Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.428
Filter
1.
Front Cell Infect Microbiol ; 14: 1392015, 2024.
Article in English | MEDLINE | ID: mdl-38841113

ABSTRACT

Trehalose-6-phosphate synthase (TPS1) was identified as a virulence factor for Cryptococcus neoformans and a promising therapeutic target. This study reveals previously unknown roles of TPS1 in evasion of host defenses during pulmonary and disseminated phases of infection. In the pulmonary infection model, TPS1-deleted (tps1Δ) Cryptococci are rapidly cleared by mouse lungs whereas TPS1-sufficent WT (H99) and revertant (tps1Δ:TPS1) strains expand in the lungs and disseminate, causing 100% mortality. Rapid pulmonary clearance of tps1Δ mutant is T-cell independent and relies on its susceptibility to lung resident factors and innate immune factors, exemplified by tps1Δ but not H99 inhibition in a coculture with dispersed lung cells and its rapid clearance coinciding with innate leukocyte infiltration. In the disseminated model of infection, which bypasses initial lung-fungus interactions, tps1Δ strain remains highly attenuated. Specifically, tps1Δ mutant is unable to colonize the lungs from the bloodstream or expand in spleens but is capable of crossing into the brain, where it remains controlled even in the absence of T cells. In contrast, strains H99 and tps1Δ:TPS1 rapidly expand in all studied organs, leading to rapid death of the infected mice. Since the rapid pulmonary clearance of tps1Δ mutant resembles a response to acapsular strains, the effect of tps1 deletion on capsule formation in vitro and in vivo was examined. Tps1Δ cryptococci form capsules but with a substantially reduced size. In conclusion, TPS1 is an important virulence factor, allowing C. neoformans evasion of resident pulmonary and innate defense mechanisms, most likely via its role in cryptococcal capsule formation.


Subject(s)
Cryptococcosis , Cryptococcus neoformans , Disease Models, Animal , Glucosyltransferases , Lung , Virulence Factors , Animals , Cryptococcus neoformans/pathogenicity , Cryptococcus neoformans/genetics , Cryptococcus neoformans/enzymology , Cryptococcus neoformans/immunology , Cryptococcosis/microbiology , Cryptococcosis/immunology , Mice , Glucosyltransferases/genetics , Glucosyltransferases/metabolism , Lung/microbiology , Lung/pathology , Virulence , Virulence Factors/genetics , Virulence Factors/metabolism , Host-Pathogen Interactions , Brain/microbiology , Spleen/microbiology , Female , Mice, Inbred C57BL , Immunity, Innate , Immune Evasion , Gene Deletion
2.
Comp Immunol Microbiol Infect Dis ; 109: 102187, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38703540

ABSTRACT

Hemotropic mycoplasmas are bacteria that attaches to erythrocytes surface, which some species presents zoonotic concerns. In the suborder Pinnipedia, genera Otaria and Arctocephalus are prominent in Brazil. This study investigated the occurrence of hemoplasmas in Arctocephalus sp. and Otaria flavescens found dead along the coast of a Southern Brazilian State. DNA from 135 spleen samples were extracted and subjected to conventional PCR protocols, targeting the 16 S rRNA and 23 S rRNA gene. Three (2.22 %) Arctocephalus australis were positive in the 16 S rRNA gene, and no samples amplified in the 23 S rRNA gene. Samples from this study clustered with Zalophus californianus and Arctocephalus tropicalis mycoplasmas on a Bayesian phylogenetic analysis. Genetic diversity analysis suggested distinct genotypes, indicating A. australis as a new host for hemoplasma, and also a potential putative novel hemoplasma genotype. These findings raises future awareness for pinnipeds conservation, and adds Mycoplasma spp. to be taken into consideration when clinically evaluating rescued animals.


Subject(s)
DNA, Bacterial , Fur Seals , Mycoplasma Infections , Mycoplasma , Phylogeny , RNA, Ribosomal, 16S , Spleen , Animals , Brazil/epidemiology , Mycoplasma/genetics , Mycoplasma/isolation & purification , Mycoplasma/classification , Fur Seals/microbiology , Mycoplasma Infections/veterinary , Mycoplasma Infections/microbiology , Mycoplasma Infections/epidemiology , RNA, Ribosomal, 16S/genetics , DNA, Bacterial/genetics , Spleen/microbiology , RNA, Ribosomal, 23S/genetics , Genetic Variation , Genotype , Bayes Theorem , Autopsy/veterinary , Polymerase Chain Reaction
3.
Front Cell Infect Microbiol ; 14: 1395267, 2024.
Article in English | MEDLINE | ID: mdl-38817449

ABSTRACT

Background: Traditional Chinese medicine (TCM) comprising herbal formulas has been used for millennia to treat various diseases, such as insomnia, based on distinct syndrome types. Although TCM has been proposed to be effective in insomnia through gut microbiota modulation in animal models, human studies remain limited. Therefore, this study employs machine learning and integrative network techniques to elucidate the role of the gut microbiome in the efficacies of two TCM formulas - center-supplementing and qi-boosting decoction (CSQBD) and spleen-tonifying and yin heat-clearing decoction (STYHCD) - in treating insomnia patients diagnosed with spleen qi deficiency and spleen qi deficiency with stomach heat. Methods: Sixty-three insomnia patients with these two specific TCM syndromes were enrolled and treated with CSQBD or STYHCD for 4 weeks. Sleep quality was assessed using the Pittsburgh Sleep Quality Index (PSQI) and Insomnia Severity Index (ISI) every 2 weeks. In addition, variations in gut microbiota were evaluated through 16S rRNA gene sequencing. Stress and inflammatory markers were measured pre- and post-treatment. Results: At baseline, patients exhibiting only spleen qi deficiency showed slightly lesser severe insomnia, lower IFN-α levels, and higher cortisol levels than those with spleen qi deficiency with stomach heat. Both TCM syndromes displayed distinct gut microbiome profiles despite baseline adjustment of PSQI, ISI, and IFN-α scores. The nested stratified 10-fold cross-validated random forest classifier showed that patients with spleen qi deficiency had a higher abundance of Bifidobacterium longum than those with spleen qi deficiency with stomach heat, negatively associated with plasma IFN-α concentration. Both CSQBD and STYHCD treatments significantly improved sleep quality within 2 weeks, which lasted throughout the study. Moreover, the gut microbiome and inflammatory markers were significantly altered post-treatment. The longitudinal integrative network analysis revealed interconnections between sleep quality, gut microbes, such as Phascolarctobacterium and Ruminococcaceae, and inflammatory markers. Conclusion: This study reveals distinct microbiome profiles associated with different TCM syndrome types and underscores the link between the gut microbiome and efficacies of Chinese herbal formulas in improving insomnia. These findings deepen our understanding of the gut-brain axis in relation to insomnia and pave the way for precision treatment approaches leveraging TCM herbal remedies.


Subject(s)
Drugs, Chinese Herbal , Gastrointestinal Microbiome , Medicine, Chinese Traditional , Sleep Initiation and Maintenance Disorders , Humans , Gastrointestinal Microbiome/drug effects , Sleep Initiation and Maintenance Disorders/drug therapy , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Male , Female , Middle Aged , Adult , RNA, Ribosomal, 16S/genetics , Spleen/microbiology , Syndrome , Qi
4.
Mar Biotechnol (NY) ; 26(2): 306-323, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38367180

ABSTRACT

Vibrio harveyi, a recently discovered pathogenic bacterium isolated from American eels (Anguilla rostrata), poses uncertainties regarding its pathogenesis in American eel and the molecular mechanisms underlying host defense against V. harveyi infection. This study aimed to determine the LD50 of V. harveyi in American eel and assess the bacterial load in the liver, spleen, and kidney post-infection with the LD50 dose. The results showed that the LD50 of V. harveyi via intraperitoneal injection in American eels over a 14d period was determined to be 1.24 × 103 cfu/g body weight (6.2 × 104 cfu/fish). The peak bacterial load occurred at 36 h post-infection (hpi) in all three organs examined. Histopathology analysis revealed hepatic vein congestion and thrombi, tubular vacuolar degeneration, and splenic bleeding. Moreover, quantitative reverse transcription polymerase chain reaction (qRT-PCR) results indicated significant up or downregulation of 18 host immune- or anti-infection-related genes post 12 to 60 hpi following the infection. Additionally, RNA sequencing (RNA-seq) unveiled 7 hub differentially expressed genes (DEGs) and 11 encoded proteins play crucial roles in the anti-V. harveyi response in American eels. This study firstly represents the comprehensive report on the pathogenicity of V. harveyi to American eels and RNA-seq of host's response to V. harveyi infection. These findings provide valuable insights into V. harveyi pathogenesis and the strategies employed by the host's immune system at the transcriptomic level to combat V. harveyi infection.


Subject(s)
Anguilla , Fish Diseases , Gene Expression Profiling , Liver , Vibrio Infections , Vibrio , Animals , Vibrio/pathogenicity , Anguilla/microbiology , Anguilla/genetics , Fish Diseases/microbiology , Fish Diseases/immunology , Vibrio Infections/veterinary , Vibrio Infections/microbiology , Vibrio Infections/immunology , Liver/microbiology , Liver/pathology , Spleen/microbiology , Spleen/pathology , Transcriptome , Kidney/microbiology , Kidney/pathology , Lethal Dose 50 , Bacterial Load
5.
Foodborne Pathog Dis ; 21(5): 288-297, 2024 May.
Article in English | MEDLINE | ID: mdl-38237167

ABSTRACT

Gut microbiota (GM) has been proven to resist pathogenic infection through nutritional competition, colonization resistance and promotion of the host immune response. However, in clinical practice, GM is mainly used in intestinal diseases, such as Clostridium difficile infection, and there are few reports on its application in the treatment of pathogenic bacterial infections. In this study, GM from healthy mice was transplanted into mice infected with Listeria monocytogenes using fecal microbiota transplantation (FMT) and the effects were observed. We found that GM from healthy mice could reduce the mortality of infected mice and decrease the counts of L. monocytogenes in their liver and spleen. In addition, FMT inhibited the expression of inflammatory factors in the liver and spleen of infected mice. In vitro cell experiments revealed that GM can reduce the count of L. monocytogenes invading Caco-2 cells and inhibit the L. monocytogenes-caused apoptosis. These results indicate that GM can be used to protect mice infected with L. monocytogenes by eliminating the amount of L. monocytogenes in the host and inhibiting the overexpression of inflammatory factors. Hence, this method can potentially replace antibiotics in the treatment of L. monocytogenes infection.


Subject(s)
Apoptosis , Cytokines , Fecal Microbiota Transplantation , Gastrointestinal Microbiome , Listeria monocytogenes , Listeriosis , Animals , Listeriosis/microbiology , Listeriosis/immunology , Mice , Cytokines/metabolism , Humans , Caco-2 Cells , Liver/microbiology , Spleen/microbiology , Female
6.
Genetics ; 222(3)2022 11 01.
Article in English | MEDLINE | ID: mdl-36103708

ABSTRACT

Determining how genetic polymorphisms enable certain fungi to persist in mammalian hosts can improve understanding of opportunistic fungal pathogenesis, a source of substantial human morbidity and mortality. We examined the genetic basis of fungal persistence in mice using a cross between a clinical isolate and the lab reference strain of the budding yeast Saccharomyces cerevisiae. Employing chromosomally encoded DNA barcodes, we tracked the relative abundances of 822 genotyped, haploid segregants in multiple organs over time and performed linkage mapping of their persistence in hosts. Detected loci showed a mix of general and antagonistically pleiotropic effects across organs. General loci showed similar effects across all organs, while antagonistically pleiotropic loci showed contrasting effects in the brain vs the kidneys, liver, and spleen. Persistence in an organ required both generally beneficial alleles and organ-appropriate pleiotropic alleles. This genetic architecture resulted in many segregants persisting in the brain or in nonbrain organs, but few segregants persisting in all organs. These results show complex combinations of genetic polymorphisms collectively cause and constrain fungal persistence in different parts of the mammalian body.


Subject(s)
Mycoses , Animals , Humans , Mice , Alleles , Chromosome Mapping/methods , Saccharomyces cerevisiae/genetics , Mycoses/microbiology , Brain/microbiology , Kidney/microbiology , Liver/microbiology , Spleen/microbiology
7.
Infect Immun ; 90(8): e0016722, 2022 08 18.
Article in English | MEDLINE | ID: mdl-35862700

ABSTRACT

Fluorescence dilution approaches can detect bacterial cell division events and can detect if there are differential rates of cell division across individual cells within a population. This approach typically involves inducing expression of a fluorescent protein and then tracking partitioning of fluorescence into daughter cells. However, fluorescence can be diluted very quickly within a rapidly replicating population, such as pathogenic bacterial populations replicating within host tissues. To overcome this limitation, we have generated two revTetR reporter constructs, where either mCherry or yellow fluorescent protein (YFP) is constitutively expressed and repressed by addition of tetracyclines, resulting in fluorescence dilution within defined time frames. We show that fluorescent signals are diluted in replicating populations and that signal accumulates in growth-inhibited populations, including during nitric oxide (NO) exposure. Furthermore, we show that tetracyclines can be delivered to the mouse spleen during Yersinia pseudotuberculosis infection and defined a drug concentration that results in even exposure of cells to tetracyclines. We then used this system to visualize bacterial cell division within defined time frames postinfection. revTetR-mCherry allowed us to detect slow-growing cells in response to NO in culture; however, this strain had a growth defect within mouse tissues, which complicated results. To address this issue, we constructed revTetR-YFP using the less toxic YFP and showed that heightened NO exposure correlated with heightened YFP signal, indicating decreased cell division rates within this subpopulation in vivo. This revTetR reporter will provide a critical tool for future studies to identify and isolate slowly replicating bacterial subpopulations from host tissues.


Subject(s)
Yersinia pseudotuberculosis Infections , Yersinia pseudotuberculosis , Animals , Cell Division , Mice , Nitric Oxide/metabolism , Spleen/microbiology , Tetracyclines , Yersinia pseudotuberculosis/genetics , Yersinia pseudotuberculosis Infections/microbiology
8.
Fish Shellfish Immunol ; 120: 610-619, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34968708

ABSTRACT

To study the roles of the exbB gene in Pseudomonas plecoglossicida during interactions with Epinephelus coioides, five short hairpin RNAs (shRNAs) were designed and synthesized to silence the exbB gene in P. plecoglossicida which resulted in significant reductions in exbB mRNA expression. The mutant with the best silencing efficiency (89.3%) was selected for further study. Silencing exbB in the exbB-RNA interference (RNAi) strain resulted in a 70% increase in the survival rate and a 3-day delay in the onset of infection in E. coioides. Silencing of the exbB gene also resulted in a significant decrease in the number of white spots on the spleen surface and in the spleen pathogen load. The results of dual RNA-seq showed that exbB silencing in P. plecoglossicida also resulted in a significant change in both the pathogen and host transcriptomes in the spleens of infected E. coioides. Comparative transcriptome analysis showed that silencing exbB caused significant changes in multiple signaling molecules and interaction- and immune system-related genes in E. coioides. Gene silencing also resulted in the differential expression of flagellar assembly and the bacterial secretion system in P. plecoglossicida during the infection period, and most of the DEGs were down-regulation. These host-pathogen interactions may make it easier for E. coioides to eliminate the exbB-RNAi strain of P. plecoglossicida, suggesting a significant decrease in the pathogenicity of this strain. These results indicated that exbB was a virulence gene of P. plecoglossicida which contributed a lot in the pathogen-host interactions with E. coioides.


Subject(s)
Bacterial Proteins , Bass , Fish Diseases , Pseudomonas/genetics , RNA, Small Interfering/genetics , Animals , Bacterial Proteins/genetics , Bass/genetics , Bass/microbiology , Fish Diseases/microbiology , Gene Silencing , Immunity, Innate , Pseudomonas/pathogenicity , Spleen/microbiology , Transcriptome , Virulence/genetics
9.
Am J Physiol Lung Cell Mol Physiol ; 322(1): L116-L128, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34850640

ABSTRACT

Obesity impairs host defense against Klebsiella pneumoniae, but responsible mechanisms are incompletely understood. To determine the impact of diet-induced obesity on pulmonary host defense against K. pneumoniae, we fed 6-wk-old male C57BL/6j mice a normal diet (ND) or high-fat diet (HFD) (13% vs. 60% fat, respectively) for 16 wk. Mice were intratracheally infected with Klebsiella, assayed at 24 or 48 h for bacterial colony-forming units, lung cytokines, and leukocytes from alveolar spaces, lung parenchyma, and gonadal adipose tissue were assessed using flow cytometry. Neutrophils from uninfected mice were cultured with and without 2-deoxy-d-glucose (2-DG) and assessed for phagocytosis, killing, reactive oxygen intermediates (ROI), transport of 2-DG, and glucose transporter (GLUT1-4) transcripts, and protein expression of GLUT1 and GLUT3. HFD mice had higher lung and splenic bacterial burdens. In HFD mice, baseline lung homogenate concentrations of IL-1ß, IL-6, IL-17, IFN-γ, CXCL2, and TNF-α were reduced relative to ND mice, but following infection were greater for IL-6, CCL2, CXCL2, and IL-1ß (24 h only). Despite equivalent lung homogenate leukocytes, HFD mice had fewer intraalveolar neutrophils. HFD neutrophils exhibited decreased Klebsiella phagocytosis and killing and reduced ROI to heat-killed Klebsiella in vitro. 2-DG transport was lower in HFD neutrophils, with reduced GLUT1 and GLUT3 transcripts and protein (GLUT3 only). Blocking glycolysis with 2-DG impaired bacterial killing and ROI production in neutrophils from mice fed ND but not HFD. Diet-induced obesity impairs pulmonary Klebsiella clearance and augments blood dissemination by reducing neutrophil killing and ROI due to impaired glucose transport.


Subject(s)
Diet , Glucose/metabolism , Host-Pathogen Interactions , Klebsiella Infections/microbiology , Klebsiella pneumoniae/physiology , Neutrophils/metabolism , Obesity/microbiology , Adipose Tissue, White/drug effects , Adipose Tissue, White/metabolism , Adiposity/drug effects , Animals , Bacterial Load/drug effects , Biological Transport/drug effects , Blood Glucose/metabolism , Body Weight/drug effects , Bone Marrow/pathology , Bronchoalveolar Lavage Fluid/cytology , Cytokines/metabolism , Deoxyglucose/pharmacology , Diet, High-Fat , Glucose Transporter Type 1/genetics , Glucose Transporter Type 1/metabolism , Glucose Transporter Type 3/genetics , Glucose Transporter Type 3/metabolism , Glycolysis/drug effects , Host-Pathogen Interactions/drug effects , Klebsiella Infections/blood , Klebsiella Infections/complications , Klebsiella pneumoniae/drug effects , Leukocyte Count , Lung/microbiology , Lung/pathology , Male , Mice, Inbred C57BL , Neutrophils/drug effects , Obesity/blood , Obesity/complications , Phagocytosis/drug effects , Pneumonia/microbiology , Pneumonia/pathology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Spleen/microbiology
10.
J Microbiol Biotechnol ; 32(1): 6-14, 2022 Jan 28.
Article in English | MEDLINE | ID: mdl-34675138

ABSTRACT

Brucella spp. are facultative intracellular pathogens that invade, survive and proliferate in numerous phagocytic and non-phagocytic cell types, thereby leading to human and animal brucellosis. Outer membrane proteins (Omps) are major immunogenic and protective antigens that are implicated in Brucella virulence. A strain deleted of the omp16 gene has not been obtained which suggests that the Omp16 protein is vital for Brucella survival. Nevertheless, we previously constructed an omp16 conditional deletion strain of Brucella, ΔOmp16. Here, the virulence and immune response elicted by this strain were assessed in a mouse model of infection. Splenomegaly was significantly reduced at two weeks post-infection in ΔOmp16-infected mice compared to infection with the parental strain. The bacterial load in the spleen also was significantly decreased at this post-infection time point in ΔOmp16-infected mice. Histopathological changes in the spleen were observed via hematoxylineosin staining and microscopic examination which showed that infection with the ΔOmp16 strain alleviated spleen histopathological alterations compared to mice infected with the parental strain. Moreover, the levels of humoral and cellular immunity were similar in both ΔOmp16-infected mice and parental strain-infected mice. The results overall show that the virulence of ΔOmp16 is attenuated markedly, but that the immune responses mediated by the deletion and parental strains in mice are indistinguishable. The data provide important insights that illuminate the pathogenic strategies adopted by Brucella.


Subject(s)
Bacterial Outer Membrane Proteins/genetics , Brucella/genetics , Brucella/immunology , Brucellosis/immunology , Cell Cycle Proteins/genetics , Cell Cycle Proteins/immunology , Animals , Antibodies, Bacterial/immunology , Antigens, Bacterial/immunology , Brucellosis/microbiology , Brucellosis/pathology , Brucellosis/prevention & control , Cytokines , Disease Models, Animal , Female , Immunity , Immunity, Cellular , Mice , Mice, Inbred BALB C , Spleen/microbiology , Spleen/pathology , Virulence
11.
Front Immunol ; 12: 760095, 2021.
Article in English | MEDLINE | ID: mdl-34912336

ABSTRACT

Talaromyce marneffei is an important thermally dimorphic pathogen causing disseminated mycoses in immunocompromised individuals in southeast Asia. Previous studies have suggested that NLRP3 inflammasome plays a critical role in antifungal immunity. However, the mechanism underlying the role of NLRP3 inflammasome activation in host defense against T. marneffei remains unclear. We show that T. marneffei yeasts but not conidia induce potent IL-1ß production. The IL-1ß response to T. marneffei yeasts is differently regulated in different cell types; T. marneffei yeasts alone are able to induce IL-1ß production in human PBMCs and monocytes, whereas LPS priming is essential for IL-1ß response to yeasts. We also find that Dectin-1/Syk signaling pathway mediates pro-IL-1ß production, and NLRP3-ASC-caspase-1 inflammasome is assembled to trigger the processing of pro-IL-1ß into IL-1ß. In vivo, mice deficient in NLRP3 or caspase-1 exhibit higher mortality rate and fungal load compared to wild-type mice after systemic T. marneffei infection, which correlates with the diminished recruitment of CD4 T cells into granulomas in knockout mice. Thus, our study first demonstrates that NLRP3 inflammasome contributes to host defense against T. marneffei infection.


Subject(s)
Inflammasomes/immunology , Mycoses/immunology , NLR Family, Pyrin Domain-Containing 3 Protein/immunology , Opportunistic Infections/immunology , Animals , CD4-Positive T-Lymphocytes/immunology , Caspase 1/genetics , Female , Humans , Inflammasomes/genetics , Interleukin-1beta/immunology , Lectins, C-Type/immunology , Leukocytes, Mononuclear/immunology , Liver/immunology , Liver/microbiology , Liver/pathology , Male , Mice, Inbred C57BL , Mice, Knockout , Mycoses/microbiology , Mycoses/pathology , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Opportunistic Infections/microbiology , Opportunistic Infections/pathology , Spleen/microbiology , Talaromyces
12.
Front Immunol ; 12: 656419, 2021.
Article in English | MEDLINE | ID: mdl-34745081

ABSTRACT

Tuberculosis (TB) is the global health problem with the second highest number of deaths from a communicable disease after COVID-19. Although TB is curable, poor health infrastructure, long and grueling TB treatments have led to the spread of TB pandemic with alarmingly increasing multidrug-resistant (MDR)-TB prevalence. Alternative host modulating therapies can be employed to improve TB drug efficacies or dampen the exaggerated inflammatory responses to improve lung function. Here, we investigated the adjunct therapy of natural immune-modulatory compound berberine in C57BL/6 mouse model of pulmonary TB. Berberine treatment did not affect Mtb growth in axenic cultures; however, it showed increased bacterial killing in primary murine bone marrow-derived macrophages and human monocyte-derived macrophages. Ad libitum berberine administration was beneficial to the host in combination with rifampicin and isoniazid. Berberine adjunctive treatment resulted in decreased lung pathology with no additive or synergistic effects on bacterial burdens in mice. Lung immune cell flow cytometry analysis showed that adjunctive berberine treatment decreased neutrophil, CD11b+ dendritic cell and recruited interstitial macrophage numbers. Late onset of adjunctive berberine treatment resulted in a similar phenotype with consistently reduced numbers of neutrophils both in lungs and the spleen. Together, our results suggest that berberine can be supplemented as an immunomodulatory agent depending on the disease stage and inflammatory status of the host.


Subject(s)
Antitubercular Agents/therapeutic use , Berberine/therapeutic use , Immunologic Factors/therapeutic use , Isoniazid/therapeutic use , Rifampin/therapeutic use , Tuberculosis, Pulmonary/drug therapy , Animals , Antitubercular Agents/pharmacology , Berberine/pharmacology , Cytokines/immunology , Dendritic Cells/drug effects , Drug Therapy, Combination , Female , Humans , Immunologic Factors/pharmacology , Isoniazid/pharmacology , Lung/drug effects , Lung/immunology , Lung/microbiology , Lung/pathology , Macrophages/drug effects , Macrophages/immunology , Male , Mice, Inbred C3H , Mice, Inbred C57BL , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/growth & development , Neutrophils/drug effects , Neutrophils/immunology , Rifampin/pharmacology , Spleen/drug effects , Spleen/immunology , Spleen/microbiology , Tuberculosis, Pulmonary/immunology , Tuberculosis, Pulmonary/microbiology , Tuberculosis, Pulmonary/pathology
13.
Open Biol ; 11(11): 210117, 2021 11.
Article in English | MEDLINE | ID: mdl-34784793

ABSTRACT

Poultry are the main source of human infection by Salmonella. As infected poultry are asymptomatic, identifying infected poultry farms is difficult, thus controlling animal infections is of primary importance. As cell tropism is known to govern disease, our aim was therefore to identify infected host-cell types in the organs of chicks known to be involved in Salmonella infection and investigate the role of the three known invasion factors in this process (T3SS-1, Rck and PagN). Chicks were inoculated with wild-type or isogenic fluorescent Salmonella Typhimurium mutants via the intracoelomic route. Our results show that liver, spleen, gall bladder and aortic vessels could be foci of infection, and that phagocytic and non-phagocytic cells, including immune, epithelial and endothelial cells, are invaded in vivo in each organ. Moreover, a mutant defective for the T3SS-1, Rck and PagN remained able to colonize organs like the wild-type strain and invaded non-phagocytic cells in each organ studied. As the infection of the gall bladder had not previously been described in chicks, invasion of gall bladder cells was confirmed by immunohistochemistry and infection was shown to last several weeks after inoculation. Altogether, for the first time these findings provide insights into cell tropism of Salmonella in relevant organs involved in Salmonella infection in chicks and also demonstrate that the known invasion factors are not required for entry into these cell types.


Subject(s)
Bacterial Proteins/genetics , Chickens/microbiology , Mutation , Salmonella Infections, Animal/microbiology , Salmonella typhimurium/pathogenicity , Animals , Aorta/microbiology , Bacterial Load , Gallbladder/microbiology , Liver/microbiology , Salmonella typhimurium/genetics , Spleen/microbiology , Viral Tropism
14.
Folia Parasitol (Praha) ; 682021 Oct 13.
Article in English | MEDLINE | ID: mdl-34782490

ABSTRACT

The Gram-negative, obligate intracellular tick-transmitted pathogen Anaplasma phagocytophilum can cause acute febrile diseases in humans and domestic animals. The expansion of the tick Ixodes ricinus (Linnaeus, 1758) in northern Europe due to climate change is of serious concern for animal and human health. The aim of the present study was to investigate the impact of A. phagocytophilum infection in moose Alces alces (Linnaeus) calves by evaluating the carcass weights of infected and non-infected animals and examining animal tissues samples for co-infections with either species of Babesia Starcovici, 1893 or bacteria of the genus Bartonella. The carcasses of 68 free-ranging moose calves were weighed by hunters during the hunting seasons from 2014 to 2017 in two regions in southern Norway and spleen samples were collected. Anaplasma phagocytophilum was detected in moose sampled from locations infected with ticks with a prevalence of 82% (n = 46). The carcass weights of A. phagocytophilum-infected calves (n = 46) and non-infected (n = 22) calves were compared. Although the average weight of infected calves (45.6 kg) was lower than that of non-infected calves (46.5 kg), the difference was not statistically significant. Three different variants of the bacterium 16S rRNA gene were identified. The average weight of animals infected with variant I was 49.9 kg, whereas that of animals infected with variant III was 42.0 kg, but the difference was not statistically significant (p = 0.077). Co-infections of A. phagocytophilum with Bartonella spp. or with Babesia spp. were found in 20 and two calves, respectively. A triple infection was found in two calves. Sequence analysis of the 18S rRNA gene of Babesia-positive samples revealed the presence of Babesia cf. odocoilei (Emerson et Wright, 1970). Strains of Bartonella closely related to Bartonella bovis (Bermond, Boulouis, Heller, Laere, Monteil, Chomel, Sander, Dehio et Piemont, 2002) were identified based on phylogenetic analysis of the gltA and rpoB genes. The loss of body mass in moose calves in the tick-infected site was probably influenced by multiple factors.


Subject(s)
Anaplasma phagocytophilum , Deer , Ehrlichiosis/veterinary , Anaplasma phagocytophilum/classification , Anaplasma phagocytophilum/genetics , Anaplasma phagocytophilum/isolation & purification , Animals , Babesia/genetics , Bartonella/genetics , Base Sequence , Body Weight , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Bacterial/isolation & purification , Ehrlichiosis/complications , Ehrlichiosis/epidemiology , Ehrlichiosis/pathology , Norway/epidemiology , Oligonucleotides/chemistry , Phylogeny , Polymerase Chain Reaction/veterinary , Spleen/microbiology , Spleen/pathology
15.
Immunity ; 54(12): 2712-2723.e6, 2021 12 14.
Article in English | MEDLINE | ID: mdl-34788598

ABSTRACT

Interactions between intracellular bacteria and mononuclear phagocytes give rise to diverse cellular phenotypes that may determine the outcome of infection. Recent advances in single-cell RNA sequencing (scRNA-seq) have identified multiple subsets within the mononuclear population, but implications to their function during infection are limited. Here, we surveyed the mononuclear niche of intracellular Salmonella Typhimurium (S.Tm) during early systemic infection in mice. We described eclipse-like growth kinetics in the spleen, with a first phase of bacterial control mediated by tissue-resident red-pulp macrophages. A second phase involved extensive bacterial replication within a macrophage population characterized by CD9 expression. We demonstrated that CD9+ macrophages induced pathways for detoxificating oxidized lipids, that may be utilized by intracellular S.Tm. We established that CD9+ macrophages originated from non-classical monocytes (NCM), and NCM-depleted mice were more resistant to S.Tm infection. Our study defines macrophage subset-specific host-pathogen interactions that determine early infection dynamics and infection outcome of the entire organism.


Subject(s)
Macrophages/immunology , Salmonella Infections/immunology , Salmonella typhimurium/physiology , Spleen/immunology , Animals , Host-Pathogen Interactions , Humans , Intracellular Space , Lipid Metabolism , Macrophages/microbiology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Oxidation-Reduction , Single-Cell Analysis , Spleen/microbiology , Tetraspanin 29/metabolism
16.
Biomolecules ; 11(10)2021 10 13.
Article in English | MEDLINE | ID: mdl-34680142

ABSTRACT

DnaJ proteins or heat shock protein 40s (HSP40s) form one of the largest heat shock protein families. In this study, 2 cDNAs encoding Nile tilapia (Oreochromis niloticus) DnaJ proteins (On-DnaJ B9b and On-DnaJ C3a) were successfully cloned and characterized. The structures and organizations of these two genes are first reported in the present study. On-DnaJ B9b is approximately 2.1 kb long and contains 2 exons and 1 intron, while On-DnaJ C3a is approximately 12 kb long and contains 12 exons and 11 introns. Under normal conditions, On-DnaJ B9b mRNA is highly expressed in gonad and trunk kidney tissues, while On-DnaJ C3a transcripts are abundantly expressed in gills, intestine, liver, and trunk kidney tissues. Following pathogenic infections, the expression of both genes is induced in the liver, spleen and head kidney tissues of Nile tilapia that were infected with two virulent pathogenic bacteria, Streptococcus agalactiae and Flavobacterium columnare. Silencing of these two genes was first carried out, and the results clearly indicated their crucial roles under both heat and bacterial stress conditions. The fundamental knowledge obtained from this study indicates the characteristic basic biofunctions of heat shock proteins in the regulation of intracellular proteins during infection, which involve preventing protein aggregation, promoting protein refolding, and activating unfolded protein degradation.


Subject(s)
Cichlids/genetics , HSP40 Heat-Shock Proteins/genetics , Heat-Shock Proteins/genetics , Immunity, Innate/genetics , Animals , Cichlids/immunology , Cichlids/microbiology , Cichlids/physiology , Flavobacterium/pathogenicity , Gene Expression Regulation/immunology , Hot Temperature/adverse effects , Kidney/metabolism , Kidney/microbiology , Liver/metabolism , Liver/microbiology , Spleen/metabolism , Spleen/microbiology , Streptococcus agalactiae/pathogenicity
17.
EBioMedicine ; 72: 103601, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34619637

ABSTRACT

BACKGROUND: Severe community-acquired pneumococcal pneumonia is commonly associated with bacteraemia. Although it is assumed that the bacteraemia solely derives from pneumococci entering the blood from the lungs it is unknown if other organs are important in the pathogenesis of bacteraemia. Using three models, we tested the relevance of the spleen in pneumonia-associated bacteraemia. METHODS: We used human spleens perfused ex vivo to explore permissiveness to bacterial replication, a non-human primate model to check for splenic involvement during pneumonia and a mouse pneumonia-bacteraemia model to demonstrate that splenic involvement correlates with invasive disease. FINDINGS: Here we present evidence that the spleen is the reservoir of bacteraemia during pneumonia. We found that in the human spleen infected with pneumococci, clusters with increasing number of bacteria were detectable within macrophages. These clusters also were detected in non-human primates. When intranasally infected mice were treated with a non-therapeutic dose of azithromycin, which had no effect on pneumonia but concentrated inside splenic macrophages, bacteria were absent from the spleen and blood and importantly mice had no signs of disease. INTERPRETATION: We conclude that the bacterial load in the spleen, and not lung, correlates with the occurrence of bacteraemia. This supports the hypothesis that the spleen, and not the lungs, is the major source of bacteria during systemic infection associated with pneumococcal pneumonia; a finding that provides a mechanistic basis for using combination therapies including macrolides in the treatment of severe community-acquired pneumococcal pneumonia. FUNDING: Oxford University, Wolfson Foundation, MRC, NIH, NIHR, and MRC and BBSRC studentships supported the work.


Subject(s)
Bacteremia/microbiology , Macrophages/microbiology , Pneumonia, Pneumococcal/microbiology , Spleen/microbiology , Animals , Bacterial Load/physiology , Community-Acquired Infections/microbiology , Disease Models, Animal , Female , Humans , Mice , Papio/microbiology , Streptococcus pneumoniae/pathogenicity
18.
Sci Rep ; 11(1): 18199, 2021 09 14.
Article in English | MEDLINE | ID: mdl-34521873

ABSTRACT

Lyme disease is a tick-borne infectious disease caused by the Borrelia burgdorferi sensu lato complex. However, the distribution of Borrelia genospecies and the tissue detection rate of Borrelia in wild rodents have rarely been investigated. Here, we studied 27 wild rodents (Apodemus agrarius) captured in October and November 2016 in Gwangju, South Korea, and performed nested polymerase chain reaction targeting pyrG and ospA to confirm Borrelia infection. Eight rodents (29.6%) tested positive for Borrelia infection. The heart showed the highest infection rate (7/27; 25.9%), followed by the spleen (4/27; 14.8%), kidney (2/27; 7.4%), and lungs (1/27; 3.7%). The B. afzelii infection rate was 25.9%, with the highest rate observed in the heart (7/27; 25.9%), followed by that in the kidney and spleen (both 2/27; 7.4%). B. garinii and B. burgdorferi sensu stricto were detected only in the spleen (1/27; 3.7%). This is the first report of B. burgdorferi sensu stricto infection in wild rodents in South Korea. The rodent hearts showed a high B. afzelii infection rate, whereas the rodent spleens showed high B. garinii and B. burgdorferi sensu stricto infection rates. Besides B. garinii and B. afzelii, B. burgdorferi sensu stricto may cause Lyme disease in South Korea.


Subject(s)
Bacterial Zoonoses/microbiology , Borrelia burgdorferi/pathogenicity , Lyme Disease/microbiology , Murinae/microbiology , Animals , Animals, Wild/microbiology , Bacterial Zoonoses/epidemiology , Borrelia burgdorferi/classification , Borrelia burgdorferi/genetics , Borrelia burgdorferi/isolation & purification , Genes, Bacterial , Heart/microbiology , Humans , Kidney/microbiology , Lyme Disease/transmission , Phylogeny , Republic of Korea , Spleen/microbiology
19.
Emerg Microbes Infect ; 10(1): 1849-1861, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34461813

ABSTRACT

Salmonella enterica serovar Typhimurium (S. Typhimurium) is a food-borne bacterium that causes acute gastroenteritis in humans and typhoid fever in mice. Salmonella pathogenicity island II (SPI-2) is an important virulence gene cluster responsible for Salmonella survival and replication within host cells, leading to systemic infection. Previous studies have suggested that SPI-2 function to modulate host vesicle trafficking and immune response to promote systemic infection. However, the molecular mechanism and the host responses triggered by SPI-2 remain largely unknown. To assess the roles of SPI-2, we used a differential proteomic approach to analyse host proteins levels during systemic infections in mice. Our results showed that infection by WT S. Typhimurium triggered the reprogramming of host cell metabolism and inflammatory response. Salmonella systemic infection induces an up-regulation of glycolytic process and a repression of the tricarboxylic acid (TCA) cycle. WT-infected tissues prefer to produce adenosine 5'-triphosphate (ATP) through aerobic glycolysis rather than relying on oxidative phosphorylation to generate energy. Moreover, our data also revealed that infected macrophages may undergo both M1 and M2 polarization. In addition, our results further suggest that SPI-2 is involved in altering actin cytoskeleton to facilitate the Salmonella-containing vacuole (SCV) biogenesis and perhaps even the release of bacteria later in the infection process. Results from our study provide valuable insights into the roles of SPI-2 during systemic Salmonella infection and will guide future studies to dissect the molecular mechanisms of how SPI-2 functions in vivo.


Subject(s)
Bacterial Proteins/genetics , Citric Acid Cycle/physiology , Glycolysis/physiology , Macrophages/immunology , Membrane Proteins/genetics , Salmonella Infections, Animal/pathology , Salmonella typhimurium/pathogenicity , Actin Cytoskeleton/metabolism , Adenosine Triphosphate/metabolism , Animals , Bacterial Proteins/immunology , Disease Models, Animal , Female , Gene Expression Regulation, Bacterial/genetics , Liver/immunology , Liver/metabolism , Liver/microbiology , Membrane Proteins/immunology , Mice , Mice, Inbred C57BL , Protein Interaction Mapping , Proteomics , Salmonella Infections, Animal/immunology , Salmonella typhimurium/genetics , Salmonella typhimurium/immunology , Spleen/immunology , Spleen/metabolism , Spleen/microbiology , Virulence/genetics
20.
Avian Dis ; 65(2): 310-320, 2021 06.
Article in English | MEDLINE | ID: mdl-34412463

ABSTRACT

In April and November of 2018, multiple commercial laying hen flocks within the same company presented with a sharp increase in mortality and drop in egg production that persisted for several days. These flocks showed striking necropsy lesions consistent with systemic infection and responded to antimicrobial treatment in the feed. Staphylococcus aureus (SA) was the most frequently isolated organism from multiple tissues including comb and wattle lesions, lungs, liver, ovary, spleen, and bone marrow. Given such an uncommon presentation of SA, which is known as a secondary opportunistic pathogen, a challenge study was conducted to evaluate its role in these disease outbreaks. In the present study, laying hens of two ages (22 and 96 wk) were inoculated with SA via three routes: oral gavage, subcutaneous (SC) injection, and intravenous (IV) injection. Both young and old hens in the IV group showed a significant increase in body temperature and drop in body weight; however, the clinical signs observed in the naturally occurring outbreaks were not present. SA was reisolated at multiple time points postchallenge from all challenge groups except the negative control group. While the SC group showed localized necrosis at the injection site, microscopic changes were different from changes observed in birds from the natural outbreaks. Despite observed initial differences in route and age, the SA challenge strain was not capable of reproducing the disease on its own. The results of this study indicate that SA may have played a role in the increased mortality, clinical signs, and necropsy lesions reported with the naturally occurring outbreaks. However, SA should still be considered as a secondary opportunistic pathogen. Other factors that could have caused the initial insult are stress, immunosuppression, or other primary infectious agents. The results of this study may aid veterinary diagnosticians, clinicians, and all poultry professionals to include SA in their differentials list as a secondary opportunistic pathogen in similar cases. This is an uncommon presentation and further field observations and clinical studies are needed to better elucidate the pathogenesis of this disease, which will in turn help to prevent future outbreaks.


Reporte de caso­Comparación de la septicemia por presentación natura o por infección natural por Staphylococcus aureus en gallinas de postura de dos grupos diferentes de edades. En abril y noviembre del 2018, múltiples parvadas comerciales de gallinas de postura dentro de la misma empresa presentaron un marcado aumento en la mortalidad y una caída en la producción de huevo que persistió durante varios días. Estas parvadas mostraron marcadas lesiones a la necropsia compatibles con una infección sistémica y respondieron al tratamiento antimicrobiano en el alimento. El organismo que se aisló con mayor frecuencia de múltiples tejidos fue Staphylococcus aureus (SA), incluyendo lesiones de cresta y barbillas, pulmones, hígado, ovario, bazo y médula ósea. Dada una presentación tan poco común de S. aureus, que se conoce como un patógeno oportunista secundario, se realizó un estudio de desafío para evaluar su papel en estos brotes de enfermedades. En el presente estudio, se inocularon con Staphylococcus aureus gallinas de postura de dos edades (22 y 96 semanas) a través de tres vías: sonda oral, inyección subcutánea (SC) e inyección intravenosa (IV). Tanto las gallinas jóvenes como las de mayor edad del grupo IV mostraron un aumento significativo de la temperatura corporal y una disminución del peso corporal; sin embargo, los signos clínicos observados en los brotes naturales no estaban presentes. Se aisló S. aureus en varios momentos posteriores al desafío de todos los grupos desafiados, excepto el grupo de control negativo. Si bien el grupo inoculado por inyección subcutánea mostraron necrosis localizada en el sitio de la inyección, los cambios microscópicos fueron diferentes de los cambios observados en las aves de los brotes naturales. A pesar de las diferencias iniciales observadas en la ruta y en la edad, la cepa de desafío de S. aureus no fue capaz de reproducir la enfermedad por sí sola. Los resultados de este estudio indican que S. aureus pudo haber jugado un papel en el aumento de la mortalidad, los signos clínicos y las lesiones a la necropsia reportadas con los brotes de origen natural. Sin embargo, se debe considerar S. aureus como un patógeno oportunista secundario. Otros factores que podrían haber causado el daño inicial son el estrés, la inmunosupresión u otros agentes infecciosos primarios. Los resultados de este estudio pueden ayudar a los patólogos veterinarios, clínicos y todos los profesionales avícolas para incluir S. aureus en su lista de diferenciales como patógeno oportunista secundario en casos similares. Esta es una presentación poco común y se necesitan más observaciones de campo y estudios clínicos para dilucidar mejor la patogénesis de esta enfermedad, lo que a su vez ayudará a prevenir futuros brotes.


Subject(s)
Chickens , Poultry Diseases/etiology , Sepsis/veterinary , Staphylococcal Infections/veterinary , Administration, Oral , Age Factors , Animal Husbandry/methods , Animals , Autopsy/veterinary , Body Temperature , Body Weight , Bone Marrow/microbiology , Comb and Wattles/microbiology , Comb and Wattles/pathology , Female , Injections, Intravenous/veterinary , Injections, Subcutaneous/veterinary , Liver/pathology , Poultry Diseases/microbiology , Poultry Diseases/pathology , Sepsis/microbiology , Sepsis/pathology , Spleen/microbiology , Staphylococcal Infections/etiology , Staphylococcal Infections/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...