Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 140
Filter
Add more filters










Publication year range
1.
J Ethnopharmacol ; 331: 118327, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38750987

ABSTRACT

ETHNOPHARMACOLOGY RELEVANCE: Rohdea pachynema F.T.Wang & Tang (R. pachynema), is a traditional folk medicine used for the treatment of stomach pain, stomach ulcers, bruises, and skin infections in China. Some of the diseases may relate to microbial infections in traditional applications. However few reports on its antimicrobial properties and bioactive components. AIM OF THE STUDY: To identify its bioactive constituents against methicillin-resistant Staphylococcus aureus (MRSA) in vitro and in vivo, and its mechanism. MATERIALS AND METHODS: The anti-MRSA ingredient 6α-O-[ß-D-xylopyranosyl-(1 â†’ 3)-ß-D-quinovopyranosyl]-(25S)-5α-spirostan-3ß-ol (XQS) was obtained from R. pachynema by phytochemical isolation. Subsequently, XQS underwent screening using the broth microdilution method and growth inhibition curves to assess its antibacterial activity. The mechanism of XQS was evaluated by multigeneration induction, biofilm resistance assay, scanning electron microscopy, transmission electron microscopy, and metabolomics. Additionally, a mouse skin infection model was established in vivo. RESULTS: 26 compounds were identified from the R. pachynema, in which anti-MRSA spirostane saponin (XQS) was reported for the first time with a minimum inhibitory concentration (MIC) of 8 µg/mL. XQS might bind to peptidoglycan (PGN) of the cell wall, phosphatidylglycerol (PG), and phosphatidylethanolamine (PE) of the cell membrane, then destroying the cell wall and the cell membrane, resulting in reduced membrane fluidity and membrane depolarization. Furthermore, XQS affected MRSA lipid metabolism, amino acid metabolism, and ABC transporters by metabolomics analysis, which targeted cell walls and membranes causing less susceptibility to drug resistance. Furthermore, XQS (8 mg/kg) recovered skin wounds in mice infected by MRSA effectively, superior to vancomycin (8 mg/kg). CONCLUSIONS: XQS showed anti-MRSA bioactivity in vitro and in vivo, and its mechanism association with cell walls and membranes was reported for the first, which supported the traditional uses of R. pachynema and explained its sensitivity to MRSA.


Subject(s)
Anti-Bacterial Agents , Methicillin-Resistant Staphylococcus aureus , Microbial Sensitivity Tests , Saponins , Animals , Methicillin-Resistant Staphylococcus aureus/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/isolation & purification , Mice , Saponins/pharmacology , Saponins/isolation & purification , Spirostans/pharmacology , Spirostans/isolation & purification , Biofilms/drug effects , Staphylococcal Infections/drug therapy , Staphylococcal Infections/microbiology , Female , Fishes , Male
2.
Chem Biodivers ; 21(7): e202400980, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38747266

ABSTRACT

Three new polyhydroxylated spirostanol steroidal saponins, dulongenosides B-D (2-4), along with 14 known compounds, dulongenoside A (1), padelaoside B (5), parisyunnanoside G (6), polyphyllin D (7), ophiopogonin C' (8), formosanin C (9), dioscin (10), paris saponin VII (11), paris H (12), parisyunnanoside I (13), protodioscin (14), proprotogracillin (15), crustecdysone (16), and stigmasterol-3-O-ß-d-glucopyranoside (17), were isolated from the rhizomes of Paris dulongensis (Melanthiaceae). Their chemical structures were elucidated based on extensive analyses of NMR and MS data and acidic hydrolyses. The isolates were evaluated for their cytotoxicity to five human cancer cell lines (HL-60, SW480, MDA-MB-231, A549, and A549/Taxol) and the normal human bronchial epithelial cell line BEAS-2B by the MTS test. Compounds 7-12 and 14 showed cytotoxic activity, with IC50 values ranging from 0.20 to 4.35 µM. Proprotogracillin selectively inhibited A549 (IC50=0.58 µM) and A549/Taxol (IC50=0.74 µM) cells, with no significant cytotoxic activity against HL-60, SW480, MDA-MB-231, or BEAS-2B cells, with IC50 values greater than 40 µM.


Subject(s)
Antineoplastic Agents, Phytogenic , Drug Screening Assays, Antitumor , Melanthiaceae , Rhizome , Saponins , Spirostans , Humans , Saponins/isolation & purification , Saponins/pharmacology , Saponins/chemistry , Rhizome/chemistry , Melanthiaceae/chemistry , Spirostans/chemistry , Spirostans/isolation & purification , Spirostans/pharmacology , Cell Line, Tumor , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/isolation & purification , Cell Proliferation/drug effects , Structure-Activity Relationship , Cell Survival/drug effects , Molecular Structure , Molecular Conformation , Dose-Response Relationship, Drug
3.
Chem Biodivers ; 21(5): e202400257, 2024 May.
Article in English | MEDLINE | ID: mdl-38414116

ABSTRACT

Bulbs of Lilium brownii, commonly known as "Bai-he" in China, serve both edible and medicinal purposes in clinical practice. In this study, two new isospirostanol-type saponins were isolated from L. brownii, and their structures were identified by spectroscopic method, and absolute configurations were elucidated by comprehensive analysis of spectral data obtained from combined acid hydrolysis. Two compounds were finally identified as 3-O-[α-L-rhamnopyranosyl-(1→2)-ß-D-glucopyranoside]-(22R,25R)-5α-spirosolane-3ß-ol (1) and 3-O-{α-L-rhamnopyranosyl-(1→2)-[ß-D-glucopyranosyl-(1→4)]-ß-D-glucopyranoside}-(22R,25R)-5α-spirosolane-3ß-ol (2), respectively. Further, we found that compound 2 significantly suppressed the proliferation of SMMC-7721 and HepG2 cells with IC50 values of 26.3±1.08 µM and 30.9±1.59 µM, whereas compound 1 didn't inhibit both of the two hepatocellular carcinoma. Subsequently, compound 2 effectively decreased the levels of interleukin-1ß and tumor necrosis factor-α and the expression of Bcl-2, and increased the expression of Bax and Caspase-3 proteins. Which indicated that the anti-hepatocellular carcinoma effect of compound 2 involves reducing the level of inflammation and inducing apoptosis.


Subject(s)
Apoptosis , Cell Proliferation , Lilium , Liver Neoplasms , Plant Roots , Saponins , Humans , Saponins/pharmacology , Saponins/chemistry , Saponins/isolation & purification , Cell Proliferation/drug effects , Lilium/chemistry , Plant Roots/chemistry , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Liver Neoplasms/metabolism , Apoptosis/drug effects , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/isolation & purification , Drug Screening Assays, Antitumor , Cell Line, Tumor , Spirostans/pharmacology , Spirostans/chemistry , Spirostans/isolation & purification , Structure-Activity Relationship , Dose-Response Relationship, Drug , Interleukin-1beta/metabolism , Interleukin-1beta/antagonists & inhibitors , Tumor Necrosis Factor-alpha/metabolism , Hep G2 Cells , Molecular Structure , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/metabolism , Molecular Conformation
4.
J Ethnopharmacol ; 283: 114706, 2022 Jan 30.
Article in English | MEDLINE | ID: mdl-34614446

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Maidong (Liliaceae) is used as a yin-nourishing medication for the treatment of cardiovascular disease, inflammation, and assistant cancer chemotherapy in the clinic. Ophiopogonin B (OP-B), a major saponin extracted from Maidong, is reported to have potential antitumor activities against various human cancers. However, the effects of OP-B on human ovarian cancer (OC) and the potential mechanisms of action are yet elusive. AIM OF THE STUDY: In this study, we aimed to explore the potential molecular mechanisms of OP-B in the treatment of OC using network pharmacology. In vivo and in vitro experiments were conducted to further verify the therapeutic effects of OP-B on OC. MATERIALS AND METHODS: To investigate the functions of OP-B against OC holistically, the related targets of OP-B and OC were each predicted based on four public databases. Subsequently, the identified PPI network was constructed to detect the hub potential targets. In addition, GO and KEGG enrichment analysis were applied by Metascape database. Furthermore, we simultaneously investigated the anticancer effects of OP-B on SKOV3 and A2780 human ovarian cancer cells using a cell viability assay, transwell assay, and an image-based cytometric assay. The quantitative real-time PCR and western-blot assay were used to validate the RNA and protein levels of target genes in OP-B treated OC cells. At last, SKOV3-bearing BALB/c nude mice were applied to observe the effectiveness and toxicity of OP-B. RESULTS: Through network pharmacological analysis, OP-B was found to play a critical role in OC via multiple targets and pathways, especially the STAT3 signaling pathways. In addition, in vitro experiments found OP-B suppressed SKOV3 and A2780 cells proliferation in a time and concentration dependent manner, and markedly impaired cancer cell migration. Flow cytometry analysis revealed that OP-B significantly increased early and late apoptosis, induced G2/M phase cell cycle arrest in SKOV3 cells and G0/G1 phase cell cycle arrest in A2780 cells. Moreover, OP-B administration down-regulated the expression of p-STAT3 protein, whereas the RNA expression and total protein levels of STAT3 were not altered. Finally, in vivo experiments confirmed the therapeutic effects of OP-B on OC in nude mice with low toxicity in heart, liver, lung, and kidney. CONCLUSION: OP-B could efficiently suppress OC cellular proliferation, migration and induce apoptosis, cell cycle arrest mainly via the regulation of STAT3 signaling pathway. This study provides a promising potential application for an alternative to chemotherapy in ovarian cancer.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Liliaceae/chemistry , Ovarian Neoplasms/drug therapy , Saponins/pharmacology , Spirostans/pharmacology , Animals , Antineoplastic Agents, Phytogenic/administration & dosage , Antineoplastic Agents, Phytogenic/isolation & purification , Apoptosis/drug effects , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Female , Humans , Mice , Mice, Inbred BALB C , Mice, Nude , Network Pharmacology , Ovarian Neoplasms/pathology , STAT3 Transcription Factor/metabolism , Saponins/administration & dosage , Saponins/isolation & purification , Signal Transduction/drug effects , Spirostans/administration & dosage , Spirostans/isolation & purification , Xenograft Model Antitumor Assays
5.
Molecules ; 26(21)2021 Oct 29.
Article in English | MEDLINE | ID: mdl-34770942

ABSTRACT

Saponins, a diverse group of natural compounds, offer an interesting pool of derivatives with biomedical application. In this study, three structurally related spirostanol saponins were isolated and identified from the leek flowers of Allium porrum L. (garden leek). Two of them were identical with the already known leek plant constituents: aginoside (1) and 6-deoxyaginoside (2). The third one was identified as new component of A. porrum; however, it was found identical with yayoisaponin A (3) obtained earlier from a mutant of elephant garlic Allium ampeloprasun L. It is a derivative of the aginoside (1) with additional glucose in its glycosidic chain, identified by MS and NMR analysis as (2α, 3ß, 6ß, 25R)-2,6-dihydroxyspirostan-3-yl ß-D-glucopyranosyl-(1 → 3)-ß-D-glucopranosyl-(1 → 2)-[ß-D-xylopyranosyl-(1 → 3)]-ß-D-glucopyranosyl]-(1 → 4)-ß-D-galactopyranoside, previously reported also under the name alliporin. The leek native saponins were tested together with other known and structurally related saponins (tomatonin and digitonin) and with their related aglycones (agigenin and diosgenin) for in vitro cytotoxicity and for effects on NO production in mouse peritoneal cells. The highest inhibitory effects were exhibited by 6-deoxyaginoside. The obtained toxicity data, however, closely correlated with the suppression of NO production. Therefore, an unambiguous linking of obtained bioactivities of saponins with their expected immunobiological properties remained uncertain.


Subject(s)
Allium/chemistry , Flowers/chemistry , Macrophages, Peritoneal/drug effects , Nitric Oxide/antagonists & inhibitors , Saponins/pharmacology , Spirostans/pharmacology , Animals , Cell Line , Cell Survival/drug effects , Lipopolysaccharides/antagonists & inhibitors , Lipopolysaccharides/pharmacology , Macrophages, Peritoneal/metabolism , Mice , Mice, Inbred C57BL , Molecular Conformation , Nitric Oxide/biosynthesis , Saponins/chemistry , Saponins/isolation & purification , Spirostans/chemistry , Spirostans/isolation & purification
6.
Molecules ; 26(10)2021 May 18.
Article in English | MEDLINE | ID: mdl-34070073

ABSTRACT

Two new spirostanol sapogenins (5ß-spirost-25(27)-en-1ß,2ß,3ß,5ß-tetrol 3 and its 25,27-dihydro derivative, (25S)-spirostan-1ß,2ß,3ß,5ß-tetrol 4) and four new saponins were isolated from the roots and rhizomes of Convallaria majalis L. together with known sapogenins (isolated from Liliaceae): 5ß-spirost-25(27)-en-1ß,3ß-diol 1, (25S)-spirostan-1ß,3ß-diol 2, 5ß-spirost-25(27)-en-1ß,3ß,4ß,5ß-tetrol 5, (25S)-spirostan-1ß,3ß,4ß,5ß-tetrol 6, 5ß-spirost-25(27)-en-1ß,2ß,3ß,4ß,5ß-pentol 7 and (25S)-spirostan-1ß,2ß,3ß,4ß,5ß-pentol 8. New steroidal saponins were found to be pentahydroxy 5-O-glycosides; 5ß-spirost-25(27)-en-1ß,2ß,3ß,4ß,5ß-pentol 5-O-ß-galactopyranoside 9, 5ß-spirost-25(27)-en-1ß,2ß,3ß,4ß,5ß-pentol 5-O-ß-arabinonoside 11, 5ß-(25S)-spirostan-1ß,2ß,3ß,4ß,5ß-pentol 5-O-galactoside 10 and 5ß-(25S)-spirostan-1ß,2ß,3ß,4ß,5ß-pentol 5-O-arabinoside 12 were isolated for the first time. The structures of those compounds were determined by NMR spectroscopy, including 2D COSY, HMBC, HSQC, NOESY, ROESY experiments, theoretical calculations of shielding constants by GIAO DFT, and mass spectrometry (FAB/LSI HR MS). An attempt was made to test biological activity, particularly as potential chemotherapeutic agents, using in silico methods. A set of 12 compounds was docked to the PDB structures of HER2 receptor and tubulin. The results indicated that diols have a higher affinity to the analyzed targets than tetrols and pentols. Two compounds (25S)-spirosten-1ß,3ß-diol 1 and 5ß-spirost-25(27)-en-1ß,2ß,3ß,4ß,5ß-pentol 5-O-galactoside 9 were selected for further evaluation of biological activity.


Subject(s)
Carbon-13 Magnetic Resonance Spectroscopy , Convallaria/chemistry , Density Functional Theory , Models, Molecular , Proton Magnetic Resonance Spectroscopy , Sapogenins/analysis , Saponins/analysis , Spirostans/analysis , Molecular Docking Simulation , Sapogenins/chemistry , Sapogenins/isolation & purification , Saponins/chemistry , Saponins/isolation & purification , Spirostans/chemistry , Spirostans/isolation & purification
7.
Drug Des Devel Ther ; 15: 233-243, 2021.
Article in English | MEDLINE | ID: mdl-33505158

ABSTRACT

BACKGROUND: Reineckia carnea is commonly used to treat cough, pneumonia and other diseases in China. In our previous study, it was found that the ethanol extracts of Reineckia carnea have a strong inhibitory effect on the proliferation of human lung cancer A549 cells. Here, we isolated gracillin from ethanol extracts for the first time. PURPOSE: Clarify the antiproliferation effect of gracillin on A549 cells and further explore its mechanisms via the mitochondrial pathway. METHODS: Gracillin was isolated and purified by silica gel, D-101 macroporous resin and preparative RP-HPLC, then identified by NMR and HR-MS. The inhibitory effects of gracillin on the proliferation of A549 cells were detected by the MTS method. Its mechanisms were further explored by flow cytometry and Western blot. RESULTS: A steroid saponin, gracillin, was isolated and identified from Reineckia carnea for the first time. In a concentration-dependent and time-dependent manner, gracillin significantly inhibited the proliferation of A549 cells with an IC50 value at 2.54 µmol/L and induced morphological changes. The results of flow cytometry analysis showed that the apoptosis rate of A549 cells was significantly increased (p < 0.05), and the cells proportion was obviously arrested in S phase. The concentration of intracellular calcium was raised (p < 0.01), and the mitochondrial membrane potential was greatly decreased (p < 0.01). In addition, the expression levels of Bax, caspase-3, cleaved caspase-3, and cytochrome C were dramatically up-regulated while Bcl-2 was down-regulated (p < 0.05) in A549 cells. CONCLUSION: This study confirmed that gracillin has a significant antiproliferative effect on A549 cells. Gracillin could induce the apoptosis of A549 cells through the mitochondrial pathway, which might be associated with regulation of the concentration of intracellular calcium, the mitochondrial membrane potential and the expression levels of Bax, Bcl-2, caspase-3, cleaved caspase-3, and cytochrome C.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Apoptosis/drug effects , Drugs, Chinese Herbal/pharmacology , Liliaceae/chemistry , Mitochondria/drug effects , Spirostans/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/isolation & purification , Cell Proliferation/drug effects , Cells, Cultured , Drug Screening Assays, Antitumor , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/isolation & purification , Humans , Mitochondria/metabolism , Spirostans/chemistry , Spirostans/isolation & purification
8.
J Ethnopharmacol ; 264: 113381, 2021 Jan 10.
Article in English | MEDLINE | ID: mdl-32946961

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Recently, a new drug combination GRS comprising ginsenoside Rb1 (G-Rb1), ruscogenin (R-Rus) and schisandrin (S-SA) was screened based on ShengMai preparations, which exhibited a prominent cardioprotective effects against myocardial ischemia/reperfusion (MI/R) injury. AIM OF THE STUDY: To investigate their systemic and individual mechanism of each compound in combination GRS. MATERIALS AND METHODS: The mice model of MI/R and hypoxia/reoxygenation (H/R)-induced cardiomyocytes injury were performed to explore the respective characteristics of each compound in GRS against myocardial injury. RESULTS: Each component in the combination GRS attenuated MI/R injury as evidenced by decreased myocardial infarct size, ameliorated histological features, and improved biochemical indicators. Meanwhile, ingredient G, R and S in combination also individually performed a significant decrease of apoptotic index in MI/R mice and H/R-induced cardiomyocytes injury. Mechanistically, component G in GRS could markedly increase the ATP content in cardiomyocytes through activation of AMPKα phosphorylation. Interestingly, the anti-apoptotic actions of G were profoundly attenuated by knockdown of AMPKα, while no alteration was observed on composition R and S. Moreover, component R in GRS significantly reduced the IL-6 and TNF-α mRNA expression, as well as the content of IL-6 via the modulation of NF-κB signaling pathway. Further, component S exhibited the most powerful anti-oxidative capacity in GRS and remarkably decreased the production of MDA and ROS, and potential mechanisms might at least in part through activating the Akt-14-3-3 signaling pathway and inhibiting the phosphorylation of Bad and ERK1/2. CONCLUSIONS: Our results indicated that the respective mechanism of each compound in combination GRS against MI/R injury might closely associated with energy metabolism modulation, suppression of inflammation and oxidative stress.


Subject(s)
Cyclooctanes/administration & dosage , Drugs, Chinese Herbal/administration & dosage , Ginsenosides/administration & dosage , Lignans/administration & dosage , Myocardial Reperfusion Injury/drug therapy , Polycyclic Compounds/administration & dosage , Spirostans/administration & dosage , Animals , Cell Line , Cell Survival/drug effects , Cell Survival/physiology , Cyclooctanes/isolation & purification , Drug Combinations , Drugs, Chinese Herbal/isolation & purification , Ginsenosides/isolation & purification , Inflammation Mediators/antagonists & inhibitors , Inflammation Mediators/metabolism , Lignans/isolation & purification , Male , Mice , Mice, Inbred ICR , Myocardial Reperfusion Injury/metabolism , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Polycyclic Compounds/isolation & purification , Rats , Spirostans/isolation & purification , Treatment Outcome
9.
Oxid Med Cell Longev ; 2020: 8870656, 2020.
Article in English | MEDLINE | ID: mdl-33381274

ABSTRACT

Ophiopogonin D (OPD) and Ophiopogonin D' (OPD') are two bioactive ingredients in Ophiopogon japonicus. Previously published studies have often focused on the therapeutic effects related to OPD's antioxidant capacity but underestimated the cytotoxicity-related side effects of OPD', which may result in unpredictable risks. In this study, we reported another side effect of OPD', hemolysis, and what was unexpected was that this side effect also appeared with OPD. Although hemolysis effects for saponins are familiar to researchers, the hemolytic behavior of OPD or OPD' and the interactions between these two isomers are unique. Therefore, we investigated the effects of OPD and OPD' alone or in combination on the hemolytic behavior in vitro and in vivo and adopted chemical compatibility and proteomics methods to explain the potential mechanism. Meanwhile, to explain the drug-drug interactions (DDIs), molecular modeling was applied to explore the possible common targets. In this study, we reported that OPD' caused hemolysis both in vitro and in vivo, while OPD only caused hemolysis in vivo. We clarified the differences and DDIs in the hemolytic behavior of the two isomers. An analysis of the underlying mechanism governing this phenomenon showed that hemolysis caused by OPD or OPD' was related to the destruction of the redox balance of erythrocytes. In vivo, in addition to the redox imbalance, the proteomics data demonstrated that lipid metabolic disorders and mitochondrial energy metabolism are extensively involved by hemolysis. We provided a comprehensive description of the hemolysis of two isomers in Ophiopogon japonicus, and risk warnings related to hemolysis were presented. Our research also provided a positive reference for the development and further research of such bioactive components.


Subject(s)
Hemolysis/drug effects , Ophiopogon/chemistry , Saponins/pharmacology , Spirostans/pharmacology , Animals , Antioxidants/adverse effects , Antioxidants/chemistry , Antioxidants/isolation & purification , Antioxidants/pharmacology , Blood Cells/drug effects , Blood Cells/metabolism , Drugs, Chinese Herbal/adverse effects , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/pharmacology , Isomerism , Male , Mice , Oxidation-Reduction/drug effects , Proteome/drug effects , Proteome/metabolism , Rabbits , Rats , Rats, Wistar , Risk Assessment , Saponins/adverse effects , Saponins/chemistry , Saponins/isolation & purification , Spirostans/adverse effects , Spirostans/chemistry , Spirostans/isolation & purification , Toxicity Tests, Acute
10.
Molecules ; 25(17)2020 Aug 24.
Article in English | MEDLINE | ID: mdl-32847104

ABSTRACT

Yucca schidigera Roezl (Mojave), a kind of ornamental plant belonging to the Yucca genus (Agavaceae), whose extract exhibits important roles in food, beverage, cosmetic and feed additives owing to its rich spirostanol saponins. To provide a comprehensive chemical profiling of the spirostanol saponins in it, this study was performed by using a multi-phase liquid chromatography method combining a reversed phase chromatography T3 column with a normal phase chromatography silica column for the separation and an ESI-Q-Exactive-Orbitrap MS in positive ion mode as the detector. By comparing the retention time and ion fragments with standards, thirty-one spirostanol saponins were identified. In addition, according to the summary of the chromatographic retention behaviors and the MS/MS cleavage patterns and biosynthetic pathway, another seventy-nine spirostanol saponins were speculatively identified, forty ones of which were potentially new ones. Moreover, ten novel spirostanol saponins (three pairs of (25R/S)-spirostanol saponin isomer mixtures) were targeted for isolation to verify the speculation. Then, the comprehensive chemical profiling of spirostanol saponins from Y. schidigera was reported here firstly.


Subject(s)
Plant Extracts/chemistry , Saponins , Spirostans , Yucca/chemistry , Chromatography, High Pressure Liquid , Saponins/chemistry , Saponins/isolation & purification , Silica Gel , Spirostans/chemistry , Spirostans/isolation & purification , Tandem Mass Spectrometry
11.
Steroids ; 155: 108569, 2020 03.
Article in English | MEDLINE | ID: mdl-31899263

ABSTRACT

Three new spirostanol glycosides, trilliumosides K-M (1-3), one new sesquiterpenoid glycoside, tritschsesuquiside A (4), along with three known analogues (5-7) were obtained from the rhizomes of Trillium tschonoskii. The structures of new glycosides were elucidated by spectroscopic analyses (HRMS and NMR) and chemical methods. Glycosides 5-7 displayed cytotoxicities against five human cancer cell lines with IC50 values ranging from 10.5 ±â€¯1.0 to 1.0 ±â€¯0.2 µM, with 7 being the most cytotoxic compound with IC50 values of 1.0 ±â€¯0.2, 2.2 ±â€¯1.2, and 3.4 ±â€¯0.4 µM against Huh7, CCRF-CEM, and HeLa cell lines, respectively. The flow cytometric results revealed that both 5 and 6 could induce apoptosis of HCT116 and Huh7 cells.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Glycosides/pharmacology , Rhizome/chemistry , Sesquiterpenes/pharmacology , Spirostans/pharmacology , Trillium/chemistry , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/isolation & purification , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Glycosides/chemistry , Glycosides/isolation & purification , HCT116 Cells , HeLa Cells , Humans , Models, Molecular , Molecular Conformation , Sesquiterpenes/chemistry , Sesquiterpenes/isolation & purification , Spirostans/chemistry , Spirostans/isolation & purification , Structure-Activity Relationship , Tumor Cells, Cultured
12.
Asian J Surg ; 43(2): 405-416, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31345657

ABSTRACT

BACKGROUND/OBJECTIVE: The present study investigated the potent therapeutic effects of Ruscogenin, main steroid sapogenin of traditional Chinese plant called 'Ophiopogon japonicas', on chronic ulcer model established with acetic acid in rats. METHODS: 24 rats were attenuated to the sham (2 ml/kg/day isotonic solution), control (untreated ulcer) and treatment (3 ml/kg/day ruscogenin) groups. After treatment for 2 weeks, gastric tissues were collected and prepared for light microscopic (H&E), immunohistochemical (Collagen I, III and IV) and biochemical analysis [Epidermal growth factor (EGF), Prostaglandin E2 (PGE2), Tumor Necrosis Factor alpha (TNF-α), Interleukin 6 and 8 (IL-6 and IL-8), Lipid Peroxidase (LPO), Myeloperoxidase (MPO), Glutathione (GSH) and Glutathione Peroxidase (GSH-Px)] and transmission electron microscopy (TEM). RESULTS: Macroscopic scoring showed that the ulceration area of ruscogenin-treated group decreased compared with control group. Immunohistochemical analysis revealed ruscogenin ameliorated and restored the levels of Collagen I and IV to the levels of sham group. Tissue levels of EGF and PGE2 enhanced significantly in untreated ulcer group while were higher in treated ulcer group than the control group. TNF-α, IL-6, IL-8, LPO, MPO levels increased significantly in control group whereas decreased in treated rats after ruscogenin treatment. However, levels of GSH and GSH-Px increased significantly in treatment group. TEM showed chief cells and parietal cells of ulcer group having degenerated organelles while ruscogenin group had normal ultrastructure of cells. CONCLUSION: There are potent anti-inflammatory and anti-oxidant effects of ruscogenin on gastric ulcer and may be successfully used as a safe and therapeutic agent in treatment of peptic ulcer.


Subject(s)
Phytotherapy , Spirostans/administration & dosage , Stomach Ulcer/drug therapy , Animals , Chronic Disease , Collagen/metabolism , Cytokines/metabolism , Dinoprostone/metabolism , Disease Models, Animal , Epidermal Growth Factor/metabolism , Female , Microscopy, Electron, Transmission , Ophiopogon/chemistry , Parietal Cells, Gastric/pathology , Parietal Cells, Gastric/ultrastructure , Peroxidases/metabolism , Rats, Sprague-Dawley , Spirostans/isolation & purification , Stomach Ulcer/metabolism , Stomach Ulcer/pathology , Tumor Necrosis Factor-alpha/metabolism
13.
Steroids ; 153: 108529, 2020 01.
Article in English | MEDLINE | ID: mdl-31672628

ABSTRACT

Alzheimer's disease (AD) is multi-factorial disorder characterized by impaired memory and cognition deficit. AD is characterized by impaired cholinergic transmission, extracellular amyloid beta deposits, neurofibrillary tangles and oxidative stress. A multi-target directed ligand (MTDL) approach is required to devise a therapeutic strategy against AD. In the present study, Asparagus racemosus aqueous extract was chosen, as it possess abundant medicinal properties including nootropic effect mentioned in ancient Ayurvedic texts. Moreover, its secondary metabolite sarsasapogenin (SRS) was also selected for this multi-target study for the very first time. The current study demonstrated that sarsasapogenin significantly inhibits key enzymes involved in pathogenesis of AD which are acetylcholinesterase (AChE), butyrylcholinesterase (BuChE), BACE1 and MAO-B in a concentration dependent manner. SRS also exhibited anti-amyloidogenic, anti-oxidant and neuroprotective effects by in vitro studies. The IC50 values of SRS is 9.9 µM and 5.4 µM for AChE and BuChE respectively. SRS also significantly inhibited Aß42 fibrillization up to 68% at 40 µM concentration as compared to control. TEM visualization showed Aß aggregates as short and scattered fibril clearly indicating SRS significantly inhibited peptide nucleation and fibril formation. Furthermore, the SRS was found to exert neuroprotective effect on PC12 cells against Aß42 and H2O2-mediated cytotoxicity. The cell survival was 62% and 69% against Aß42 and H2O2-mediated cytotoxicity, respectively. SRS also inhibited monoaminoxidase-B (MAO-B) and BACE1 enzymes in concentration dependent manner. Molecular docking studies indicated that SRS binds to the catalytic sites of multiple targets (AChE, BuChE, Aß42, BACE1, and MAO-B) in a significant manner that might having disease-modifying effects. Thus SRS is acting as suitable lead and can be utilised as MTDL compound for factors implicated in AD.


Subject(s)
Alzheimer Disease/drug therapy , Antioxidants/pharmacology , Asparagus Plant/chemistry , Enzyme Inhibitors/pharmacology , Neuroprotective Agents/pharmacology , Spirostans/pharmacology , Acetylcholinesterase/metabolism , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Amyloid Precursor Protein Secretases/antagonists & inhibitors , Amyloid Precursor Protein Secretases/metabolism , Amyloid beta-Peptides/antagonists & inhibitors , Amyloid beta-Peptides/metabolism , Animals , Antioxidants/chemistry , Antioxidants/isolation & purification , Aspartic Acid Endopeptidases/antagonists & inhibitors , Aspartic Acid Endopeptidases/metabolism , Biphenyl Compounds/antagonists & inhibitors , Butyrylcholinesterase/metabolism , Cell Survival/drug effects , Electrophorus , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/isolation & purification , Horses , Humans , Ligands , Monoamine Oxidase/metabolism , Neuroprotective Agents/chemistry , Neuroprotective Agents/isolation & purification , Oxidative Stress/drug effects , PC12 Cells , Picrates/antagonists & inhibitors , Rats , Spirostans/chemistry , Spirostans/isolation & purification
14.
Molecules ; 23(10)2018 Oct 08.
Article in English | MEDLINE | ID: mdl-30297623

ABSTRACT

In order to find a simple, generic, efficient separation method for 25R/S-spirostanol saponin diastereomers, the liquid chromatographic retention behaviors of C12 carbonylation and C12 unsubstituted 25R/S-spirostanol saponin diastereomers on different stationary phases (C8, C18, C30 columns) and different mobile phases (MeOH-1% CH3COOH and CH3CN-1% CH3COOH) were investigated. A C30 column was firstly found to offer the highest efficiency for the separation of this kind of diastereomers than C8 and C18 columns. Meanwhile, the analysis results indicated that both CH3CN-1% CH3COOH and MeOH-1% CH3COOH eluate systems were selective for C12 unsubstituted 25R/S-spirostanol saponin diastereomers, while MeOH-1% CH3COOH possessed better selectivity for C12 carbonylation ones. Using the abovementioned analysis method, six pairs of 25R/S-spirostanol saponin diastereomers 1a⁻6a and 1b⁻6b from Yucca schidigera Roezl (Mojave) were isolated successfully by using HPLC on C30 column for the first time. Among them, three pairs were new ones, named as (25R)-Yucca spirostanoside E1 (1a), (25S)-Yucca spirostanoside E1 (1b), (25R)-Yucca spirostanoside E2 (2a), (25S)-Yucca spirostanoside E2 (2b), (25R)-Yucca spirostanoside E3 (3a), (25S)-Yucca spirostanoside E3 (3b), respectively. Moreover, 3a, 5a, 6a, 3b⁻6b showed strong inhibitory activities on the growth of SW620 cell lines with the IC50 values of 12.02⁻69.17 µM.


Subject(s)
Plant Extracts/chemistry , Saponins/chemistry , Spirostans/chemistry , Yucca/chemistry , Biological Assay , Carbon Isotopes/chemistry , Chromatography, High Pressure Liquid , Chromatography, Liquid , Magnetic Resonance Spectroscopy , Saponins/isolation & purification , Spirostans/isolation & purification , Stereoisomerism
15.
Nutrients ; 10(9)2018 Sep 01.
Article in English | MEDLINE | ID: mdl-30200442

ABSTRACT

Naturally occurring saponins have been reported to have anti-inflammatory and immunomodulatory effects. However, the effects of gracillin, a main saponin component of Dioscorea quinqueloba (D. quinqueloba), on atopic dermatitis (AD), have not been previously studied. The aim of this study was to determine whether gracillin isolated from D. quinqueloba has an anti-AD effect on 2,4-dinitrochlorobenzene (DNCB)-induced AD-like skin lesions in SKH-1 hairless mice. Topical co-treatment of gracillin and DNCB for two weeks markedly reduced symptoms typical of AD (redness, itching, swelling and skin lichenification), decreased transepidermal water loss (TEWL) and increased skin hydration. In addition, gracillin strongly inhibited PI-induced IL-4 expression in RBL-2H3 cells and in the skins of AD mice. Our results suggest gracillin is a potential candidate for the prevention and treatment of AD and other inflammatory skin disorders.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Dermatitis, Atopic/prevention & control , Dermatologic Agents/pharmacology , Dinitrochlorobenzene , Dioscorea , Plant Extracts/pharmacology , Skin/drug effects , Spirostans/pharmacology , Animals , Anti-Inflammatory Agents/isolation & purification , Cell Line, Tumor , Dermatitis, Atopic/chemically induced , Dermatitis, Atopic/metabolism , Dermatitis, Atopic/pathology , Dermatologic Agents/isolation & purification , Dioscorea/chemistry , Disease Models, Animal , Female , Immunoglobulin E/blood , Interleukin-4/blood , Mice, Hairless , Phytotherapy , Plant Extracts/isolation & purification , Plants, Medicinal , Rats , Skin/metabolism , Skin/pathology , Spirostans/isolation & purification , Water Loss, Insensible/drug effects
16.
Phytochemistry ; 152: 1-9, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29689318

ABSTRACT

Biotransformation of steroidal ruscogenins (neoruscogenin and ruscogenin) was carried out with Cunninghamella blakesleeana NRRL 1369 and endophytic fungus Neosartorya hiratsukae yielding mainly P450 monooxygenase products together with a glycosylated compound. Fermentation of ruscogenins (75:25, neoruscogenin-ruscogenin mixture) with C. blakesleeana yielded 8 previously undescribed hydroxylated compounds. Furthermore, microbial transformation of neoruscogenin by endophytic fungus N. hiratsukae afforded three previously undescribed neoruscogenin derivatives. While hydroxylation at C-7, C-12, C-14, C-21 with further oxidation at C-1 and C-7 were observed with C. blakesleeana, N. hiratsukae biotransformation provided C-7 and C-12 hydroxylated compounds along with C-12 oxidized and C-1(O) glycosylated derivatives. The structures of the metabolites were elucidated by 1-D (1H, 13C and DEPT135) and 2-D NMR (COSY, HMBC, HMQC, NOESY, ROESY) as well as HR-MS analyses.


Subject(s)
Biotransformation , Cunninghamella/chemistry , Neosartorya/chemistry , Spirostans/metabolism , Cunninghamella/metabolism , Molecular Conformation , Neosartorya/metabolism , Spirostans/chemistry , Spirostans/isolation & purification
17.
J Ethnopharmacol ; 214: 29-36, 2018 Mar 25.
Article in English | MEDLINE | ID: mdl-29233733

ABSTRACT

ETHNOPHARMACOLOGY RELEVANCE: Dioscin, a spirostane glycoside, the rhizoma of Dioscorea septemloba (Diocoreacea) is used for diuresis, rheumatism, and joints pain. Given the poor solubility and stability of Dioscin, we proposed a hypothesis that Dioscin's metabolite(s) are the active substance(s) in vivo to contribute to the reducing effects on serum uric acid levels. AIM OF THE STUDY: The aim of this study is to identify the active metabolite(s) of Dioscin in vivo and to explore the mechanism of its antihyperuricemic activity. MATERIALS AND METHODS: After oral administration of Dioscin in potassium oxonate (PO) induced hyperuricemia rats and adenine-PO induced hyperuricemia mice models, serum uric acid and creatinine levels, clearance of uric acid and creatinine, fractional excretion of uric acid, and renal pathological lesions were determined were used to evaluate the antihyperuricemic effects. Renal glucose transporter-9 (GLUT-9) and organic anion transporter-1 (OAT-1) expressions were analyzed by western blotting method. Renal uric acid excretion was evaluated using stably urate transporter-1 (URAT-1) transfected human epithelial kidney cell line. Intestinal uric acid excretion was evaluated by measuring the transcellular transport of uric acid in HCT116 cells. RESULTS: In hyperuricemia rats, both 25 and 50mg/kg of oral Dioscin decreased serum uric acid levels over 4h. In the hyperuricemia mice, two weeks treatment of Dioscin significantly decreased serum uric acid and creatinine levels, increased clearance of uric acid and creatinine, increased fractional excretion of uric acid, and reduced renal pathological lesions caused by hyperuricemia. In addition, renal GLUT -9 was significantly down-regulated and OAT-1 was up-regulated in Dioscin treated hyperuricemia mice. Dioscin's metabolite Tigogenin significantly inhibited uric acid re-absorption via URAT1 from 10 to 100µM. Diosgenin and Tigogenin increased uric acid excretion via ATP binding cassette subfamily G member 2 (ABCG2). CONCLUSION: Decreasing effect of Dioscin on serum uric acid level and enhancing effect on urate excretion were confirmed in hyperuricemia animal models. Tigogenin, a metabolite of Dioscin, was identified as an active substance with antihyperuricemic activity in vivo, through inhibition of URAT1 and promotion of ABCG2.


Subject(s)
Dioscorea , Diosgenin/analogs & derivatives , Hyperuricemia/drug therapy , Plant Extracts/pharmacology , Renal Elimination/drug effects , Spirostans/pharmacology , Uric Acid/blood , Uricosuric Agents/pharmacology , Adenine , Animals , Biomarkers/blood , Creatinine/blood , Dioscorea/chemistry , Diosgenin/isolation & purification , Diosgenin/pharmacology , Disease Models, Animal , Dose-Response Relationship, Drug , Glucose Transport Proteins, Facilitative/metabolism , HCT116 Cells , Humans , Hyperuricemia/blood , Hyperuricemia/chemically induced , Intestinal Elimination/drug effects , Intestinal Mucosa/metabolism , Intestines/drug effects , Male , Mice , Organic Anion Transport Protein 1/metabolism , Organic Anion Transporters/genetics , Organic Anion Transporters/metabolism , Organic Cation Transport Proteins/genetics , Organic Cation Transport Proteins/metabolism , Oxonic Acid , Phytotherapy , Plant Extracts/isolation & purification , Plants, Medicinal , Rats, Sprague-Dawley , Spirostans/isolation & purification , Time Factors , Uricosuric Agents/isolation & purification
18.
Nat Prod Res ; 31(19): 2312-2315, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28278621

ABSTRACT

Activity-guided fractionation for complement inhibitors led to the isolation of 22 known compounds from Viola kunawarensis. Chemical types include six sterol compounds, three coumarin compounds, five megastigmane compounds, two triterpenoid compounds, two phenylpropanoid compounds, one chlorophyll, one amide, and two lipid compounds. Among which, two sterols (stigmasta-4-ene-3ß,6ß-diol and saringosterone), one amide (aurantiamide acetate) and a norsesquiterpenoid (solalyratin B) exhibited better anti-complementary effects with CH50 values ranging from 0.02 to 0.08 mM, which are plausible candidates for developing potent anti-complementary agents.


Subject(s)
Complement Inactivating Agents/isolation & purification , Plant Extracts/isolation & purification , Viola/chemistry , Chemical Fractionation , Coumarins/isolation & purification , Glycosides/isolation & purification , Plant Extracts/chemistry , Plants, Medicinal/chemistry , Spirostans/isolation & purification , Sterols/chemistry , Sterols/isolation & purification , Stigmasterol/analogs & derivatives , Stigmasterol/isolation & purification , Triterpenes/isolation & purification
19.
Bioorg Med Chem Lett ; 27(3): 662-665, 2017 02 01.
Article in English | MEDLINE | ID: mdl-27919659

ABSTRACT

Sarsasapogenin, isolated from rhizomes of Anemarrhena asphodeloides, was found to be able to enhance memory. On the basis of the structure of Sarsasapogenin, a series of derivatives were synthesized and evaluated for their neuroprotective activity in PC12 cells and NO production inhibitory activity in RAW264.7 cell lines. The preliminary structure-activity relationship of them indicated that introduction of carbamate groups at the 3-hydroxyl position of sarsasapogenin might improve neuroprotective activity. Some synthesized derivatives such as AA3, AA4, AA9 and AA13 exhibited both notably neuroprotective activity and NO production inhibitory activity.


Subject(s)
Neuroprotective Agents/chemistry , Spirostans/chemistry , Anemarrhena/chemistry , Anemarrhena/metabolism , Animals , Macrophages/cytology , Macrophages/drug effects , Macrophages/metabolism , Mice , Neuroprotective Agents/isolation & purification , Neuroprotective Agents/pharmacology , Nitric Oxide/metabolism , PC12 Cells , RAW 264.7 Cells , Rats , Rhizome/metabolism , Spirostans/isolation & purification , Spirostans/pharmacology , Structure-Activity Relationship
20.
Nat Prod Res ; 31(8): 925-931, 2017 Apr.
Article in English | MEDLINE | ID: mdl-27834098

ABSTRACT

Phytochemical reinvestigation of the dried roots and rhizomes of Helleborus thibetanus afforded four new minor spirostanol glycosides (1-4) and four known spirostanol glycosides (5-8). Their structures were determined on the basis of spectroscopic analyses, including 1D and 2D NMR experiments, together with HR-ESI-MS and IR measurements and the results of acid hydrolysis.


Subject(s)
Glycosides/chemistry , Helleborus/chemistry , Spirostans/chemistry , Hydrolysis , Magnetic Resonance Spectroscopy , Molecular Structure , Plant Roots/chemistry , Plants, Medicinal/chemistry , Rhizome/chemistry , Spectrometry, Mass, Electrospray Ionization , Spirostans/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...