 beta (IL-1ß), tumor necrosis factor-alpha (TNF-α), interferon gamma (IFNγ), IL-6, IL-10 and transforming growth factor-beta (TGF-ß) using immunohistochemistry and real-time polymerase chain reaction (RT-PCR). Prophylactic and therapeutic use of nobiletin inhibited EAE-induced increase of TNF-α, IL-1ß and IL-6 activities to alleviate inflammatory response in brain and spinal cord. Moreover, nobiletin supplement dramatically increased the IL-10, TGF-ß and IFNγ expressions in prophylaxis and treatment groups compared with the EAE group in the brain and spinal cord. The results obtained from this study show that prophylactic and therapeutic nobiletin modulates expressions of proinflammatory and antiinflammatory cytokines in brain and spinal cord dose-dependent manner in EAE model. These data demonstrates that nobiletin has a potential to attenuate inflammation in EAE mouse model. These experimental findings need to be supported by clinical studies.


Subject(s)
Antioxidants/therapeutic use , Cytokines/metabolism , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Flavones/therapeutic use , Multiple Sclerosis/drug therapy , Animals , Antioxidants/pharmacology , Brain/drug effects , Brain/immunology , Brain/pathology , Cytokines/drug effects , DNA, Complementary/biosynthesis , Disease Models, Animal , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/pathology , Encephalomyelitis, Autoimmune, Experimental/prevention & control , Flavones/pharmacology , Immunohistochemistry , Inflammation/drug therapy , Inflammation/immunology , Inflammation/prevention & control , Male , Mice , Mice, Inbred C57BL , Multiple Sclerosis/immunology , Multiple Sclerosis/pathology , Multiple Sclerosis/prevention & control , RNA/genetics , RNA/isolation & purification , Real-Time Polymerase Chain Reaction , Spinal Cord/drug effects , Spinal Cord/immunology , Spinal Cord/pathology
13.
J Immunol Res ; 2021: 4400428, 2021.
Article in English | MEDLINE | ID: mdl-34938813

ABSTRACT

OBJECTIVE: To study the protective effect of fecal microbiota transplantation (FMT) on experimental autoimmune encephalomyelitis (EAE) and reveal its potential intestinal microflora-dependent mechanism through analyses of the intestinal microbiota and spinal cord transcriptome in mice. METHOD: We measured the severity of disease by clinical EAE scores and H&E staining. Gut microbiota alteration in the gut and differentially expressed genes (DEGs) in the spinal cord were analyzed through 16S rRNA and transcriptome sequencing. Finally, we analyzed associations between the relative abundance of intestinal microbiota constituents and DEGs. RESULTS: We observed that clinical EAE scores were lower in the EAE+FMT group than in the EAE group. Meanwhile, mice in the EAE+FMT group also had a lower number of infiltrating cells. The results of 16S rRNA sequence analysis showed that FMT increased the relative abundance of Firmicutes and Proteobacteria and reduced the abundance of Bacteroides and Actinobacteria. Meanwhile, FMT could modulate gut microbiota balance, especially via increasing the relative abundance of g_Adlercreutzia, g_Sutterella, g_Prevotella_9, and g_Tyzzerella_3 and decreasing the relative abundance of g_Turicibacter. Next, we analyzed the transcriptome of mouse spinal cord tissue and found that 1476 genes were differentially expressed between the EAE and FMT groups. The analysis of these genes showed that FMT mainly participated in the inflammatory response. Correlation analysis between gut microbes and transcriptome revealed that the relative abundance of Adlercreutzia was correlated with the expression of inflammation-related genes negatively, including Casp6, IL1RL2 (IL-36R), IL-17RA, TNF, CCL3, CCR5, and CCL8, and correlated with the expression of neuroprotection-related genes positively, including Snap25, Edil3, Nrn1, Cpeb3, and Gpr37. CONCLUSION: Altogether, FMT may selectively regulate gene expression to improve inflammation and maintain the stability of the intestinal environment in a gut microbiota-dependent manner.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental/etiology , Encephalomyelitis, Autoimmune, Experimental/therapy , Fecal Microbiota Transplantation , Gastrointestinal Microbiome , Transcriptome , Animals , Biomarkers , Disease Management , Disease Models, Animal , Disease Susceptibility/immunology , Encephalomyelitis, Autoimmune, Experimental/diagnosis , Female , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Metagenomics/methods , Mice , Phylogeny , RNA, Ribosomal, 16S , Severity of Illness Index , Spinal Cord/immunology , Spinal Cord/metabolism , Spinal Cord/pathology , Treatment Outcome
14.
Front Immunol ; 12: 727750, 2021.
Article in English | MEDLINE | ID: mdl-34721390

ABSTRACT

Neuromyelitis optica spectrum disorder (NMOSD), a relapsing autoimmune disease of the central nervous system, mainly targets the optic nerve and spinal cord. To date, all attempts at the establishment of NMOSD animal models have been based on neuromyelitis optica immunoglobulin G antibody (NMO-IgG) and mimic the disease in part. To solve this problem, we developed a rodent model by opening the blood-brain barrier (BBB) with low frequency ultrasound, followed by injection of NMO-IgG from NMOSD patients and complement to mice suffering pre-existing neuroinflammation produced by experimental autoimmune encephalomyelitis (EAE). In this study, we showed that ultrasound with NMO-IgG and complement caused marked inflammation and demyelination of both spinal cords and optic nerves compared to blank control group, as well as glial fibrillary acidic protein (GFAP) and aquaporin-4 (AQP4) loss of spinal cords and optic nerves compared to EAE mice and EAE mice with only BBB opening. In addition, magnetic resonance imaging (MRI) revealed optic neuritis with spinal cord lesions. We further demonstrated eye segregation defects in the dorsal lateral geniculate nucleus (dLGN) of these NMOSD mice.


Subject(s)
Complement System Proteins/immunology , Encephalomyelitis, Autoimmune, Experimental/immunology , Immunoglobulin G/immunology , Neuromyelitis Optica/immunology , Animals , Aquaporin 4/metabolism , Blood-Brain Barrier/metabolism , Disease Models, Animal , Encephalomyelitis, Autoimmune, Experimental/diagnostic imaging , Encephalomyelitis, Autoimmune, Experimental/metabolism , Female , Glial Fibrillary Acidic Protein/metabolism , Humans , Magnetic Resonance Imaging , Mice, Inbred C57BL , Neuromyelitis Optica/diagnostic imaging , Neuromyelitis Optica/metabolism , Optic Nerve/diagnostic imaging , Optic Nerve/immunology , Optic Nerve/metabolism , Spinal Cord/diagnostic imaging , Spinal Cord/immunology , Spinal Cord/metabolism , Ultrasonic Waves
15.
Int J Mol Sci ; 22(21)2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34769297

ABSTRACT

Pulsed radiofrequency (PRF) works by delivering short bursts of radiofrequency to a target nerve, thereby affecting nerve signal transduction to reduce pain. Although preliminary clinical investigations have shown that PRF treatment can be used safely as an alternative interventional treatment in patients with refractory pain conditions, unexpected damage to a normal nerve/ganglion is still one of the possible complications of using the PRF strategy. Noxious pain may also be triggered if PRF treatment accidentally damages an intact nerve. However, few studies in the literature have described the intracellular modifications that occur in neuronal cells after PRF stimulation. Therefore, in this study, we evaluated the effects of PRF on unimpaired nerve function and investigated the potential mechanisms of PRF-induced pain. Wistar rats were stimulated with 30-60 V of PRF for 6 min, and mechanical allodynia, cold hypersensitivity, cytokine and matrix metalloproteinase (MMP) production, and mitogen-activated protein kinase activity (p38 MAPK, ERK1/2, JNK/SAPK) were analyzed. The results indicated that PRF stimulation induced a significant algesic effect and nociceptive response. In addition, the protein array and Western blotting analyses showed that the clinical application of 60 V of PRF can induce the activation of MAPKs and the production of inflammatory cytokines and MMPs in the lumbar dorsal horn, which is necessary for nerve inflammation, and it can be suppressed by MAPK antagonist treatment. These results indicate that PRF stimulation may induce inflammation of the intact nerve, which in turn causes inflammatory pain. This conclusion can also serve as a reminder for PRF treatment of refractory pain.


Subject(s)
Cryopyrin-Associated Periodic Syndromes/therapy , Ganglia, Spinal/immunology , Hyperalgesia/therapy , Pulsed Radiofrequency Treatment/adverse effects , Spinal Cord/immunology , Animals , Cryopyrin-Associated Periodic Syndromes/etiology , Cryopyrin-Associated Periodic Syndromes/metabolism , Cytokines/metabolism , Hyperalgesia/etiology , Hyperalgesia/metabolism , Male , Matrix Metalloproteinases/metabolism , Pain , Random Allocation , Rats , Rats, Wistar , Spinal Cord/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism
16.
Front Immunol ; 12: 783725, 2021.
Article in English | MEDLINE | ID: mdl-34804074

ABSTRACT

Interferons (IFNs) are cytokines that possess antiviral, antiproliferative, and immunomodulatory actions. IFN-α and IFN-ß are two major family members of type-I IFNs and are used to treat diseases, including hepatitis and multiple sclerosis. Emerging evidence suggests that type-I IFN receptors (IFNARs) are also expressed by microglia, astrocytes, and neurons in the central and peripheral nervous systems. Apart from canonical transcriptional regulations, IFN-α and IFN-ß can rapidly suppress neuronal activity and synaptic transmission via non-genomic regulation, leading to potent analgesia. IFN-γ is the only member of the type-II IFN family and induces central sensitization and microglia activation in persistent pain. We discuss how type-I and type-II IFNs regulate pain and infection via neuro-immune modulations, with special focus on neuroinflammation and neuro-glial interactions. We also highlight distinct roles of type-I IFNs in the peripheral and central nervous system. Insights into IFN signaling in nociceptors and their distinct actions in physiological vs. pathological and acute vs. chronic conditions will improve our treatments of pain after surgeries, traumas, and infections.


Subject(s)
Acute Pain/immunology , Chronic Pain/immunology , Interferon Type I/metabolism , Interferon-gamma/metabolism , Neuroinflammatory Diseases/immunology , Acute Pain/pathology , Animals , Chronic Pain/pathology , Disease Models, Animal , Humans , Neuroglia/cytology , Neuroglia/immunology , Neuroglia/pathology , Neuroinflammatory Diseases/pathology , Nociceptors/immunology , Nociceptors/metabolism , Receptors, Interferon/metabolism , Signal Transduction/immunology , Spinal Cord/cytology , Spinal Cord/immunology , Spinal Cord/pathology
17.
Biomed Pharmacother ; 144: 112311, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34653754

ABSTRACT

Although accumulating evidence indicated that modulating macrophage polarization could ameliorate the immune microenvironment and facilitate the repair of spinal cord injury (SCI), the underlying mechanism of macrophage phenotypic switch is still poorly understood. Exosomes (Exos), a potential tool of cell-to-cell communication, may play important roles in cell reprogramming. Herein, we investigated the roles of macrophages-derived exosomes played for macrophage polarization in the SCI immune microenvironment. In this study, we found the fraction of M2 macrophages was markedly decreased after SCI. Moreover, the M2 macrophages-derived exosomes could increase the percentage of M2 macrophages, decrease that of M1 macrophages while the M1 macrophages-derived exosomes acted oppositely. According to the results of in silico analyses and molecular experiments verification, this phenotypic switch might be mediated by the exosomal miRNA-mRNA network, in which the miR-23a-3p/PTEN/PI3K/AKT axis might play an important role. In conclusion, our study suggests macrophage polarization that regulated by various interventions might be mediated by their own exosomes at last. Moreover, M2 macrophages-derived exosomes could promote M2 macrophage polarization via the potential miRNA-mRNA network. Considering its potential of modulating polarization, M2 macrophages-derived exosomes may be a promising therapeutic agent for SCI repair.


Subject(s)
Cell Plasticity , Cellular Microenvironment , Exosomes/metabolism , Macrophages/metabolism , Spinal Cord Injuries/metabolism , Spinal Cord/metabolism , Animals , Cellular Microenvironment/immunology , Disease Models, Animal , Exosomes/immunology , Exosomes/transplantation , Macrophages/immunology , Macrophages/transplantation , Male , Mice , Mice, Inbred C57BL , MicroRNAs/genetics , MicroRNAs/metabolism , PTEN Phosphohydrolase/genetics , PTEN Phosphohydrolase/metabolism , Phenotype , Phosphatidylinositol 3-Kinase/metabolism , Proto-Oncogene Proteins c-akt/metabolism , RAW 264.7 Cells , Rats, Wistar , Signal Transduction , Spinal Cord/immunology , Spinal Cord Injuries/genetics , Spinal Cord Injuries/immunology , Spinal Cord Injuries/surgery
18.
J Neuroimmunol ; 361: 577748, 2021 12 15.
Article in English | MEDLINE | ID: mdl-34653948

ABSTRACT

We report two patients with meningoencephalomyelitis without evidence of extra central nervous system (CNS) involvement. Brain MRI showed linear perivascular radial gadolinium enhancement patterns and spinal cord MRI showed longitudinal extensive T2-hyperintensity lesions. Pathological findings from brain biopsies were angiocentric T-cell predominant lymphoid infiltrates that lacked Epstein-Barr virus-positive atypical B cells. The patients were initially suspected to have isolated CNS-lymphomatoid granulomatosis (LYG). Thereafter, glial fibrillary acidic protein (GFAP)-immunoglobulin G were detected in their cerebrospinal fluid. This finding suggested autoimmune GFAP astrocytopathy. We speculate there is a link between isolated CNS-LYG and autoimmune GFAP astrocytopathy.


Subject(s)
Astrocytes/pathology , Autoimmune Diseases of the Nervous System/diagnosis , Glial Fibrillary Acidic Protein/immunology , Lymphomatoid Granulomatosis/diagnosis , Adrenal Cortex Hormones/therapeutic use , Aged , Antibody Specificity , Astrocytes/immunology , Autoantibodies/cerebrospinal fluid , Autoimmune Diseases of the Nervous System/cerebrospinal fluid , Autoimmune Diseases of the Nervous System/immunology , Autoimmune Diseases of the Nervous System/pathology , Brain/diagnostic imaging , Brain/immunology , Brain/pathology , Diagnosis, Differential , Humans , Immunoglobulin G/cerebrospinal fluid , Immunoglobulins, Intravenous/therapeutic use , Magnetic Resonance Imaging , Male , Meningoencephalitis/etiology , Middle Aged , Myelitis/etiology , Neuroimaging , Retrospective Studies , Spinal Cord/diagnostic imaging , Spinal Cord/immunology , Spinal Cord/pathology
19.
Immunol Lett ; 239: 72-76, 2021 11.
Article in English | MEDLINE | ID: mdl-34499922

ABSTRACT

Experimental autoimmune encephalomyelitis (EAE) represents the mouse model of multiple sclerosis, a devastating neurological disorder. EAE development and progression involves the infiltration of different immune cells into the brain and spinal cord. However, less is known about a potential role of eosinophil granulocytes for EAE disease pathogenesis. In the present study, we found enhanced eosinophil abundance accompanied by increased concentration of the eosinophil chemoattractant eotaxin-1 in the spinal cord in the course of EAE induced in C57BL/6 mice by immunization with MOG35-55 peptide. However, the absence of eosinophils did not affect neuroinflammation, demyelination and clinical development or severity of EAE, as assessed in ∆dblGATA1 eosinophil-deficient mice. Taken together, despite their enhanced abundance in the inflamed spinal cord during disease progression, eosinophils were dispensable for EAE development.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental/immunology , Eosinophils/immunology , Multiple Sclerosis/immunology , Spinal Cord/pathology , Animals , Chemokine CCL11/metabolism , Encephalomyelitis, Autoimmune, Experimental/blood , Encephalomyelitis, Autoimmune, Experimental/diagnosis , Encephalomyelitis, Autoimmune, Experimental/pathology , Eosinophils/metabolism , Female , Humans , Mice , Mice, Transgenic , Multiple Sclerosis/blood , Multiple Sclerosis/diagnosis , Multiple Sclerosis/pathology , Myelin-Oligodendrocyte Glycoprotein/administration & dosage , Myelin-Oligodendrocyte Glycoprotein/immunology , Peptide Fragments/administration & dosage , Peptide Fragments/immunology , Severity of Illness Index , Spinal Cord/immunology
20.
Biochim Biophys Acta Biomembr ; 1863(12): 183772, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34509490

ABSTRACT

NMOSD is a rare but severe relapsing remitting demyelinating disease that affects both adults and children. Most patients have pathogenic antibodies that target the central nervous system AQP4 protein. This review provides an update on our current understanding of the disease pathophysiology and describes the clinical, paraclinical features and therapeutic management of the disease.


Subject(s)
Antibodies/immunology , Aquaporin 4/genetics , Immunoglobulin G/genetics , Neuromyelitis Optica/genetics , Antibodies/genetics , Aquaporin 4/immunology , Central Nervous System/immunology , Central Nervous System/pathology , Humans , Immunoglobulin G/immunology , Neuromyelitis Optica/immunology , Neuromyelitis Optica/pathology , Optic Nerve/immunology , Optic Nerve/pathology , Spinal Cord/immunology , Spinal Cord/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...