Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 9.554
Filter
2.
Elife ; 122024 May 15.
Article in English | MEDLINE | ID: mdl-38747713

ABSTRACT

During mammalian oocyte meiosis, spindle migration and asymmetric cytokinesis are unique steps for the successful polar body extrusion. The asymmetry defects of oocytes will lead to the failure of fertilization and embryo implantation. In present study, we reported that an actin nucleating factor Formin-like 2 (FMNL2) played critical roles in the regulation of spindle migration and organelle distribution in mouse and porcine oocytes. Our results showed that FMNL2 mainly localized at the oocyte cortex and periphery of spindle. Depletion of FMNL2 led to the failure of polar body extrusion and large polar bodies in oocytes. Live-cell imaging revealed that the spindle failed to migrate to the oocyte cortex, which caused polar body formation defects, and this might be due to the decreased polymerization of cytoplasmic actin by FMNL2 depletion in the oocytes of both mice and pigs. Furthermore, mass spectrometry analysis indicated that FMNL2 was associated with mitochondria and endoplasmic reticulum (ER)-related proteins, and FMNL2 depletion disrupted the function and distribution of mitochondria and ER, showing with decreased mitochondrial membrane potential and the occurrence of ER stress. Microinjecting Fmnl2-EGFP mRNA into FMNL2-depleted oocytes significantly rescued these defects. Thus, our results indicate that FMNL2 is essential for the actin assembly, which further involves into meiotic spindle migration and ER/mitochondria functions in mammalian oocytes.


Subject(s)
Actins , Endoplasmic Reticulum , Formins , Meiosis , Mitochondria , Oocytes , Animals , Endoplasmic Reticulum/metabolism , Oocytes/metabolism , Formins/metabolism , Formins/genetics , Mitochondria/metabolism , Mice , Actins/metabolism , Swine , Female , Spindle Apparatus/metabolism
3.
Nat Commun ; 15(1): 3736, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38744818

ABSTRACT

The E3 SUMO ligase PIAS2 is expressed at high levels in differentiated papillary thyroid carcinomas but at low levels in anaplastic thyroid carcinomas (ATC), an undifferentiated cancer with high mortality. We show here that depletion of the PIAS2 beta isoform with a transcribed double-stranded RNA-directed RNA interference (PIAS2b-dsRNAi) specifically inhibits growth of ATC cell lines and patient primary cultures in vitro and of orthotopic patient-derived xenografts (oPDX) in vivo. Critically, PIAS2b-dsRNAi does not affect growth of normal or non-anaplastic thyroid tumor cultures (differentiated carcinoma, benign lesions) or cell lines. PIAS2b-dsRNAi also has an anti-cancer effect on other anaplastic human cancers (pancreas, lung, and gastric). Mechanistically, PIAS2b is required for proper mitotic spindle and centrosome assembly, and it is a dosage-sensitive protein in ATC. PIAS2b depletion promotes mitotic catastrophe at prophase. High-throughput proteomics reveals the proteasome (PSMC5) and spindle cytoskeleton (TUBB3) to be direct targets of PIAS2b SUMOylation at mitotic initiation. These results identify PIAS2b-dsRNAi as a promising therapy for ATC and other aggressive anaplastic carcinomas.


Subject(s)
Mitosis , Protein Inhibitors of Activated STAT , Humans , Protein Inhibitors of Activated STAT/metabolism , Protein Inhibitors of Activated STAT/genetics , Animals , Cell Line, Tumor , Mice , Thyroid Neoplasms/genetics , Thyroid Neoplasms/pathology , Thyroid Neoplasms/metabolism , RNA Interference , Spindle Apparatus/metabolism , Molecular Chaperones/metabolism , Molecular Chaperones/genetics , Xenograft Model Antitumor Assays , Proteasome Endopeptidase Complex/metabolism , Sumoylation , Carcinoma/genetics , Carcinoma/metabolism , Carcinoma/pathology , Female
4.
Nat Commun ; 15(1): 3779, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38710684

ABSTRACT

The α-Aurora kinase is a crucial regulator of spindle microtubule organization during mitosis in plants. Here, we report a post-mitotic role for α-Aurora in reorganizing the phragmoplast microtubule array. In Arabidopsis thaliana, α-Aurora relocated from spindle poles to the phragmoplast midzone, where it interacted with the microtubule cross-linker MAP65-3. In a hypomorphic α-Aurora mutant, MAP65-3 was detected on spindle microtubules, followed by a diffuse association pattern across the phragmoplast midzone. Simultaneously, phragmoplast microtubules remained belatedly in a solid disk array before transitioning to a ring shape. Microtubules at the leading edge of the matured phragmoplast were often disengaged, accompanied by conspicuous retentions of MAP65-3 at the phragmoplast interior edge. Specifically, α-Aurora phosphorylated two residues towards the C-terminus of MAP65-3. Mutation of these residues to alanines resulted in an increased association of MAP65-3 with microtubules within the phragmoplast. Consequently, the expansion of the phragmoplast was notably slower compared to wild-type cells or cells expressing a phospho-mimetic variant of MAP65-3. Moreover, mimicking phosphorylation reinstated disrupted MAP65-3 behaviors in plants with compromised α-Aurora function. Overall, our findings reveal a mechanism in which α-Aurora facilitates cytokinesis progression through phosphorylation-dependent restriction of MAP65-3 associating with microtubules at the phragmoplast midzone.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Cytokinesis , Microtubule-Associated Proteins , Microtubules , Arabidopsis/metabolism , Arabidopsis/genetics , Microtubules/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Microtubule-Associated Proteins/metabolism , Microtubule-Associated Proteins/genetics , Phosphorylation , Mutation , Spindle Apparatus/metabolism , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Plants, Genetically Modified , Mitosis
5.
J Biomed Opt ; 29(6): 065002, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38812963

ABSTRACT

Significance: Preparation of a recipient cytoplast by oocyte enucleation is an essential task for animal cloning and assisted reproductive technologies in humans. The femtosecond laser is a precise and low-invasive tool for oocyte enucleation, and it should be an appropriate alternative to traditional enucleation by a microneedle aspiration. However, until recently, the laser enucleation was performed only with applying a fluorescent dye. Aim: This work is aimed to (1) achieve femtosecond laser oocyte enucleation without applying a fluorescent dye and (2) to study the effect of laser destruction of chromosomes on the structure and dynamics of the spindle. Approach: We applied polarized light microscopy for spindle visualization and performed stain-free mouse and human oocyte enucleation with a 1033 nm femtosecond laser. Also, we studied transformation of a spindle after metaphase plate elimination by a confocal microscopy. Results: We demonstrated a fundamental possibility of inactivating the metaphase plate in mouse and human oocytes by 1033 nm femtosecond laser radiation without applying a fluorescent dye. Irradiation of the spindle area, visualized by polarized light microscopy, resulted in partly or complete metaphase plate destruction but avoided the microtubules impairment. After the metaphase plate elimination, the spindle reorganized, however, it was not a complete depolymerization. Conclusions: This method of recipient cytoplast preparation is expected to be useful for animal cloning and assisted reproductive technologies.


Subject(s)
Oocytes , Animals , Mice , Oocytes/cytology , Humans , Female , Lasers , Spindle Apparatus , Microscopy, Confocal/methods , Metaphase , Microscopy, Polarization/methods
6.
Cell Mol Biol Lett ; 29(1): 68, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38730334

ABSTRACT

BACKGROUND: Members of the nucleotide-binding oligomerization domain, leucine rich repeat and pyrin domain containing (NLRP) family regulate various physiological and pathological processes. However, none have been shown to regulate actin cap formation or spindle translocation during the asymmetric division of oocyte meiosis I. NLRP4E has been reported as a candidate protein in female fertility, but its function is unknown. METHODS: Immunofluorescence, reverse transcription polymerase chain reaction (RT-PCR), and western blotting were employed to examine the localization and expression levels of NLRP4E and related proteins in mouse oocytes. small interfering RNA (siRNA) and antibody transfection were used to knock down NLRP4E and other proteins. Immunoprecipitation (IP)-mass spectrometry was used to identify the potential proteins interacting with NLRP4E. Coimmunoprecipitation (Co-IP) was used to verify the protein interactions. Wild type (WT) or mutant NLRP4E messenger RNA (mRNA) was injected into oocytes for rescue experiments. In vitro phosphorylation was employed to examine the activation of steroid receptor coactivator (SRC) by NLRP4E. RESULTS: NLRP4E was more predominant within oocytes compared with other NLRP4 members. NLRP4E knockdown significantly inhibited actin cap formation and spindle translocation toward the cap region, resulting in the failure of polar body extrusion at the end of meiosis I. Mechanistically, GRIN1, and GANO1 activated NLRP4E by phosphorylation at Ser429 and Thr430; p-NLRP4E is translocated and is accumulated in the actin cap region during spindle translocation. Next, we found that p-NLRP4E directly phosphorylated SRC at Tyr418, while p-SRC negatively regulated p-CDC42-S71, an inactive form of CDC42 that promotes actin cap formation and spindle translocation in the GTP-bound form. CONCLUSIONS: NLRP4E activated by GRIN1 and GANO1 regulates actin cap formation and spindle translocation toward the cap region through upregulation of p-SRC-Tyr418 and downregulation of p-CDC42-S71 during meiosis I.


Subject(s)
Actins , Meiosis , Oocytes , cdc42 GTP-Binding Protein , Animals , Oocytes/metabolism , Mice , Female , Actins/metabolism , Actins/genetics , cdc42 GTP-Binding Protein/metabolism , cdc42 GTP-Binding Protein/genetics , Phosphorylation , Spindle Apparatus/metabolism
7.
J Cell Biol ; 223(8)2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38727808

ABSTRACT

Accurate chromosome segregation requires sister kinetochores to biorient, attaching to opposite spindle poles. To this end, the mammalian kinetochore destabilizes incorrect attachments and stabilizes correct ones, but how it discriminates between these is not yet clear. Here, we test the model that kinetochore tension is the stabilizing cue and ask how chromosome size impacts that model. We live image PtK2 cells, with just 14 chromosomes, widely ranging in size, and find that long chromosomes align at the metaphase plate later than short chromosomes. Enriching for errors and imaging error correction live, we show that long chromosomes exhibit a specific delay in correcting attachments. Using chromokinesin overexpression and laser ablation to perturb polar ejection forces, we find that chromosome size and force on arms determine alignment order. Thus, we propose a model where increased force on long chromosomes can falsely stabilize incorrect attachments, delaying their biorientation. As such, long chromosomes may require compensatory mechanisms for correcting errors to avoid chromosomal instability.


Subject(s)
Chromosome Segregation , Chromosomes, Mammalian , Kinetochores , Mitosis , Animals , Cell Line , Chromosomes, Mammalian/chemistry , Chromosomes, Mammalian/metabolism , Kinetochores/metabolism , Spindle Apparatus/metabolism , Potoroidae
8.
PLoS Genet ; 20(5): e1011272, 2024 May.
Article in English | MEDLINE | ID: mdl-38768219

ABSTRACT

The position of the nucleus before it divides during mitosis is variable in different budding yeasts. Studies in the pathogenic intron-rich fungus Cryptococcus neoformans reveal that the nucleus moves entirely into the daughter bud before its division. Here, we report functions of a zinc finger motif containing spliceosome protein C. neoformans Slu7 (CnSlu7) in cell cycle progression. The budding yeast and fission yeast homologs of Slu7 have predominant roles for intron 3' splice site definition during pre-mRNA splicing. Using a conditional knockdown strategy, we show CnSlu7 is an essential factor for viability and is required for efficient cell cycle progression with major role during mitosis. Aberrant nuclear migration, including improper positioning of the nucleus as well as the spindle, were frequently observed in cells depleted of CnSlu7. However, cell cycle delays observed due to Slu7 depletion did not activate the Mad2-dependent spindle assembly checkpoint (SAC). Mining of the global transcriptome changes in the Slu7 knockdown strain identified downregulation of transcripts encoding several cell cycle regulators and cytoskeletal factors for nuclear migration, and the splicing of specific introns of these genes was CnSlu7 dependent. To test the importance of splicing activity of CnSlu7 on nuclear migration, we complemented Slu7 knockdown cells with an intron less PAC1 minigene and demonstrated that the nuclear migration defects were significantly rescued. These findings show that CnSlu7 regulates the functions of diverse cell cycle regulators and cytoskeletal components, ensuring timely cell cycle transitions and nuclear division during mitosis.


Subject(s)
Cell Nucleus , Cryptococcus neoformans , Fungal Proteins , Mitosis , RNA Splicing , Spliceosomes , Mitosis/genetics , Cryptococcus neoformans/genetics , RNA Splicing/genetics , Cell Nucleus/genetics , Cell Nucleus/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Spliceosomes/genetics , Spliceosomes/metabolism , Spindle Apparatus/metabolism , Spindle Apparatus/genetics , Gene Expression Regulation, Fungal , Cell Cycle/genetics
9.
Nature ; 630(8015): 116-122, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38778110

ABSTRACT

Eukaryotes have evolved towards one of two extremes along a spectrum of strategies for remodelling the nuclear envelope during cell division: disassembling the nuclear envelope in an open mitosis or constructing an intranuclear spindle in a closed mitosis1,2. Both classes of mitotic remodelling involve key differences in the core division machinery but the evolutionary reasons for adopting a specific mechanism are unclear. Here we use an integrated comparative genomics and ultrastructural imaging approach to investigate mitotic strategies in Ichthyosporea, close relatives of animals and fungi. We show that species in this clade have diverged towards either a fungal-like closed mitosis or an animal-like open mitosis, probably to support distinct multinucleated or uninucleated states. Our results indicate that multinucleated life cycles favour the evolution of closed mitosis.


Subject(s)
Biological Evolution , Mitosis , Animals , Nuclear Envelope/metabolism , Nuclear Envelope/ultrastructure , Phylogeny , Mesomycetozoea/genetics , Mesomycetozoea/physiology , Mesomycetozoea/cytology , Spindle Apparatus/metabolism , Giant Cells/cytology , Life Cycle Stages , Genomics
10.
Open Biol ; 14(5): 230460, 2024 May.
Article in English | MEDLINE | ID: mdl-38806145

ABSTRACT

The precise spatial and temporal control of histone phosphorylations is important for the ordered progression through the different phases of mitosis. The phosphorylation of H2B at S6 (H2B S6ph), which is crucial for chromosome segregation, reaches its maximum level during metaphase and is limited to the inner centromere. We discovered that the temporal and spatial regulation of this modification, as well as its intensity, are governed by the scaffold protein RepoMan and its associated catalytically active phosphatases, PP1α and PP1γ. Phosphatase activity is inhibited at the area of maximal H2B S6 phosphorylation at the inner centromere by site-specific Aurora B-mediated inactivation of the PP1/RepoMan complex. The motor protein Mklp2 contributes to the relocalization of Aurora B from chromatin to the mitotic spindle during anaphase, thus alleviating Aurora B-dependent repression of the PP1/RepoMan complex and enabling dephosphorylation of H2B S6. Accordingly, dysregulation of Mklp2 levels, as commonly observed in tumour cells, leads to the lack of H2B S6 dephosphorylation during early anaphase, which might contribute to chromosomal instability.


Subject(s)
Aurora Kinase B , Cell Cycle Proteins , Histones , Mitosis , Protein Phosphatase 1 , Aurora Kinase B/metabolism , Phosphorylation , Humans , Histones/metabolism , Protein Phosphatase 1/metabolism , Protein Phosphatase 1/genetics , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , HeLa Cells , Spindle Apparatus/metabolism , Centromere/metabolism , Nuclear Proteins/metabolism , Nuclear Proteins/genetics
11.
J Cell Biol ; 223(7)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38578284

ABSTRACT

During mitosis, the Bub1-Bub3 complex concentrates at kinetochores, the microtubule-coupling interfaces on chromosomes, where it contributes to spindle checkpoint activation, kinetochore-spindle microtubule interactions, and protection of centromeric cohesion. Bub1 has a conserved N-terminal tetratricopeptide repeat (TPR) domain followed by a binding motif for its conserved interactor Bub3. The current model for Bub1-Bub3 localization to kinetochores is that Bub3, along with its bound motif from Bub1, recognizes phosphorylated "MELT" motifs in the kinetochore scaffold protein Knl1. Motivated by the greater phenotypic severity of BUB-1 versus BUB-3 loss in C. elegans, we show that the BUB-1 TPR domain directly recognizes a distinct class of phosphorylated motifs in KNL-1 and that this interaction is essential for BUB-1-BUB-3 localization and function. BUB-3 recognition of phospho-MELT motifs additively contributes to drive super-stoichiometric accumulation of BUB-1-BUB-3 on its KNL-1 scaffold during mitotic entry. Bub1's TPR domain interacts with Knl1 in other species, suggesting that collaboration of TPR-dependent and Bub3-dependent interfaces in Bub1-Bub3 localization and functions may be conserved.


Subject(s)
Caenorhabditis elegans Proteins , Cell Cycle Proteins , Kinetochores , Microtubule-Associated Proteins , Protein Serine-Threonine Kinases , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Cell Cycle Checkpoints , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Kinetochores/metabolism , Microtubule-Associated Proteins/metabolism , Spindle Apparatus/metabolism , Tetratricopeptide Repeat , Protein Serine-Threonine Kinases/metabolism
12.
Biomolecules ; 14(4)2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38672404

ABSTRACT

Mitosis mediates the accurate separation of daughter cells, and abnormalities are closely related to cancer progression. KIF11, a member of the kinesin family, plays a vital role in the formation and maintenance of the mitotic spindle. Recently, an increasing quantity of data have demonstrated the upregulated expression of KIF11 in various cancers, promoting the emergence and progression of cancers. This suggests the great potential of KIF11 as a prognostic biomarker and therapeutic target. However, the molecular mechanisms of KIF11 in cancers have not been systematically summarized. Therefore, we first discuss the functions of the protein encoded by KIF11 during mitosis and connect the abnormal expression of KIF11 with its clinical significance. Then, we elucidate the mechanism of KIF11 to promote various hallmarks of cancers. Finally, we provide an overview of KIF11 inhibitors and outline areas for future work.


Subject(s)
Kinesins , Mitosis , Neoplasms , Kinesins/metabolism , Kinesins/genetics , Humans , Mitosis/genetics , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/pathology , Animals , Gene Expression Regulation, Neoplastic , Spindle Apparatus/metabolism , Spindle Apparatus/genetics
13.
EMBO J ; 43(10): 2062-2085, 2024 May.
Article in English | MEDLINE | ID: mdl-38600243

ABSTRACT

The γ-tubulin ring complex (γ-TuRC) is a structural template for de novo microtubule assembly from α/ß-tubulin units. The isolated vertebrate γ-TuRC assumes an asymmetric, open structure deviating from microtubule geometry, suggesting that γ-TuRC closure may underlie regulation of microtubule nucleation. Here, we isolate native γ-TuRC-capped microtubules from Xenopus laevis egg extract nucleated through the RanGTP-induced pathway for spindle assembly and determine their cryo-EM structure. Intriguingly, the microtubule minus end-bound γ-TuRC is only partially closed and consequently, the emanating microtubule is locally misaligned with the γ-TuRC and asymmetric. In the partially closed conformation of the γ-TuRC, the actin-containing lumenal bridge is locally destabilised, suggesting lumenal bridge modulation in microtubule nucleation. The microtubule-binding protein CAMSAP2 specifically binds the minus end of γ-TuRC-capped microtubules, indicating that the asymmetric minus end structure may underlie recruitment of microtubule-modulating factors for γ-TuRC release. Collectively, we reveal a surprisingly asymmetric microtubule minus end protofilament organisation diverging from the regular microtubule structure, with direct implications for the kinetics and regulation of nucleation and subsequent modulation of microtubules during spindle assembly.


Subject(s)
Microtubule-Associated Proteins , Microtubules , Tubulin , Xenopus Proteins , Xenopus laevis , ran GTP-Binding Protein , Microtubules/metabolism , Animals , Microtubule-Associated Proteins/metabolism , Microtubule-Associated Proteins/genetics , ran GTP-Binding Protein/metabolism , ran GTP-Binding Protein/genetics , Tubulin/metabolism , Tubulin/chemistry , Xenopus Proteins/metabolism , Xenopus Proteins/genetics , Cryoelectron Microscopy , Spindle Apparatus/metabolism
14.
Development ; 151(20)2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38572965

ABSTRACT

Microtubule organising centres (MTOCs) are sites of localised microtubule nucleation in eukaryotic cells. Regulation of microtubule dynamics often involves KATANIN (KTN): a microtubule severing enzyme that cuts microtubules to generate new negative ends, leading to catastrophic depolymerisation. In Arabidopsis thaliana, KTN is required for the organisation of microtubules in the cell cortex, preprophase band, mitotic spindle and phragmoplast. However, as angiosperms lack MTOCs, the role of KTN in MTOC formation has yet to be studied in plants. Two unique MTOCs - the polar organisers - form on opposing sides of the preprophase nucleus in liverworts. Here, we show that KTN-mediated microtubule depolymerisation regulates the number and organisation of polar organisers formed in Marchantia polymorpha. Mpktn mutants that lacked KTN function had supernumerary disorganised polar organisers compared with wild type. This was in addition to defects in the microtubule organisation in the cell cortex, preprophase band, mitotic spindle and phragmoplast. These data are consistent with the hypothesis that KTN-mediated microtubule dynamics are required for the de novo formation of MTOCs, a previously unreported function in plants.


Subject(s)
Katanin , Marchantia , Microtubule-Organizing Center , Microtubules , Katanin/metabolism , Katanin/genetics , Microtubules/metabolism , Marchantia/metabolism , Marchantia/genetics , Microtubule-Organizing Center/metabolism , Mutation/genetics , Spindle Apparatus/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Arabidopsis/metabolism , Arabidopsis/genetics
15.
Development ; 151(10)2024 May 15.
Article in English | MEDLINE | ID: mdl-38639390

ABSTRACT

The planar orientation of cell division (OCD) is important for epithelial morphogenesis and homeostasis. Here, we ask how mechanics and antero-posterior (AP) patterning combine to influence the first divisions after gastrulation in the Drosophila embryonic epithelium. We analyse hundreds of cell divisions and show that stress anisotropy, notably from compressive forces, can reorient division directly in metaphase. Stress anisotropy influences the OCD by imposing metaphase cell elongation, despite mitotic rounding, and overrides interphase cell elongation. In strongly elongated cells, the mitotic spindle adapts its length to, and hence its orientation is constrained by, the cell long axis. Alongside mechanical cues, we find a tissue-wide bias of the mitotic spindle orientation towards AP-patterned planar polarised Myosin-II. This spindle bias is lost in an AP-patterning mutant. Thus, a patterning-induced mitotic spindle orientation bias overrides mechanical cues in mildly elongated cells, whereas in strongly elongated cells the spindle is constrained close to the high stress axis.


Subject(s)
Cell Division , Cell Polarity , Drosophila melanogaster , Epithelial Cells , Metaphase , Spindle Apparatus , Stress, Mechanical , Animals , Metaphase/physiology , Epithelial Cells/cytology , Epithelial Cells/metabolism , Spindle Apparatus/metabolism , Drosophila melanogaster/embryology , Drosophila melanogaster/cytology , Cell Polarity/physiology , Body Patterning , Myosin Type II/metabolism , Embryo, Nonmammalian/cytology , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Gastrulation/physiology
16.
J Cell Sci ; 137(9)2024 May 01.
Article in English | MEDLINE | ID: mdl-38661008

ABSTRACT

DPF3, along with other subunits, is a well-known component of the BAF chromatin remodeling complex, which plays a key role in regulating chromatin remodeling activity and gene expression. Here, we elucidated a non-canonical localization and role for DPF3. We showed that DPF3 dynamically localizes to the centriolar satellites in interphase and to the centrosome, spindle midzone and bridging fiber area, and midbodies during mitosis. Loss of DPF3 causes kinetochore fiber instability, unstable kinetochore-microtubule attachment and defects in chromosome alignment, resulting in altered mitotic progression, cell death and genomic instability. In addition, we also demonstrated that DPF3 localizes to centriolar satellites at the base of primary cilia and is required for ciliogenesis by regulating axoneme extension. Taken together, these findings uncover a moonlighting dual function for DPF3 during mitosis and ciliogenesis.


Subject(s)
Centrioles , Cilia , Kinetochores , Mitosis , Transcription Factors , Cilia/metabolism , Humans , Centrioles/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , Kinetochores/metabolism , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Animals , Mice , Genomic Instability , Centrosome/metabolism , Spindle Apparatus/metabolism , HeLa Cells , Axoneme/metabolism
17.
Int J Biol Macromol ; 267(Pt 1): 131417, 2024 May.
Article in English | MEDLINE | ID: mdl-38582457

ABSTRACT

Bone morphogenetic protein 15 (BMP15) plays a crucial role in the porcine follicular development. However, its exact functions in the in vitro maturation (IVM) of porcine oocytes remain largely unknown. Here, through cytoplasmic injection of a preassembled crRNA-tracrRNA-Cas9 ribonucleoprotein complex, we achieved BMP15 disruption in approximately 54 % of the cultured porcine oocytes. Editing BMP15 impaired the IVM of porcine oocytes, as indicated by the significantly increased abnormal spindle assembly and reduced first polar body (PB1) extrusion. The editing also impaired cytoplasmic maturation of porcine oocytes, as reflected by reduced abundant of Golgi apparatus and impaired functions of mitochondria. The impaired IVM of porcine oocytes by editing BMP15 possibly was associated with the attenuated SMAD1/5 and EGFR-ERK1/2 signaling in the cumulus granulosa cells (CGCs) and the inhibited MOS/ERK1/2 signaling in oocytes. The attenuated MOS/ERK1/2 signaling may contribute to the inactivation of maturation promoting factor (MPF) and the increased abnormal spindle assembly, leading to reduced PB1 extrusion. It also may contribute to reduced Golgi apparatus formation, and impaired functions of mitochondria. These findings expand our understanding of the regulatory role of BMP15 in the IVM of porcine oocytes and provide a basis for manipulation of porcine reproductive performance.


Subject(s)
Bone Morphogenetic Protein 15 , Oocytes , Spindle Apparatus , Animals , Oocytes/metabolism , Bone Morphogenetic Protein 15/genetics , Bone Morphogenetic Protein 15/metabolism , Swine , Female , Spindle Apparatus/metabolism , MAP Kinase Signaling System , Mitochondria/metabolism , In Vitro Oocyte Maturation Techniques , Golgi Apparatus/metabolism , Organelles/metabolism , Organelles/genetics , Signal Transduction
18.
Curr Biol ; 34(10): 2085-2093.e6, 2024 05 20.
Article in English | MEDLINE | ID: mdl-38670094

ABSTRACT

Proper chromosome segregation in meiosis I relies on the formation of connections between homologous chromosomes. Crossovers between homologs provide a connection that allows them to attach correctly to the meiosis I spindle. Tension is transmitted across the crossover when the partners attach to microtubules from opposing poles of the spindle. Tension stabilizes microtubule attachments that will pull the partners toward opposite poles at anaphase. Paradoxically, in many organisms, non-crossover partners segregate correctly. The mechanism by which non-crossover partners become bioriented on the meiotic spindle is unknown. Both crossover and non-crossover partners pair their centromeres early in meiosis (prophase). In budding yeast, centromere pairing is correlated with subsequent correct segregation of the partners. The mechanism by which centromere pairing, in prophase, promotes later correct attachment of the partners to the metaphase spindle is unknown. We used live cell imaging to track the biorientation process of non-crossover chromosomes. We find that centromere pairing allows the establishment of connections between the partners that allows their later interdependent attachment to the meiotic spindle using tension-sensing biorientation machinery. Because all chromosome pairs experience centromere pairing, our findings suggest that crossover chromosomes also utilize this mechanism to achieve maximal segregation fidelity.


Subject(s)
Centromere , Chromosome Segregation , Meiosis , Saccharomyces cerevisiae , Centromere/metabolism , Chromosome Segregation/physiology , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Spindle Apparatus/metabolism , Spindle Apparatus/physiology , Chromosome Pairing , Chromosomes, Fungal/genetics , Microtubules/metabolism
19.
Mol Biol Cell ; 35(6): ar83, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38656792

ABSTRACT

The KMN (Knl1/Mis12/Ndc80) network at the kinetochore, primarily known for its role in chromosome segregation, has been shown to be repurposed during neurodevelopment. Here, we investigate the underlying neuronal mechanism and show that the KMN network promotes the proper axonal organization within the C. elegans head nervous system. Postmitotic degradation of KNL-1, which acts as a scaffold for signaling and has microtubule-binding activities at the kinetochore, led to disorganized ganglia and aberrant placement and organization of axons in the nerve ring - an interconnected axonal network. Through gene-replacement approaches, we demonstrate that the signaling motifs within KNL-1, responsible for recruiting protein phosphatase 1, and activating the spindle assembly checkpoint are required for neurodevelopment. Interestingly, while the microtubule-binding activity is crucial to KMN's neuronal function, microtubule dynamics and organization were unaffected in the absence of KNL-1. Instead, the NDC-80 microtubule-binding mutant displayed notable defects in axon bundling during nerve ring formation, indicating its role in facilitating axon-axon contacts. Overall, these findings provide evidence for a noncanonical role for the KMN network in shaping the structure and connectivity of the nervous system in C. elegans during brain development.


Subject(s)
Axons , Caenorhabditis elegans Proteins , Caenorhabditis elegans , Kinetochores , Microtubule-Associated Proteins , Microtubules , Neurons , Animals , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/genetics , Axons/metabolism , Axons/physiology , Kinetochores/metabolism , Neurons/metabolism , Microtubule-Associated Proteins/metabolism , Microtubules/metabolism , Nervous System/metabolism , Spindle Apparatus/metabolism , Cytoskeletal Proteins/metabolism , Chromosome Segregation , Signal Transduction
20.
Mol Biol Cell ; 35(6): ar84, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38598297

ABSTRACT

The spindle is a bipolar microtubule-based machine that is crucial for accurate chromosome segregation. Spindle bipolarity is generated by Eg5 (a kinesin-5), a conserved motor that drives spindle assembly by localizing to and sliding apart antiparallel microtubules. In the presence of Eg5 inhibitors (K5Is), KIF15 (a kinesin-12) can promote spindle assembly, resulting in K5I-resistant cells (KIRCs). However, KIF15 is a less potent motor than Eg5, suggesting that other factors may contribute to spindle formation in KIRCs. Protein Regulator of Cytokinesis 1 (PRC1) preferentially bundles antiparallel microtubules, and we previously showed that PRC1 promotes KIF15-microtubule binding, leading us to hypothesize that PRC1 may enhance KIF15 activity in KIRCs. Here, we demonstrate that: 1) loss of PRC1 in KIRCs decreases spindle bipolarity, 2) overexpression of PRC1 increases spindle formation efficiency in KIRCs, 3) overexpression of PRC1 protects K5I naïve cells against the K5I S-trityl-L-cysteine (STLC), and 4) PRC1 overexpression promotes the establishment of K5I resistance. These effects are not fully reproduced by a TPX2, a microtubule bundler with no known preference for microtubule orientation. These results suggest a model wherein PRC1-mediated bundling of microtubules creates a more favorable microtubule architecture for KIF15-driven mitotic spindle assembly in the context of Eg5 inhibition.


Subject(s)
Kinesins , Microtubules , Spindle Apparatus , Kinesins/metabolism , Spindle Apparatus/metabolism , Microtubules/metabolism , Humans , Cell Cycle Proteins/metabolism , Microtubule-Associated Proteins/metabolism , Mitosis/physiology , HeLa Cells , Chromosome Segregation
SELECTION OF CITATIONS
SEARCH DETAIL
...