Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.699
Filter
1.
BMC Plant Biol ; 24(1): 512, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849727

ABSTRACT

BACKGROUND: This study investigates a novel idea about the foliar application of nanoparticles as nanofertilizer combined with a natural stimulant, blue-green algae Spirulina platensis L. extract, as a bio-fertilizer to achieve safety from using nanoparticles for enhancement of the growth and production of the plant. Thus, this experiment aimed to chemically synthesize copper nanoparticles via copper sulfate in addition to evaluate the impact of CuNPs at 500, 1000, and 1500 mg/L and the combination of CuNPs with or without microalgae extract at 0.5, 1, and 1.5 g/L on the morphological parameters, photosynthetic pigments accumulation, essential oil production, and antioxidant activity of French basil. RESULTS: The results revealed that foliar application of CuNPs and its interaction with spirulina extract significantly increased growth and yield compared with control, the treatments of 1000 and 1500 mg/L had less impact than 500 mg/L CuNPs. Plants treated with 500 mg/L CuNPs and 1.5 g/L spirulina extract showed the best growth and oil production, as well as the highest accumulation of chlorophylls and carotenoids. The application of CuNPs nanofertilizer caused a significant increase in the antioxidant activity of the French basil plant, but the combination of CuNPs with spirulina extract caused a decrease in antioxidant activity. CONCULOSION: Therefore, foliar application of natural bio-fertilizer with CuNPsis necessary for obtaining the best growth and highest oil production from the French basil plant with the least damage to the plant and the environment.


Subject(s)
Copper , Metal Nanoparticles , Ocimum basilicum , Spirulina , Spirulina/metabolism , Spirulina/drug effects , Spirulina/growth & development , Ocimum basilicum/drug effects , Ocimum basilicum/growth & development , Ocimum basilicum/metabolism , Antioxidants/metabolism , Plant Leaves/drug effects , Plant Leaves/growth & development , Fertilizers , Chlorophyll/metabolism , Photosynthesis/drug effects , Oils, Volatile/pharmacology
2.
Arch Microbiol ; 206(6): 258, 2024 May 12.
Article in English | MEDLINE | ID: mdl-38735006

ABSTRACT

Phycocyanin, a blue-coloured pigment, predominantly found and derived from Spirulina sp., has gained researchers' interest due to its vibrant hues and other attractive properties like antioxidant and anti-microbial. However, the lack of reliable and sustainable phycocyanin extraction strategies without compromising the quality has hindered the scaling up of its production processes for commercial purposes. Here in this study, phycocyanin was extracted from wet and dry biomass Spirulina sp., using three different physical cell disruption methods (ultrasonication, homogenization, and freeze-thaw cycles) combined with two different buffers (phosphate buffer and acetate buffer) and water (as control). The result showed that the freeze-thaw method combined with acetate buffer produced the highest yield (25.013 ± 2.572 mg/100 mg) with a purity ratio of 0.806 ± 0.079. Furthermore, when subjected to 30% w/v salt stress, 1.9 times higher phycocyanin yield with a purity ratio of 1.402 ± 0.609 was achieved using the previously optimized extraction method.


Subject(s)
Phycocyanin , Salt Stress , Spirulina , Phycocyanin/metabolism , Phycocyanin/isolation & purification , Spirulina/metabolism , Spirulina/chemistry , Biomass , Freezing
3.
Food Res Int ; 187: 114407, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38763661

ABSTRACT

Microalgae protein holds great potential for various applications in the food industry. However, the current knowledge regarding microalgae protein remains limited, with little information available on its functional properties. Furthermore, the relationship between its molecular structure and functional properties is not well defined, which limits its application in food processing. This study aims to addresses these gaps though an analysis of the emulsibility and foamability of various soluble protein isolates from two species of Spirulina (Arthospira platensis and Spirulina platensis), and the functional properties of Spirulina protein isolates in relation to its molecular structure and charge state. Results revealed that the degree of cross-linking and aggregation or folding and curling of protein tertiary structures was higher in the highly soluble Spirulina protein isolates (AP50% and SP50%) than in the low-solubility isolates (AP30% and SP30%). The foaming capacity (FC) of AP50% and SP50% was found to be lower than that of AP30% and SP30%. Spirulina protein isolates can stably adsorb at the air-water interface for at least 20 min and possessed good interfacial activity. A high pH value was found to promote cross-linking of protein particles at the oil-water interface, thereby reinforcing the internal network structure of emulsions and increasing viscosity. These findings provide preliminary insights for potential applications of Spirulina protein isolates in food production, especially towards quality improvement.


Subject(s)
Bacterial Proteins , Emulsions , Solubility , Spirulina , Spirulina/chemistry , Emulsions/chemistry , Bacterial Proteins/chemistry , Emulsifying Agents/chemistry , Food Handling/methods , Molecular Structure , Adsorption
4.
Food Res Int ; 186: 114362, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729724

ABSTRACT

As food safety continues to gain prominence, phycocyanin (PC) is increasingly favored by consumers as a natural blue pigment, which is extracted from microalgae and serves the dual function of promoting health and providing coloration. Spirulina-derived PC demonstrates exceptional stability within temperature ranges below 45 °C and under pH conditions between 5.5 and 6.0. However, its application is limited in scenarios involving high-temperature processing due to its sensitivity to heat and light. This comprehensive review provides insights into the efficient production of PC from microalgae, covers the metabolic engineering of microalgae to increase PC yields and discusses various strategies for enhancing its stability in food applications. In addition to the most widely used Spirulina, some red algae and Thermosynechococcus can serve as good source of PC. The genetic and metabolic manipulation of microalgae strains has shown promise in increasing PC yield and improving its quality. Delivery systems including nanoparticles, hydrogels, emulsions, and microcapsules offer a promising solution to protect and extend the shelf life of PC in food products, ensuring its vibrant color and health-promoting properties are preserved. This review highlights the importance of metabolic engineering, multi-omics applications, and innovative delivery systems in unlocking the full potential of this natural blue pigment in the realm of food applications, provides a complete overview of the entire process from production to commercialization of PC, including the extraction and purification.


Subject(s)
Microalgae , Phycocyanin , Microalgae/metabolism , Spirulina/chemistry , Spirulina/metabolism , Metabolic Engineering
5.
Front Endocrinol (Lausanne) ; 15: 1382844, 2024.
Article in English | MEDLINE | ID: mdl-38689728

ABSTRACT

Equine metabolic syndrome (EMS) is a critical endocrine condition in horses, characterized by hyperinsulinemia, hyperlipidemia, and insulin resistance, posing a significant threat to their health. This study investigates the efficacy of supplementing EMS-affected horses with Arthrospira platensis enriched with Cr(III), Mg(II), and Mn(II) ions using biosorption process in improving insulin sensitivity and glucose tolerance, reducing inflammation, and mitigating obesity-related fat accumulation. Our results demonstrate that Arthrospira supplementation reduces baseline insulin and glucose levels, contributing to decreased adipose tissue inflammation. Furthermore, Arthrospira supplementation results in a decrease in body weight and improvements in overall body condition scores and cresty neck scores. Additionally, administration of Arthrospira leads to reduced levels of triglycerides and aspartate aminotransferase, indicating a decrease in hepatic adiposity and inflammation. These findings suggest that Arthrospira, enriched with essential micro- and macroelements, can be an advanced feed additive to enhance insulin sensitivity, promote weight reduction, and alleviate inflammatory processes, thereby improving the overall condition of horses affected by EMS. The use of Arthrospira as a feed additive has the potential to complement conventional management strategies for EMS.


Subject(s)
Animal Feed , Chromium , Dietary Supplements , Horse Diseases , Inflammation , Insulin Resistance , Magnesium , Manganese , Metabolic Syndrome , Spirulina , Animals , Horses , Inflammation/metabolism , Metabolic Syndrome/veterinary , Metabolic Syndrome/metabolism , Horse Diseases/metabolism , Horse Diseases/prevention & control , Animal Feed/analysis , Magnesium/metabolism , Male , Female
6.
Food Funct ; 15(10): 5554-5565, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38712867

ABSTRACT

Obesity is one of the most important threats to human health. Besides existing pharmacological or clinical interventions, novel effective and largely available solutions are still necessary. Among diverse natural resources, microalgae are well known for their complexity in the production of novel secondary metabolites. At the same time, lactic acid bacteria (LAB) are known for their capacity to metabolize, through fermentation, different matrices, and consequently to modify or produce new compounds with potential bioactivity. This work aimed to study the production of fermented microalgae and cyanobacteria, and to analyse their extracts in the zebrafish Nile red fat metabolism assay. Three microalgal species (Chlorella vulgaris, Chlorococcum sp. and Arthrospira platensis) were fermented with seven strains of LAB from 4 species (Lacticaseibacillus rhamnosus, Lacticaseibacillus casei, Lactobacillus delbrueckii bulgaricus and Lacticaseibacillus paracasei), derived from the UPCCO - University of Parma Culture Collection, Parma, Italy). All the selected strains were able to ferment the selected species of microalgae, and the most suitable substrate for LAB growth was Arthrospira platensis. Extracts from fermented Chlorella vulgaris and Chlorococcum sp. reduced significantly the neutral lipid reservoirs, which was not observed without fermentations. The strongest lipid reducing effect was obtained with Arthrospira platensis fermented with Lactobacillus delbrueckii bulgaricus 1932. Untargeted metabolomics identified some compound families, which could be related to the observed bioactivity, namely fatty acids, fatty amides, triterpene saponins, chlorophyll derivatives and purine nucleotides. This work opens up the possibility of developing novel functional foods or food supplements based on microalgae, since lactic acid fermentation enhanced the production of bioactive compounds with lipid reducing activities.


Subject(s)
Fermentation , Lipid Metabolism , Metabolomics , Microalgae , Zebrafish , Animals , Microalgae/metabolism , Microalgae/chemistry , Lactic Acid/metabolism , Cyanobacteria/metabolism , Lactobacillales/metabolism , Oxazines , Spirulina
7.
Pak J Biol Sci ; 27(4): 210-218, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38812112

ABSTRACT

<b>Background and Objective:</b> The remarkable surface-to-volume ratio and efficient particle interaction capabilities of nanoparticles have garnered significant attention among researchers. Microalgal synthesis presents a sustainable and cost-effective approach to nanoparticle production, particularly noteworthy for its high metal uptake and ion reduction capabilities. This study focuses on the eco-friendly and straightforward synthesis of Silver (AgNPs) and Iron (FeNPs) nanoparticles by utilizing Spirulina (<i>Arthrospira platensis</i>) and <i>Chlorella pyrenoidosa</i> extract, devoid of any chemical reducing or capping agents. <b>Materials and Methods:</b> Following the mixing of 1 mM AgNO<sub>3</sub> and 1 mM iron oxide solution with the algal extract, the resulting filtrated solution underwent comprehensive characterization, including UV-visible absorption spectra analysis, observation of particle morphology, Zetasizer measurements and Scanning Electron Microscope-Energy Dispersive X-Ray (SEM-EDX) analysis. <b>Results:</b> The UV-visible spectroscopy revealed a maximum absorbance peak at 430-440 nm, confirming the successful green synthesis of AgNPs and FeNPs, as indicated by the distinct color change from transparent to dark reddish-yellow and brown to reddish-brown, respectively. The SEM-EDX analysis further elucidated the spherical morphology of the nanoparticles, with an average diameter of 93.71 nm for AgNPs and 6198 nm for FeNPs. The Zeta potential measurements indicated average values of -56.68 mV for AgNPs and 29.73 mV for FeNPs, with conductivities of 0.1764 and 0.6786 mS/cm, respectively. <b>Conclusion:</b> The observed bioaccumulation of silver and iron nanoparticles within the algal extract underscores its potential as an environmentally friendly and cost-effective method for nanoparticle synthesis. These findings suggested a promising avenues for the application of silver and iron nanoparticles in the field of nanobiotechnology. Future research endeavors could focus on optimizing preparation conditions and controlling nanoparticle size to further enhance their utility and effectiveness.


Subject(s)
Iron , Metal Nanoparticles , Microalgae , Silver , Spirulina , Silver/chemistry , Microalgae/metabolism , Metal Nanoparticles/chemistry , Iron/chemistry , Spirulina/metabolism , Spirulina/chemistry , Green Chemistry Technology/methods , Chlorella/metabolism , Nanotechnology/methods
8.
BMC Vet Res ; 20(1): 215, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773537

ABSTRACT

CONTEXT: Recently, prioritize has been given to using natural phytogenic or nano compounds as growth promoters and immunostimulants in fish diets as an alternative to antibiotics. AIMS: The main propose of this trial was to determine the impact of supplementing diets with spirulina or curcumin nanoparticles on the performance and health indicators of Nile tilapia fingerlings. METHODS: In a 56-day feeding trial, 180 tilapia fingerlings were assigned into three main groups, as follows: 1st, control group, 2nd, Spirulina platensis (SP; 5 g kg-1 diet) and 3rd, curcumin nanoparticles (CUR-NPs; 30 mg kg-1 diet). KEY RESULTS: Incorporating tilapia diets with SP or CUR-NPs significantly improved performance, body chemical analysis, blood biochemical and hematological indices, digestive enzyme activities, and antioxidant and immunostimulant features compared to the control. CONCLUSION: Fortified tilapia diets with CUR-NPs or SP efficiently boost the productivity and health of Nile tilapia fingerlings. IMPLICATIONS: The research introduces new practical solutions for applying safe feed additives as alternatives to antibiotics in tilapia farming.


Subject(s)
Animal Feed , Antioxidants , Cichlids , Curcumin , Diet , Dietary Supplements , Nanoparticles , Spirulina , Animals , Curcumin/pharmacology , Curcumin/administration & dosage , Spirulina/chemistry , Cichlids/immunology , Cichlids/blood , Animal Feed/analysis , Nanoparticles/administration & dosage , Nanoparticles/chemistry , Diet/veterinary , Antioxidants/pharmacology , Body Composition/drug effects
9.
Int J Mol Sci ; 25(10)2024 May 19.
Article in English | MEDLINE | ID: mdl-38791586

ABSTRACT

With the increasing rate of the antimicrobial resistance phenomenon, natural products gain our attention as potential drug candidates. Apart from being used as nutraceuticals and for biotechnological purposes, microalgae and phytoplankton have well-recognized antimicrobial compounds and proved anti-infectious potential. In this review, we comprehensively outline the antimicrobial activity of one genus of cyanobacteria (Arthrospira, formerly Spirulina) and of eukaryotic microalgae (Dunaliella). Both, especially Arthrospira, are mostly used as nutraceuticals and as a source of antioxidants for health supplements, cancer therapy and cosmetics. Their diverse bioactive compounds provide other bioactivities and potential for various medical applications. Their antibacterial and antifungal activity vary in a broad range and are strain specific. There are strains of Arthrospira platensis with very potent activity and minimum inhibitory concentrations (MICs) as low as 2-15 µg/mL against bacterial fish pathogens including Bacillus and Vibrio spp. Arthrospira sp. has demonstrated an inhibition zone (IZ) of 50 mm against Staphylococcus aureus. Remarkable is the substantial amount of in vivo studies of Arthrospira showing it to be very promising for preventing vibriosis in shrimp and Helicobacter pylori infection and for wound healing. The innovative laser irradiation of the chlorophyll it releases can cause photodynamic destruction of bacteria. Dunaliella salina has exhibited MIC values lower than 300 µg/mL and an IZ value of 25.4 mm on different bacteria, while Dunaliella tertiolecta has demonstrated MIC values of 25 and 50 µg/mL against some Staphylococcus spp. These values fulfill the criteria for significant antimicrobial activity and sometimes are comparable or exceed the activity of the control antibiotics. The bioactive compounds which are responsible for that action are fatty acids including PUFAs, polysaccharides, glycosides, peptides, neophytadiene, etc. Cyanobacteria, such as Arthrospira, also particularly have antimicrobial flavonoids, terpenes, alkaloids, saponins, quinones and some unique-to-them compounds, such as phycobiliproteins, polyhydroxybutyrate, the peptide microcystin, etc. These metabolites can be optimized by using stress factors in a two-step process of fermentation in closed photobioreactors (PBRs).


Subject(s)
Spirulina , Spirulina/chemistry , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Microbial Sensitivity Tests , Humans , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Microalgae/chemistry , Chlorophyta/chemistry
10.
Food Chem ; 452: 139561, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38728897

ABSTRACT

The utilization of essential oils as natural antioxidants and preservatives is limited by high volatility, poor water solubility, and long-term instability. To address this, a novel ultrasonic-assisted method was used to prepare and stabilize a nanoemulsion of turmeric essential oil-in-water, incorporating bioactive components extracted from Spirulina platensis. Ultrasonic treatment enhanced the extraction efficacy and nanoemulsion stability. Algal biomass subjected to ultrasonic treatment (30 min at 80% amplitude) yielded a dry extract of 73.66 ± 3.05%, with the highest protein, phenolic, phycocyanin, and allophycocyanin content, as well as maximum emulsifying activity. The resulting nanoemulsion (5% oil, 0.3% extract, 10 min ultrasonic treatment) showed reduced particle size (173.31 ± 2.24 nm), zeta potential (-36.33 ± 1.10 mV), low polydispersity index, and enhanced antioxidant and antibacterial properties. Rheology analysis indicated shear-thinning behavior, while microscopy and spectroscopy confirmed structural changes induced by ultrasonic treatment and extract concentration. This initiative developed a novel ultrasonic-assisted algal-based nanoemulsion with antioxidant and antibacterial properties.


Subject(s)
Anti-Bacterial Agents , Antioxidants , Curcuma , Emulsions , Oils, Volatile , Spirulina , Spirulina/chemistry , Antioxidants/chemistry , Antioxidants/pharmacology , Antioxidants/isolation & purification , Emulsions/chemistry , Oils, Volatile/chemistry , Oils, Volatile/pharmacology , Curcuma/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Green Chemistry Technology , Ultrasonics , Particle Size , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plant Extracts/isolation & purification , Water/chemistry
11.
Food Chem ; 452: 139434, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38733680

ABSTRACT

Arthrospira (Limnospira) maxima (A. maxima) and Chlorella vulgaris (Ch. vulgaris) are among the approved microalgae and cyanobacteria (MaC) in the food industry that are known to be safe for consumption. However, both organisms are controversial regarding their vitamin B12 content, due to the possible occurrence of pseudo-cobalamin. Concurrently, their nutrition profiles remain understudied. The main purpose of the present study was to identify their nutrition profiles, focusing mainly on vitamin B12, amino acids, and micronutrients under iron-induced hormesis (10 mg/L Fe in treated samples). Our findings indicate a higher B12 content in A. maxima compared to Ch. vulgaris (both control and treated samples). Using liquid chromatography with tandem mass spectrometry (LC-MS/MS), the cyanocobalamin content was determined as 0.42 ± 0.09 µg/g dried weight (DW) in the A. maxima control and 0.55 ± 0.02 µg/g DW in treated A. maxima, resulting in an insignificant difference. In addition, the iron-enriched medium increased the amount of iron in both tested biomasses (p < 0.01). However, a more pronounced (approximately 100×) boost was observed in Ch. vulgaris, indicating a better absorption capacity (control Ch. vulgaris 0.16 ± 0.01 mg/g Fe, treated Ch. vulgaris 15.40 ± 0.34 mg/g Fe). Additionally, Ch. vulgaris also showed a higher micronutrient content. Using both tested microalgae, meeting the sufficient recommended daily mineral allowance for an adult is possible. By combining biomass from A. maxima and Ch. vulgaris in a ratio of 6:1, we can fulfill the recommended daily allowance of vitamin B12 and iron by consuming 6 tablets/6 g. Importantly, iron hormesis stimulated amino acid composition in both organisms. The profile of amino acids may suggest these biomasses as promising potential nutrition sources.


Subject(s)
Amino Acids , Chlorella vulgaris , Micronutrients , Spirulina , Vitamin B 12 , Chlorella vulgaris/chemistry , Chlorella vulgaris/metabolism , Chlorella vulgaris/growth & development , Vitamin B 12/metabolism , Vitamin B 12/analysis , Micronutrients/analysis , Micronutrients/metabolism , Amino Acids/metabolism , Amino Acids/analysis , Spirulina/chemistry , Spirulina/metabolism , Nutritive Value , Microalgae/chemistry , Microalgae/metabolism , Microalgae/growth & development , Tandem Mass Spectrometry , Iron/metabolism , Iron/analysis
12.
Gene ; 921: 148524, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-38735598

ABSTRACT

Polycystic ovary syndrome (PCOS) is a prevalent endocrinologic and gynecologic disorder that affects women of reproductive age; besides, insulin resistance (IR) occurs in 50-70 % of PCOS cases. Metformin (Met) is commonly prescribed for IR management; however, it does not affect IR with some gastrointestinal symptoms. Spirulina platensis (SP) is a blue-green alga that may increase insulin sensitivity. Therefore, our study aims to evaluate SP as an alternative treatment to Met for improving glucose homeostasis by assessing the expression of 11 crucial genes involved in the insulin signaling pathway. After induction of the PCOS model using dehydroepiandrosterone (DHEA) (60 mg/kg bwt) for 30 consecutive days, rats were allocated into six groups. Relative liver weight, glutamic pyruvic transaminase (GPT) serum levels, glutamic-oxaloacetic transaminase (GOT), and insulin were determined. Furthermore, the gene expression of Ins1, Irs1, Pik3ca, Prkcz, Foxo1, Srebf1, Ppargc1a, Pklr, Gk, G6pc, and Pepck in the rat's liver tissue was determined using qRT-PCR. Treatment of the PCOS control group with Met or SP revealed a decrease in all these parameters compared with the PCOS model. Additionally, we found a statistically significant difference in the expression of both the Gk and Prkcz genes. To summarize our study results, SP or Met supplementation to PCOS rats had almost the same effect on assessed relative liver weight, GOT, GPT, and insulin levels compared with PCOS control rats. If further studies confirm and detect more impact of SP on IR in PCOS, SP could be used instead of Met since the latter causes many side effects.


Subject(s)
Disease Models, Animal , Insulin Resistance , Insulin , Metformin , Polycystic Ovary Syndrome , Signal Transduction , Spirulina , Animals , Polycystic Ovary Syndrome/drug therapy , Polycystic Ovary Syndrome/genetics , Polycystic Ovary Syndrome/chemically induced , Polycystic Ovary Syndrome/metabolism , Female , Metformin/pharmacology , Rats , Signal Transduction/drug effects , Insulin/blood , Liver/metabolism , Liver/drug effects , Rats, Wistar , Hypoglycemic Agents/pharmacology , Gene Expression Regulation/drug effects
13.
Toxicon ; 244: 107770, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38768829

ABSTRACT

Aflatoxins are toxic compounds produced by certain molds, primarily Aspergillus species, which can contaminate crops such as grains and nuts. These toxins pose a significant health risk to animals and humans. Aflatoxin B1 (AFB1) is the most potent of these compounds and has been well-characterized to lead to diminished growth and feed efficiency by disrupting nutrient absorption and metabolism in poultry. AFB1 can trigger apoptosis and inflammation, leading to a decline in immune function and changes in blood biochemistry in poultry. Recently, there has been growing interest in using microalgae as a natural antioxidant to mitigate the effects of aflatoxins in poultry diets. Microalgae have strong antioxidant, antimicrobial, anti-apoptotic, and anti-inflammatory properties, and adding them to aflatoxin-contaminated poultry diets has been shown to improve growth and overall health. This review investigates the potential of microalgae, such as Spirulina platensis, Chlorella vulgaris, and Enteromorpha prolifera, to mitigate AFB1 contamination in poultry feeds. These microalgae contain substantial amounts of bioactive compounds, including polysaccharides, peptides, vitamins, and pigments, which possess antioxidant, antimicrobial, and detoxifying properties. Microalgae can bind to aflatoxins and prevent their absorption in the gastrointestinal tract of poultry. They can also enhance the immune system of poultry, making them more resilient to the toxic effects of AFB1. Based on the data collected, microalgae have shown promising results in combating AFB1 contamination in poultry feeds. They can bind to aflatoxins, boost the immune system, and improve feed quality. This review emphasizes the harmful effects of AFB1 on poultry and the promising role of microalgae in reducing these effects.


Subject(s)
Aflatoxin B1 , Animal Feed , Microalgae , Poultry , Animals , Aflatoxin B1/toxicity , Food Contamination/prevention & control , Antioxidants/pharmacology , Spirulina , Aflatoxins/toxicity
14.
Bioresour Technol ; 403: 130832, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38754558

ABSTRACT

This study focused on optimizing the production of fermented Spirulina (FS) products using a bioactivity-guided strategy with Lactobacillus helveticus B-4526 and Kluyveromyces marxianus Y-329 in a 3-L bioreactor. Various operating conditions, including aeration rates and pH modes, were tested. While both microorganisms thrived under all conditions, the "cascade" mode, controlling dissolved oxygen, enhanced protein hydrolysis and antioxidant activity, as confirmed by SDS-PAGE and DPPH/TEAC assays, respectively. Screening revealed that "cascade" FS significantly decreased viability of colon cancer cells (HT-29) in a dose-dependent manner, with up to a 72 % reduction. Doses ≤ 500 µg mL-1 of "cascade" FS proved safe and effective in suppressing NO release without compromising cellular viability. Additionally, "cascade" FS exhibited diverse volatile organic compounds and reducing the characteristic "seaweed" aroma. These findings highlight "cascade" FS as a promising alternative food source with improved bioactive properties, urging further exploration of its bioactive compounds, particularly bioactive peptides.


Subject(s)
Bioreactors , Fermentation , Kluyveromyces , Lactobacillus helveticus , Spirulina , Kluyveromyces/metabolism , Lactobacillus helveticus/metabolism , Spirulina/metabolism , Humans , Cell Survival/drug effects , Antioxidants/pharmacology , Antioxidants/metabolism , HT29 Cells , Hydrogen-Ion Concentration , Volatile Organic Compounds/metabolism , Volatile Organic Compounds/pharmacology
15.
Bioresour Technol ; 403: 130889, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38797362

ABSTRACT

The effective monitoring of microalgae cultivation is crucial for optimizing their energy utilization efficiency. In this paper, a quantitative analysis method, using microalgae images based on two convolutional neural networks, EfficientNet (EFF) and residual network (RES), is proposed. Suspension samples prepared from two types of dried microalgae powders, Rhodophyta (RH) and Spirulina (SP), were used to mimic real microalgae cultivation settings. The method's prediction accuracy of the algae concentration ranges from 0.94 to 0.99. RH, with a distinctively pronounced red-green-blue value shift, achieves a higher prediction accuracy than SP. The prediction results of the two algorithms were significantly superior to those of a linear regression. Additionally, RES outperforms EFF in terms of its generalization ability and robustness, which is attributable to its distinct residual block architecture. The RES provides a viable approach for the image-based quantitative analysis.


Subject(s)
Biomass , Microalgae , Neural Networks, Computer , Spirulina , Microalgae/metabolism , Spirulina/metabolism , Rhodophyta/metabolism , Image Processing, Computer-Assisted/methods , Algorithms
16.
BMC Vet Res ; 20(1): 176, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38711127

ABSTRACT

BACKGROUND: This investigation assessed the effects of high dietary inclusion of Spirulina (Arthrospira platensis) on broiler chicken growth performance, meat quality and nutritional attributes. For this, 120 male broiler chicks were housed in 40 battery brooders (three birds per brooder). Initially, for 14 days, a standard corn and soybean meal diet was administered. Subsequently, from days 14 to 35, chicks were assigned to one of the four dietary treatments (n = 10 per treatment): (1) control diet (CTR); (2) diet with 15% Spirulina (SP); (3) diet with 15% extruded Spirulina (SPE); and (4) diet with 15% Spirulina plus a super-dosing enzymes supplement (0.20% pancreatin extract and 0.01% lysozyme) (SPM). RESULTS: Throughout the experimental period, both SP and SPM diets resulted in decreased final body weight and body weight gain compared to control (p < 0.001), with the SPE diet showing comparable results to CTR. The SPE diet prompted an increase in average daily feed intake (p = 0.026). However, all microalga treatments increased the feed conversion ratio compared to CTR. Dietary inclusion of Spirulina notably increased intestinal content viscosity (p < 0.010), which was mitigated by the SPM diet. Spirulina supplementation led to lower pH levels in breast meat 24 h post-mortem and heightened the b* colour value in both breast and thigh meats (p < 0.010). Furthermore, Spirulina contributed to an increased accumulation of total carotenoids, n-3 polyunsaturated fatty acids (PUFA), and saturated fatty acids (SFA), while diminishing n-6 PUFA, thus altering the n-6/n-3 and PUFA/SFA ratios favourably (p < 0.001). However, it also reduced zinc concentration in breast meat (p < 0.001). CONCLUSIONS: The findings indicate that high Spirulina levels in broiler diets impair growth due to increased intestinal viscosity, and that extrusion pre-treatment mitigates this effect. Despite reducing digesta viscosity, a super-dosing enzyme mix did not improve growth. Data also indicates that Spirulina enriches meat with antioxidants and n-3 PUFA but reduces α-tocopherol and increases saturated fats. Reduced zinc content in meat suggests the need for Spirulina biofortification to maintain its nutritional value.


Subject(s)
Animal Feed , Chickens , Diet , Dietary Supplements , Meat , Spirulina , Animals , Chickens/growth & development , Animal Feed/analysis , Spirulina/chemistry , Diet/veterinary , Male , Meat/analysis , Meat/standards , Animal Nutritional Physiological Phenomena/drug effects , Muramidase/metabolism
17.
Sci Total Environ ; 927: 172227, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38582104

ABSTRACT

The sensory quality of drinking water, and particularly its taste and odor (T&O) is a key determinant of consumer acceptability, as consumers evaluate water by their senses. Some of the conventional treatment processes to control compounds which impart unpleasant T&O have limitations because of their low efficiency and/or high costs. Therefore, there is a great need to develop an effective process for removing T&O compounds without secondary concerns. The primary objective of this study was to assess for the first time the effectiveness of spirulina-based carbon materials in removing geosmin (GSM) and 2-methylisoborneol (2-MIB) from water, two commonly occurring natural T&O compounds. The efficiency of the materials to remove environmentally relevant concentrations of GSM and 2-MIB (ng L-1) from ultrapure and raw water was investigated using a sensitive headspace solid-phase microextraction coupled with gas chromatography mass spectrometry (HS-SPME-GC/MS) method. Moreover, the genotoxic and cytotoxic effects of the spirulina-based materials were assessed for the first time to evaluate their safety and their potential in the treatment of water for human consumption. Based on the results, spirulina-based materials were found to be promising for drinking water treatment applications, as they did not exert geno-cytotoxic effects on human cells, while presenting high efficiency in removing GSM and 2-MIB from water.


Subject(s)
Drinking Water , Odorants , Spirulina , Taste , Water Pollutants, Chemical , Water Purification , Drinking Water/chemistry , Odorants/analysis , Water Pollutants, Chemical/analysis , Water Purification/methods , Naphthols , Humans , Camphanes , Adsorption , Solid Phase Microextraction/methods , Carbon , Gas Chromatography-Mass Spectrometry
18.
Microb Pathog ; 190: 106641, 2024 May.
Article in English | MEDLINE | ID: mdl-38588925

ABSTRACT

This study aimed to investigate the impact of incorporating kefir into the diet on biometric parameters, as well as the immune and antioxidant responses of the carpet shell clam (Ruditapes decussatus) after an experimental infection by Vibrio alginolyticus. Clams were divided into a control group and a treated group. The control group was fed on spirulina (Arthrospira platensis) alone. While, the treated group was fed on spirulina supplemented with 10% dried kefir. After 21 days, clams were immersed in a suspension of V. alginolyticus 5 × 105 CFU mL -1 for 30 min. Seven days after experimental infection, survival was 100% in both groups. The obtained results showed a slight increase in weight and condition index in clams fed with kefir-supplemented diet for 21 days compared to control clams. Regarding antioxidant responses, the treated group showed higher superoxide dismutase activity compared to the control group. However, the malondialdehyde level was lower in the treated clams than in the control. In terms of immune parameters, the treated group showed slightly elevated activities of phenoloxidase, lysozyme and alkaline phosphatase, whereas a decreased lectin activity was observed compared to the control group. The obtained results suggest that kefir enhanced both the antioxidant and immune response of infected clams.


Subject(s)
Adjuvants, Immunologic , Antioxidants , Bivalvia , Kefir , Probiotics , Superoxide Dismutase , Vibrio alginolyticus , Animals , Probiotics/pharmacology , Bivalvia/chemistry , Bivalvia/microbiology , Antioxidants/metabolism , Kefir/microbiology , Superoxide Dismutase/metabolism , Spirulina/chemistry , Malondialdehyde/metabolism , Malondialdehyde/analysis , Animal Feed , Monophenol Monooxygenase/metabolism , Dietary Supplements , Alkaline Phosphatase/metabolism , Muramidase/metabolism , Vibrio Infections/prevention & control
19.
Sci Total Environ ; 931: 172567, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38643871

ABSTRACT

Microalgal polysaccharides have received much attention due to their potential value in preventing and regulating oxidative damage. This study aims to reveal the mechanisms of regulating oxidative stress and the differences in the yield, structure, and effect of polysaccharides extracted from three microalgae: Golenkinia sp. polysaccharides (GPS), Chlorella sorokiniana polysaccharides (CPS), and Spirulina subsalsa polysaccharides (SPS). Using the same extraction method, GPS, CPS, and SPS were all heteropoly- saccharides composed of small molecular fraction: the monosaccharides mainly comprised galactose (Gal). Among the three, SPS had a higher proportion of small molecular fraction, and a higher proportion of Gal; thus it had the highest yield and antioxidant activity. GPS, CPS, and SPS all showed strong antioxidant activity in vitro, and showed strong ability to regulate oxidative stress, among which SPS was slightly higher. From the analysis of gene expression, the Nrf2-ARE signalling pathway was an important pathway for GPS, CPS, and SPS to regulate cellular oxidative stress. This study provides a theoretical foundation for further research on the utilization of microalgae polysaccharides and product development.


Subject(s)
Antioxidants , Chlorella , Microalgae , Oxidative Stress , Polysaccharides , Polysaccharides/pharmacology , Polysaccharides/chemistry , Oxidative Stress/drug effects , Spirulina/chemistry
20.
Front Immunol ; 15: 1332425, 2024.
Article in English | MEDLINE | ID: mdl-38655258

ABSTRACT

Objective: Spirulina (arthrospira platensis) is a cyanobacterium proven to have anti-inflammatory, antiviral, and antioxidant effects. However, the effect of high-dose Spirulina supplementation on hospitalized adults with COVID-19 is currently unclear. This study aimed to evaluate the efficacy and safety of high-dose Spirulina platensis for SARS-CoV-2 infection. Study Design: We conducted a randomized, controlled, open-label trial involving 189 patients with COVID-19 who were randomly assigned in a 1:1 ratio to an experimental group that received 15.2g of Spirulina supplement plus standard treatment (44 non-intensive care unit (non-ICU) and 47 ICU), or to a control group that received standard treatment alone (46 non-ICU and 52 ICU). The study was conducted over six days. Immune mediators were monitored on days 1, 3, 5, and 7. The primary outcome of this study was mortality or hospital discharge within seven days, while the overall discharge or mortality was considered the secondary outcome. Results: Within seven days, there were no deaths in the Spirulina group, while 15 deaths (15.3%) occurred in the control group. Moreover, within seven days, there was a greater number of patients discharged in the Spirulina group (97.7%) in non-ICU compared to the control group (39.1%) (HR, 6.52; 95% CI, 3.50 to 12.17). Overall mortality was higher in the control group (8.7% non-ICU, 28.8% ICU) compared to the Spirulina group (non-ICU HR, 0.13; 95% CI, 0.02 to 0.97; ICU, HR, 0.16; 95% CI, 0.05 to 0.48). In non-ICU, patients who received Spirulina showed a significant reduction in the levels of IL-6, TNF-α, IL-10, and IP-10 as intervention time increased. Furthermore, in ICU, patients who received Spirulina showed a significant decrease in the levels of MIP-1α and IL-6. IFN-γ levels were significantly higher in the intervention group in both ICU and non-ICU subgroups as intervention time increased. No side effects related to Spirulina supplements were observed during the trial. Conclusion: High-dose Spirulina supplements coupled with the standard treatment of COVID-19 may improve recovery and remarkably reduce mortality in hospitalized patients with COVID-19. Clinical Trial Registration: https://irct.ir/trial/54375, Iranian Registry of Clinical Trials number (IRCT20210216050373N1).


Subject(s)
COVID-19 Drug Treatment , COVID-19 , Dietary Supplements , SARS-CoV-2 , Spirulina , Humans , Male , Female , Middle Aged , COVID-19/mortality , COVID-19/immunology , COVID-19/therapy , SARS-CoV-2/immunology , Aged , Hospitalization , Adult , Treatment Outcome , Intensive Care Units , Cytokines/blood
SELECTION OF CITATIONS
SEARCH DETAIL
...