Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.336
Filter
1.
Gac Med Mex ; 160(1): 1-8, 2024.
Article in English | MEDLINE | ID: mdl-38753562

ABSTRACT

BACKGROUND: Protein interactions participate in many molecular mechanisms involved in cellular processes. The human TATA box binding protein (hTBP) interacts with Antennapedia (Antp) through its N-terminal region, specifically via its glutamine homopeptides. This PolyQ region acts as a binding site for other transcription factors under normal conditions, but when it expands, it generates spinocerebellar ataxia 17 (SCA17), whose protein aggregates in the brain prevent its correct functioning. OBJECTIVE: To determine whether the hTBP glutamine-rich region is involved in its interaction with homeoproteins and the role it plays in the formation of protein aggregates in SCA17. MATERIAL AND METHODS: We characterized hTBP interaction with other homeoproteins using BiFC, and modeled SCA17 in Drosophila melanogaster by targeting hTBPQ80 to the fly brain using UAS/GAL4. RESULTS: There was hTBP interaction with homeoproteins through its glutamine-rich region, and hTBP protein aggregates with expanded glutamines were found to affect the locomotor capacity of flies. CONCLUSIONS: The study of hTBP interactions opens the possibility for the search for new therapeutic strategies in neurodegenerative pathologies such as SCA17.


ANTECEDENTES: Las interacciones proteicas participan en una gran cantidad de mecanismos moleculares que rigen los procesos celulares. La proteína de unión a la caja TATA humana (hTBP) interacciona con Antennapedia (Antp) a través de su extremo N-terminal, específicamente a través de sus homopéptidos de glutaminas. Esta región PolyQ sirve como sitio de unión a factores de transcripción en condiciones normales, pero cuando se expande genera la ataxia espinal cerebelosa 17 (SCA17), cuyos agregados proteicos en el cerebro impiden su funcionamiento correcto. OBJETIVO: Determinar si la región rica en glutaminas de hTBP interviene en su interacción con homeoproteínas y el papel que tiene en la formación de agregados proteicos en SCA17. MATERIAL Y MÉTODOS: Se caracterizó la interacción de hTBP con otras homeoproteínas usando BiFC y se modeló SCA17 en Drosophila melanogaster dirigiendo hTBPQ80 al cerebro de las moscas usando UAS/GAL4. RESULTADOS: Existió interacción de hTBP con homeoproteínas a través de su región rica en glutaminas. Los agregados proteicos de hTBP con las glutaminas expandidas afectaron la capacidad locomotriz de las moscas. CONCLUSIONES: El estudio de las interacciones de hTBP abre la posibilidad para la búsqueda de nuevas estrategias terapéuticas en patologías neurodegenerativas como SCA17.


Subject(s)
Disease Models, Animal , Drosophila melanogaster , Spinocerebellar Ataxias , TATA-Box Binding Protein , Animals , Drosophila melanogaster/metabolism , Spinocerebellar Ataxias/metabolism , Spinocerebellar Ataxias/genetics , TATA-Box Binding Protein/metabolism , TATA-Box Binding Protein/genetics , Humans , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Glutamine/metabolism , Protein Aggregates/physiology , Peptides/metabolism , Brain/metabolism
2.
Int J Mol Sci ; 25(10)2024 May 08.
Article in English | MEDLINE | ID: mdl-38791166

ABSTRACT

Movement disorders such as bradykinesia, tremor, dystonia, chorea, and myoclonus most often arise in several neurodegenerative diseases with basal ganglia and white matter involvement. While the pathophysiology of these disorders remains incompletely understood, dysfunction of the basal ganglia and related brain regions is often implicated. The VPS13D gene, part of the VPS13 family, has emerged as a crucial player in neurological pathology, implicated in diverse phenotypes ranging from movement disorders to Leigh syndrome. We present a clinical case of VPS13D-associated disease with two variants in the VPS13D gene in an adult female. This case contributes to our evolving understanding of VPS13D-related diseases and underscores the importance of genetic screening in diagnosing and managing such conditions.


Subject(s)
Spinocerebellar Ataxias , Humans , Female , Spinocerebellar Ataxias/genetics , Spinocerebellar Ataxias/diagnosis , Spinocerebellar Ataxias/congenital , Vesicular Transport Proteins/genetics , Adult , Phenotype , Mutation , Genes, Recessive , Pedigree , Proteins
3.
Stem Cell Res ; 77: 103441, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38759410

ABSTRACT

Spinocerebellar ataxia type 12 (SCA12) is caused by a CAG expansion mutation in PPP2R2B, a gene encoding brain-specific regulatory units of protein phosphatase 2A (PP2A); while normal alleles carry 4 to 31 triplets, the disease alleles carry 43 to 78 triplets. Here, by CRISPR/Cas9n genome editing, we have generated a human heterozygous SCA12 iPSC line with 73 triplets for the mutant allele. The heterozygous SCA12 iPSCs have normal karyotype, express pluripotency markers and are able to differentiate into the three germ layers.


Subject(s)
Gene Editing , Heterozygote , Induced Pluripotent Stem Cells , Mutation , Spinocerebellar Ataxias , Humans , Induced Pluripotent Stem Cells/metabolism , Gene Editing/methods , Spinocerebellar Ataxias/genetics , Spinocerebellar Ataxias/pathology , Cell Line , CRISPR-Cas Systems/genetics , Protein Phosphatase 2/genetics , Protein Phosphatase 2/metabolism , Nerve Tissue Proteins
4.
Neurobiol Dis ; 197: 106530, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38750673

ABSTRACT

Heterogeneity is one of the key features of the healthy brain and selective vulnerability characterizes many, if not all, neurodegenerative diseases. While cerebellum contains majority of brain cells, neither its heterogeneity nor selective vulnerability in disease are well understood. Here we describe molecular, cellular and functional heterogeneity in the context of healthy cerebellum as well as in cerebellar disease Spinocerebellar Ataxia Type 1 (SCA1). We first compared disease pathology in cerebellar vermis and hemispheres across anterior to posterior axis in a knock-in SCA1 mouse model. Using immunohistochemistry, we demonstrated earlier and more severe pathology of PCs and glia in the posterior cerebellar vermis of SCA1 mice. We also demonstrate heterogeneity of Bergmann glia in the unaffected, wild-type mice. Then, using RNA sequencing, we found both shared, as well as, posterior cerebellum-specific molecular mechanisms of pathogenesis that include exacerbated gene dysregulation, increased number of altered signaling pathways, and decreased pathway activity scores in the posterior cerebellum of SCA1 mice. We demonstrated unexpectedly large differences in the gene expression between posterior and anterior cerebellar vermis of wild-type mice, indicative of robust intraregional heterogeneity of gene expression in the healthy cerebellum. Additionally, we found that SCA1 disease profoundly reduces intracerebellar heterogeneity of gene expression. Further, using fiber photometry, we found that population level PC calcium activity was altered in the posterior lobules in SCA1 mice during walking. We also identified regional differences in the population level activity of Purkinje cells (PCs) in unrestrained wild-type mice that were diminished in SCA1 mice.


Subject(s)
Cerebellum , Spinocerebellar Ataxias , Animals , Cerebellum/metabolism , Cerebellum/pathology , Spinocerebellar Ataxias/pathology , Spinocerebellar Ataxias/metabolism , Spinocerebellar Ataxias/genetics , Mice , Ataxin-1/metabolism , Ataxin-1/genetics , Purkinje Cells/pathology , Purkinje Cells/metabolism , Neuroglia/metabolism , Neuroglia/pathology , Disease Models, Animal , Mice, Transgenic , Mice, Inbred C57BL , Male
5.
Clin Neurol Neurosurg ; 240: 108271, 2024 05.
Article in English | MEDLINE | ID: mdl-38569247

ABSTRACT

Vacuolar protein sorting 13 homolog D (VPS13D) gene encodes a protein involved in trafficking of membrane proteins between the trans-Golgi network and the prevacuolar compartment. This study reports a novel homozygous mutation (c.12494T>C p.Ile4165Thr) in the VPS13D gene in a Saudi female diagnosed with autosomal recessive spinocerebellar ataxia type 4 (SCAR4). The patient's clinical presentation, including progressive weakness, ataxia, and numbness, aligns with SCAR4 characteristics. The comprehensive evaluation, comprising neurological examination, brain MRI, and genetic testing, revealed distinctive features consistent with autosomal recessive inheritance. The genetic mutation spectrum enrichment emphasizes the intricate interplay of genetic factors in SCAR4. Although no specific treatment exists, rehabilitation and supportive therapy remain central. The identified mutation contributes valuable insights for clinical management and genetic counseling, urging the ongoing collection of VPS13D gene mutation data to explore genotype-phenotype correlations in spinocerebellar ataxias. This study underscores the importance of multidisciplinary care and lays the foundation for future research directions in understanding and treating SCAR4.


Subject(s)
Mutation , Proteins , Spinocerebellar Ataxias , Humans , Female , Saudi Arabia , Spinocerebellar Ataxias/genetics , Spinocerebellar Ataxias/diagnostic imaging , Mutation/genetics , Vesicular Transport Proteins/genetics , Homozygote , Adult , Pedigree
6.
Sci Rep ; 14(1): 8571, 2024 04 13.
Article in English | MEDLINE | ID: mdl-38609436

ABSTRACT

This study emphasizes the benefits of open-source software such as DeepLabCut (DLC) and R to automate, customize and enhance data analysis of motor behavior. We recorded 2 different spinocerebellar ataxia type 6 mouse models while performing the classic beamwalk test, tracked multiple body parts using the markerless pose-estimation software DLC and analyzed the tracked data using self-written scripts in the programming language R. The beamwalk analysis script (BAS) counts and classifies minor and major hindpaw slips with an 83% accuracy compared to manual scoring. Nose, belly and tail positions relative to the beam, as well as the angle at the tail base relative to the nose and tail tip were determined to characterize motor deficits in greater detail. Our results found distinct ataxic abnormalities such as an increase in major left hindpaw slips and a lower belly and tail position in both SCA6 ataxic mouse models compared to control mice at 18 months of age. Furthermore, a more detailed analysis of various body parts relative to the beam revealed an overall lower body position in the SCA684Q compared to the CT-longQ27PC mouse line at 18 months of age, indicating a more severe ataxic deficit in the SCA684Q group.


Subject(s)
Ataxia , Spinocerebellar Ataxias , Animals , Mice , Spinocerebellar Ataxias/genetics , Data Analysis , Disease Models, Animal , Nose
7.
Int J Mol Sci ; 25(7)2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38612794

ABSTRACT

The spinocerebellar ataxias (SCA) comprise a group of inherited neurodegenerative diseases. Machado-Joseph Disease (MJD) or spinocerebellar ataxia 3 (SCA3) is the most common autosomal dominant form, caused by the expansion of CAG repeats within the ataxin-3 (ATXN3) gene. This mutation results in the expression of an abnormal protein containing long polyglutamine (polyQ) stretches that confers a toxic gain of function and leads to misfolding and aggregation of ATXN3 in neurons. As a result of the neurodegenerative process, SCA3 patients are severely disabled and die prematurely. Several screening approaches, e.g., druggable genome-wide and drug library screenings have been performed, focussing on the reduction in stably overexpressed ATXN3(polyQ) protein and improvement in the resultant toxicity. Transgenic overexpression models of toxic ATXN3, however, missed potential modulators of endogenous ATXN3 regulation. In another approach to identify modifiers of endogenous ATXN3 expression using a CRISPR/Cas9-modified SK-N-SH wild-type cell line with a GFP-T2A-luciferase (LUC) cassette under the control of the endogenous ATXN3 promotor, four statins were identified as potential activators of expression. We here provide an overview of the high throughput screening approaches yet performed to find compounds or genomic modifiers of ATXN3(polyQ) toxicity in different SCA3 model organisms and cell lines to ameliorate and halt SCA3 progression in patients. Furthermore, the putative role of cholesterol in neurodegenerative diseases (NDDs) in general and SCA3 in particular is discussed.


Subject(s)
Machado-Joseph Disease , Spinocerebellar Ataxias , Humans , Animals , Machado-Joseph Disease/genetics , Translational Research, Biomedical , Spinocerebellar Ataxias/genetics , Translational Science, Biomedical , Animals, Genetically Modified
8.
Commun Biol ; 7(1): 413, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38594382

ABSTRACT

Better understanding of the earliest molecular pathologies of all neurodegenerative diseases is expected to improve human therapeutics. We investigated the earliest molecular pathology of spinocerebellar ataxia type 1 (SCA1), a rare familial neurodegenerative disease that primarily induces death and dysfunction of cerebellum Purkinje cells. Extensive prior studies have identified involvement of transcription or RNA-splicing factors in the molecular pathology of SCA1. However, the regulatory network of SCA1 pathology, especially central regulators of the earliest developmental stages and inflammatory events, remains incompletely understood. Here, we elucidated the earliest developmental pathology of SCA1 using originally developed dynamic molecular network analyses of sequentially acquired RNA-seq data during differentiation of SCA1 patient-derived induced pluripotent stem cells (iPSCs) to Purkinje cells. Dynamic molecular network analysis implicated histone genes and cytokine-relevant immune response genes at the earliest stages of development, and revealed relevance of ISG15 to the following degradation and accumulation of mutant ataxin-1 in Purkinje cells of SCA1 model mice and human patients.


Subject(s)
Induced Pluripotent Stem Cells , Spinocerebellar Ataxias , Animals , Humans , Mice , Cytokines , Induced Pluripotent Stem Cells/pathology , Mice, Transgenic , Purkinje Cells/physiology , Spinocerebellar Ataxias/genetics , Spinocerebellar Ataxias/pathology , Ubiquitins
9.
Cereb Cortex ; 34(4)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38679476

ABSTRACT

Spinocerebellar ataxia type 12 is a hereditary and neurodegenerative illness commonly found in India. However, there is no established noninvasive automatic diagnostic system for its diagnosis and identification of imaging biomarkers. This work proposes a novel four-phase machine learning-based diagnostic framework to find spinocerebellar ataxia type 12 disease-specific atrophic-brain regions and distinguish spinocerebellar ataxia type 12 from healthy using a real structural magnetic resonance imaging dataset. Firstly, each brain region is represented in terms of statistics of coefficients obtained using 3D-discrete wavelet transform. Secondly, a set of relevant regions are selected using a graph network-based method. Thirdly, a kernel support vector machine is used to capture nonlinear relationships among the voxels of a brain region. Finally, the linear relationship among the brain regions is captured to build a decision model to distinguish spinocerebellar ataxia type 12 from healthy by using the regularized logistic regression method. A classification accuracy of 95% and a harmonic mean of precision and recall, i.e. F1-score of 94.92%, is achieved. The proposed framework provides relevant regions responsible for the atrophy. The importance of each region is captured using Shapley Additive exPlanations values. We also performed a statistical analysis to find volumetric changes in spinocerebellar ataxia type 12 group compared to healthy. The promising result of the proposed framework shows that clinicians can use it for early and timely diagnosis of spinocerebellar ataxia type 12.


Subject(s)
Biomarkers , Brain , Magnetic Resonance Imaging , Spinocerebellar Ataxias , Support Vector Machine , Humans , Magnetic Resonance Imaging/methods , Spinocerebellar Ataxias/diagnostic imaging , Spinocerebellar Ataxias/genetics , Spinocerebellar Ataxias/diagnosis , Brain/diagnostic imaging , Brain/pathology , Brain/metabolism , Biomarkers/analysis , Male , Female , Adult , Logistic Models , Middle Aged , Atrophy
10.
Biomed Pharmacother ; 174: 116526, 2024 May.
Article in English | MEDLINE | ID: mdl-38574621

ABSTRACT

Spinocerebellar ataxia type 1 (SCA1) is a debilitating neurodegenerative disorder of the cerebellum and brainstem. Memantine has been proposed as a potential treatment for SCA1. It blocks N-methyl-D-aspartate (NMDA) receptors on neurons, reduces excitotoxicity and decreases neurodegeneration in Alzheimer models. However, in cerebellar neurodegenerative diseases, the potential value of memantine is still unclear. We investigated the effects of memantine on motor performance and synaptic transmission in the cerebellum in a mouse model where mutant ataxin 1 is specifically targeted to glia. Lentiviral vectors (LVV) were used to express mutant ataxin 1 selectively in Bergmann glia (BG). In mice transduced with the mutant ataxin 1, chronic treatment with memantine improved motor activity during initial tests, presumably due to preserved BG and Purkinje cell (PC) morphology and numbers. However, mice were unable to improve their rota rod scores during next days of training. Memantine also compromised improvement in the rota rod scores in control mice upon repetitive training. These effects may be due to the effects of memantine on plasticity (LTD suppression) and NMDA receptor modulation. Some effects of chronically administered memantine persisted even after its wash-out from brain slices. Chronic memantine reduced morphological signs of neurodegeneration in the cerebellum of SCA1 model mice. This resulted in an apparent initial reduction of ataxic phenotype, but memantine also affected cerebellar plasticity and ultimately compromised motor learning. We speculate that that clinical application of memantine in SCA1 might be hampered by its ability to suppress NMDA-dependent plasticity in cerebellar cortex.


Subject(s)
Disease Models, Animal , Memantine , Phenotype , Spinocerebellar Ataxias , Animals , Memantine/pharmacology , Spinocerebellar Ataxias/drug therapy , Spinocerebellar Ataxias/pathology , Mice , Ataxin-1/metabolism , Ataxin-1/genetics , Motor Activity/drug effects , Cerebellum/drug effects , Cerebellum/pathology , Cerebellum/metabolism , Purkinje Cells/drug effects , Purkinje Cells/pathology , Purkinje Cells/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Mice, Transgenic , Mice, Inbred C57BL , Neuroglia/drug effects , Neuroglia/pathology , Neuroglia/metabolism , Male , Neuronal Plasticity/drug effects
11.
J Vet Intern Med ; 38(3): 1808-1814, 2024.
Article in English | MEDLINE | ID: mdl-38669583

ABSTRACT

BACKGROUND: In 2020, a novel neurologic disease was observed in juvenile Quarter Horses (QHs) in North America. It was unknown if this was an aberrant manifestation of another previously described neurological disorder in foals, such as equine neuroaxonal dystrophy/equine degenerative myeloencephalopathy (eNAD/EDM). HYPOTHESIS/OBJECTIVES: To describe the clinical findings, outcomes, and postmortem changes with Equine Juvenile Spinocerebellar Ataxia (EJSCA), differentiate the disease from other similar neurological disorders, and determine a mode of inheritance. ANIMALS: Twelve neurologically affected QH foals and the dams. METHODS: Genomic DNA was isolated and pedigrees were manually constructed. RESULTS: All foals (n = 12/12) had a history of acute onset of neurological deficits with no history of trauma. Neurological deficits were characterized by asymmetrical spinal ataxia, with pelvic limbs more severely affected than thoracic limbs. Clinicopathological abnormalities included high serum activity of gamma-glutamyl transferase and hyperglycemia. All foals became recumbent (median, 3 days: [0-18 days]), which necessitated humane euthanasia (n = 11/12, 92%; the remaining case was found dead). Histological evaluation at postmortem revealed dilated myelin sheaths and digestion chambers within the spinal cord, most prominently in the dorsal spinocerebellar tracts. Pedigree analysis revealed a likely autosomal recessive mode of inheritance. CONCLUSIONS AND CLINICAL IMPORTANCE: EJSCA is a uniformly fatal, rapidly progressive, likely autosomal recessive neurological disease of QHs <1 month of age in North America that is etiologically distinct from other clinically similar neurological disorders. Once the causative variant for EJSCA is validated, carriers can be identified through genetic testing to inform breeding decisions.


Subject(s)
Horse Diseases , Pedigree , Animals , Horses , Horse Diseases/genetics , Horse Diseases/pathology , Male , Female , North America , Spinocerebellar Ataxias/veterinary , Spinocerebellar Ataxias/genetics , Spinocerebellar Ataxias/pathology , Nervous System Diseases/veterinary , Nervous System Diseases/genetics , Nervous System Diseases/pathology
12.
Rev Neurol (Paris) ; 180(5): 410-416, 2024 May.
Article in English | MEDLINE | ID: mdl-38609751

ABSTRACT

Genetic cerebellar ataxias are still a diagnostic challenge, and yet not all of them have been identified. Very recently, in early 2023, a new cause of late-onset cerebellar ataxia (LOCA) was identified, spinocerebellar ataxia 27B (SCA27B). This is an autosomal dominant ataxia due to a GAA expansion in intron 1 of the FGF14 gene. Thanks to the many studies carried out since its discovery, it is now possible to define the clinical phenotype, its particularities, and the progression of SCA27B. It has also been established that it is one of the most frequent causes of LOCA. The core phenotype of the disease consists of slowly progressive late-onset ataxia with cerebellar syndrome, oculomotor disorders including downbeat nystagmus, and episodic symptoms such as diplopia. Therapeutic approaches have been proposed, including acetazolamide, and 4-aminopyridine, the latter with a better benefit/tolerance profile.


Subject(s)
Age of Onset , Spinocerebellar Ataxias , Humans , Spinocerebellar Ataxias/genetics , Spinocerebellar Ataxias/diagnosis , Cerebellar Ataxia/genetics , Cerebellar Ataxia/diagnosis , Cerebellar Ataxia/etiology , Fibroblast Growth Factors/genetics , Spinocerebellar Degenerations
13.
Neurobiol Dis ; 195: 106492, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38575093

ABSTRACT

We performed a comprehensive study of the morphological, functional, and genetic features of moonwalker (MWK) mice, a mouse model of spinocerebellar ataxia caused by a gain of function of the TRPC3 channel. These mice show numerous behavioral symptoms including tremor, altered gait, circling behavior, impaired motor coordination, impaired motor learning and decreased limb strength. Cerebellar pathology is characterized by early and almost complete loss of unipolar brush cells as well as slowly progressive, moderate loss of Purkinje cell (PCs). Structural damage also includes loss of synaptic contacts from parallel fibers, swollen ER structures, and degenerating axons. Interestingly, no obvious correlation was observed between PC loss and severity of the symptoms, as the phenotype stabilizes around 2 months of age, while the cerebellar pathology is progressive. This is probably due to the fact that PC function is severely impaired much earlier than the appearance of PC loss. Indeed, PC firing is already impaired in 3 weeks old mice. An interesting feature of the MWK pathology that still remains to be explained consists in a strong lobule selectivity of the PC loss, which is puzzling considering that TRPC is expressed in every PC. Intriguingly, genetic analysis of MWK cerebella shows, among other alterations, changes in the expression of both apoptosis inducing and resistance factors possibly suggesting that damaged PCs initiate specific cellular pathways that protect them from overt cell loss.


Subject(s)
Disease Models, Animal , Phenotype , Animals , Mice , Cerebellum/pathology , Cerebellum/metabolism , Purkinje Cells/pathology , Purkinje Cells/metabolism , TRPC Cation Channels/genetics , TRPC Cation Channels/metabolism , Genotype , Spinocerebellar Ataxias/pathology , Spinocerebellar Ataxias/genetics , Spinocerebellar Ataxias/metabolism , Mice, Neurologic Mutants , Mice, Inbred C57BL , Mice, Transgenic
14.
J Assist Reprod Genet ; 41(5): 1273-1283, 2024 May.
Article in English | MEDLINE | ID: mdl-38578603

ABSTRACT

PURPOSE: To present the developed preimplantation genetic testing (PGT) for spinocerebellar ataxia type 1 (SCA1) and the outcomes of IVF with PGT. METHODS: PGT was performed for two unrelated couples from the Republic of Sakha (Yakutia) with the risk of SCA1 in one spouse. We have developed a system for PGT of a monogenic disease (PGT-M) for SCA1, which includes the analysis of a panel of 11 polymorphic STR markers linked to the ATXN1 gene and a pathogenic variant of the ATXN1 gene using nested PCR and fragment analysis. IVF/ICSI programs were performed according to standard protocols. Multiple displacement amplification (MDA) was used for whole genome amplification (WGA) and array comparative genomic hybridization (aCGH) for aneuploidy testing (PGT-A). RESULTS: Eight STRs were informative for the first couple and ten for the second. Similarity of the haplotypes carrying pathogenic variants of the ATXN1 gene was noted. In the first case, during IVF/ICSI-PGT, three embryos reached the blastocyst stage and were biopsied. One embryo was diagnosed as normal by maternal STR haplotype and the ATXN1 allele. PGT-A revealed euploidy. The embryo transfer resulted in a singleton pregnancy, and a healthy boy was born. Postnatal diagnosis confirmed normal ATXN1. In the second case, two blastocysts were biopsied. Both were diagnosed as normal by PGT-M, but PGT-A revealed aneuploidy. CONCLUSION: Birth of a healthy child after PGT for SCA1 was the first case of successful preimplantation prevention of SCA1 for the Yakut couple and the first case of successful PGT for SCA1 in Russia.


Subject(s)
Ataxin-1 , Microsatellite Repeats , Preimplantation Diagnosis , Spinocerebellar Ataxias , Humans , Spinocerebellar Ataxias/genetics , Spinocerebellar Ataxias/pathology , Spinocerebellar Ataxias/diagnosis , Female , Ataxin-1/genetics , Male , Adult , Pregnancy , Microsatellite Repeats/genetics , Genetic Testing , Comparative Genomic Hybridization , Aneuploidy , Fertilization in Vitro , Embryo Transfer
16.
Am J Hum Genet ; 111(5): 913-926, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38626762

ABSTRACT

Expanded CAG repeats in coding regions of different genes are the most common cause of dominantly inherited spinocerebellar ataxias (SCAs). These repeats are unstable through the germline, and larger repeats lead to earlier onset. We measured somatic expansion in blood samples collected from 30 SCA1, 50 SCA2, 74 SCA3, and 30 SCA7 individuals over a mean interval of 8.5 years, along with postmortem tissues and fetal tissues from SCA1, SCA3, and SCA7 individuals to examine somatic expansion at different stages of life. We showed that somatic mosaicism in the blood increases over time. Expansion levels are significantly different among SCAs and correlate with CAG repeat lengths. The level of expansion is greater in individuals with SCA7 who manifest disease compared to that of those who do not yet display symptoms. Brain tissues from SCA individuals have larger expansions compared to the blood. The cerebellum has the lowest mosaicism among the studied brain regions, along with a high expression of ATXNs and DNA repair genes. This was the opposite in cortices, with the highest mosaicism and lower expression of ATXNs and DNA repair genes. Fetal cortices did not show repeat instability. This study shows that CAG repeats are increasingly unstable during life in the blood and the brain of SCA individuals, with gene- and tissue-specific patterns.


Subject(s)
Mosaicism , Spinocerebellar Ataxias , Trinucleotide Repeat Expansion , Humans , Spinocerebellar Ataxias/genetics , Trinucleotide Repeat Expansion/genetics , Female , Male , Adult , Middle Aged , Cerebellum/metabolism , Cerebellum/pathology , Aged , Brain/metabolism , Brain/pathology , Ataxin-1/genetics
17.
AAPS J ; 26(3): 57, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38689016

ABSTRACT

The aim of this study was to develop a model to predict individual subject disease trajectories including parameter uncertainty and accounting for missing data in rare neurological diseases, showcased by the ultra-rare disease Autosomal-Recessive Spastic Ataxia Charlevoix Saguenay (ARSACS). We modelled the change in SARA (Scale for Assessment and Rating of Ataxia) score versus Time Since Onset of symptoms using non-linear mixed effect models for a population of 173 patients with ARSACS included in the prospective real-world multicenter Autosomal Recessive Cerebellar Ataxia (ARCA) registry. We used the Multivariate Imputation Chained Equation (MICE) algorithm to impute missing covariates, and a covariate selection procedure with a pooled p-value to account for the multiply imputed data sets. We then investigated the impact of covariates and population parameter uncertainty on the prediction of the individual trajectories up to 5 years after their last visit. A four-parameter logistic function was selected. Men were estimated to have a 25% lower SARA score at disease onset and a moderately higher maximum SARA score, and time to progression (T50) was estimated to be 35% lower in patients with age of onset over 15 years. The population disease progression rate started slowly at 0.1 points per year peaking to a maximum of 0.8 points per year (at 36.8 years since onset of symptoms). The prediction intervals for SARA scores 5 years after the last visit were large (median 7.4 points, Q1-Q3: 6.4-8.5); their size was mostly driven by individual parameter uncertainty and individual disease progression rate at that time.


Subject(s)
Disease Progression , Muscle Spasticity , Spinocerebellar Ataxias , Adolescent , Adult , Child , Female , Humans , Male , Middle Aged , Young Adult , Muscle Spasticity/genetics , Prospective Studies , Rare Diseases/genetics , Registries , Severity of Illness Index , Spinocerebellar Ataxias/genetics , Spinocerebellar Ataxias/congenital , Uncertainty , Infant, Newborn , Infant , Child, Preschool
18.
Int J Mol Sci ; 25(8)2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38673939

ABSTRACT

Polyglutamine (polyQ)-encoding CAG repeat expansions represent a common disease-causing mutation responsible for several dominant spinocerebellar ataxias (SCAs). PolyQ-expanded SCA proteins are toxic for cerebellar neurons, with Purkinje cells (PCs) being the most vulnerable. RNA interference (RNAi) reagents targeting transcripts with expanded CAG reduce the level of various mutant SCA proteins in an allele-selective manner in vitro and represent promising universal tools for treating multiple CAG/polyQ SCAs. However, it remains unclear whether the therapeutic targeting of CAG expansion can be achieved in vivo and if it can ameliorate cerebellar functions. Here, using a mouse model of SCA7 expressing a mutant Atxn7 allele with 140 CAGs, we examined the efficacy of short hairpin RNAs (shRNAs) targeting CAG repeats expressed from PHP.eB adeno-associated virus vectors (AAVs), which were introduced into the brain via intravascular injection. We demonstrated that shRNAs carrying various mismatches with the CAG target sequence reduced the level of polyQ-expanded ATXN7 in the cerebellum, albeit with varying degrees of allele selectivity and safety profile. An shRNA named A4 potently reduced the level of polyQ-expanded ATXN7, with no effect on normal ATXN7 levels and no adverse side effects. Furthermore, A4 shRNA treatment improved a range of motor and behavioral parameters 23 weeks after AAV injection and attenuated the disease burden of PCs by preventing the downregulation of several PC-type-specific genes. Our results show the feasibility of the selective targeting of CAG expansion in the cerebellum using a blood-brain barrier-permeable vector to attenuate the disease phenotype in an SCA mouse model. Our study represents a significant advancement in developing CAG-targeting strategies as a potential therapy for SCA7 and possibly other CAG/polyQ SCAs.


Subject(s)
Ataxin-7 , Dependovirus , Disease Models, Animal , Peptides , Phenotype , RNA, Small Interfering , Spinocerebellar Ataxias , Trinucleotide Repeat Expansion , Animals , Spinocerebellar Ataxias/genetics , Spinocerebellar Ataxias/therapy , Spinocerebellar Ataxias/metabolism , Peptides/genetics , Dependovirus/genetics , Mice , Ataxin-7/genetics , Ataxin-7/metabolism , Trinucleotide Repeat Expansion/genetics , RNA, Small Interfering/genetics , Genetic Vectors/genetics , Genetic Vectors/administration & dosage , Purkinje Cells/metabolism , Purkinje Cells/pathology , Mice, Transgenic , Cerebellum/metabolism , Cerebellum/pathology , Humans , Genetic Therapy/methods , Alleles
19.
Mol Biol Rep ; 51(1): 590, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38683245

ABSTRACT

BACKGROUND: Boucher Neuhäuser Syndrome (BNS) is a rare disease with autosomal recessive inheritance defined by the classical triad; early-onset ataxia, hypogonadism and chorioretinal dystrophy. CASE PRESENTATION: We present two siblings diagnosed with BNS at midlife, identified with homozygous state of a novel PNPLA6 missense mutation. One healthy sibling and the mother were heterozygous carriers of the mutation. The proband presented with the classical triad and the other sibling presented with visual problems at first. The proband was referred to our department by a private Neurologist, in early adulthood, because of hypogonadism, cerebellar ataxia, axonal neuropathy, and chorioretinal dystrophy for further evaluation. The sibling was referred to our department for evaluation, at childhood, due to visual problems. Later, the patient displayed the triad of ataxia, hypogonadotropic hypogonadism, and chorioretinal dystrophy. The unusual medical history of the two siblings led to further examinations and eventually the diagnosis of the first BNS cases in Cyprus. WES-based ataxia in silico gene panel analysis revealed 15 genetic variants and further filtering analysis revealed the PNPLA6 c.3323G > A variant. Segregation analysis in the family with Sanger sequencing confirmed the PNPLA6 homozygous variant c.3323G > A, p.Arg1108Gln in exon 29. CONCLUSIONS: This highlights the importance of considering rare inherited causes of visual loss, spinocerebellar ataxia, or/and HH in a neurology clinic and the significant role of genetic sequencing in the diagnostic process.


Subject(s)
Acyltransferases , Cerebellar Ataxia , Hypogonadism , Retinal Dystrophies , Adult , Female , Humans , Male , Middle Aged , Acyltransferases/genetics , Cerebellar Ataxia/genetics , Hypogonadism/genetics , Mutation, Missense/genetics , Pedigree , Phospholipases/genetics , Retinal Dystrophies/genetics , Siblings , Spinocerebellar Ataxias/genetics
20.
Mov Disord ; 39(5): 887-892, 2024 May.
Article in English | MEDLINE | ID: mdl-38469933

ABSTRACT

BACKGROUND: Biallelic pathogenic variants in the ANO10 gene cause autosomal recessive progressive ataxia (ATX-ANO10). METHODS: Following the MDSGene protocol, we systematically investigated genotype-phenotype relationships in ATX-ANO10 based on the clinical and genetic data from 82 published and 12 newly identified patients. RESULTS: Most patients (>80%) had loss-of-function (LOF) variants. The most common variant was c.1150_1151del, found in all 29 patients of Romani ancestry, who had a 14-year earlier mean age at onset than patients homozygous for other LOF variants. We identified previously undescribed clinical features of ATX-ANO10 (e.g., facial muscle involvement and strabismus) suggesting the involvement of brainstem pathology, and we propose a diagnostic algorithm that may aid clinical ATX-ANO10 diagnosis. CONCLUSIONS: The early disease onset in patients with c.1150_1151del may indicate the existence of genetic/environmental disease-modifying factors in the Romani population. Our findings will inform patient counseling and may improve our understanding of the disease mechanism. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Subject(s)
Anoctamins , Spinocerebellar Ataxias , Adolescent , Adult , Child , Female , Humans , Male , Middle Aged , Young Adult , Age of Onset , Anoctamins/genetics , Genetic Association Studies , Spinocerebellar Ataxias/genetics , Aged
SELECTION OF CITATIONS
SEARCH DETAIL
...