Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.820
Filter
1.
Nat Commun ; 15(1): 4697, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824128

ABSTRACT

Differentiation of male gametocytes into flagellated fertile male gametes relies on the assembly of axoneme, a major component of male development for mosquito transmission of the malaria parasite. RNA-binding protein (RBP)-mediated post-transcriptional regulation of mRNA plays important roles in eukaryotic sexual development, including the development of female Plasmodium. However, the role of RBP in defining the Plasmodium male transcriptome and its function in male gametogenesis remains incompletely understood. Here, we performed genome-wide screening for gender-specific RBPs and identified an undescribed male-specific RBP gene Rbpm1 in the Plasmodium. RBPm1 is localized in the nucleus of male gametocytes. RBPm1-deficient parasites fail to assemble the axoneme for male gametogenesis and thus mosquito transmission. RBPm1 interacts with the spliceosome E complex and regulates the splicing initiation of certain introns in a group of 26 axonemal genes. RBPm1 deficiency results in intron retention and protein loss of these axonemal genes. Intron deletion restores axonemal protein expression and partially rectifies axonemal defects in RBPm1-null gametocytes. Further splicing assays in both reporter and endogenous genes exhibit stringent recognition of the axonemal introns by RBPm1. The splicing activator RBPm1 and its target introns constitute an axonemal intron splicing program in the post-transcriptional regulation essential for Plasmodium male development.


Subject(s)
Axoneme , Introns , Protozoan Proteins , RNA Splicing , RNA-Binding Proteins , Introns/genetics , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Animals , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Male , Axoneme/metabolism , Female , Gametogenesis/genetics , Spliceosomes/metabolism , Spliceosomes/genetics , Plasmodium berghei/genetics , Plasmodium berghei/growth & development , Plasmodium berghei/metabolism , Malaria/parasitology , Plasmodium/genetics , Plasmodium/metabolism
2.
Sci Adv ; 10(19): eadn1547, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38718117

ABSTRACT

Pre-mRNA splicing is a fundamental step in gene expression, conserved across eukaryotes, in which the spliceosome recognizes motifs at the 3' and 5' splice sites (SSs), excises introns, and ligates exons. SS recognition and pairing is often influenced by protein splicing factors (SFs) that bind to splicing regulatory elements (SREs). Here, we describe SMsplice, a fully interpretable model of pre-mRNA splicing that combines models of core SS motifs, SREs, and exonic and intronic length preferences. We learn models that predict SS locations with 83 to 86% accuracy in fish, insects, and plants and about 70% in mammals. Learned SRE motifs include both known SF binding motifs and unfamiliar motifs, and both motif classes are supported by genetic analyses. Our comparisons across species highlight similarities between non-mammals, increased reliance on intronic SREs in plant splicing, and a greater reliance on SREs in mammalian splicing.


Subject(s)
Exons , Introns , RNA Precursors , RNA Splice Sites , RNA Splicing , RNA Precursors/genetics , RNA Precursors/metabolism , Animals , Introns/genetics , Exons/genetics , Genes, Plant , Models, Genetic , Spliceosomes/metabolism , Spliceosomes/genetics , Plants/genetics , Humans , RNA Splicing Factors/genetics , RNA Splicing Factors/metabolism
3.
Mol Med ; 30(1): 62, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760666

ABSTRACT

Alternative splicing (AS) is a strictly regulated process that generates multiple mRNA variants from a single gene, thus contributing to proteome diversity. Transcriptome-wide sequencing studies revealed networks of functionally coordinated splicing events, which produce isoforms with distinct or even opposing functions. To date, several mechanisms of AS are deregulated in leukemic cells, mainly due to mutations in splicing and/or epigenetic regulators and altered expression of splicing factors (SFs). In this review, we discuss aberrant splicing events induced by mutations affecting SFs (SF3B1, U2AF1, SRSR2, and ZRSR2), spliceosome components (PRPF8, LUC7L2, DDX41, and HNRNPH1), and epigenetic modulators (IDH1 and IDH2). Finally, we provide an extensive overview of the biological relevance of aberrant isoforms of genes involved in the regulation of apoptosis (e. g. BCL-X, MCL-1, FAS, and c-FLIP), activation of key cellular signaling pathways (CASP8, MAP3K7, and NOTCH2), and cell metabolism (PKM).


Subject(s)
Alternative Splicing , Hematologic Neoplasms , Humans , Hematologic Neoplasms/genetics , RNA Splicing Factors/genetics , RNA Splicing Factors/metabolism , Mutation , Animals , Gene Expression Regulation, Neoplastic , Epigenesis, Genetic , Spliceosomes/metabolism , Spliceosomes/genetics , Signal Transduction/genetics
4.
PLoS Genet ; 20(5): e1011284, 2024 May.
Article in English | MEDLINE | ID: mdl-38743783

ABSTRACT

The Integrator is a multi-subunit protein complex that catalyzes the maturation of snRNA transcripts via 3' cleavage, a step required for snRNA incorporation with snRNP for spliceosome biogenesis. Here we developed a GFP based in vivo snRNA misprocessing reporter as a readout of Integrator function and performed a genome-wide RNAi screen for Integrator regulators. We found that loss of the Argonaute encoding csr-1 gene resulted in widespread 3' misprocessing of snRNA transcripts that is accompanied by a significant increase in alternative splicing. Loss of the csr-1 gene down-regulates the germline expression of Integrator subunits 4 and 6 and is accompanied by a reduced protein translation efficiency of multiple Integrator catalytic and non-catalytic subunits. Through isoform and motif mutant analysis, we determined that CSR-1's effect on snRNA processing is dependent on its catalytic slicer activity but does not involve the CSR-1a isoform. Moreover, mRNA-sequencing revealed high similarity in the transcriptome profile between csr-1 and Integrator subunit knockdown via RNAi. Together, our findings reveal CSR-1 as a new regulator of the Integrator complex and implicate a novel role of this Argonaute protein in snRNA 3' processing.


Subject(s)
Argonaute Proteins , Caenorhabditis elegans Proteins , Caenorhabditis elegans , RNA, Small Nuclear , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Animals , RNA, Small Nuclear/genetics , RNA, Small Nuclear/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Argonaute Proteins/metabolism , Argonaute Proteins/genetics , Alternative Splicing/genetics , RNA Interference , RNA Processing, Post-Transcriptional , Spliceosomes/metabolism , Spliceosomes/genetics
5.
RNA Biol ; 21(1): 1-17, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38711165

ABSTRACT

Spliceosome assembly contributes an important but incompletely understood aspect of splicing regulation. Prp45 is a yeast splicing factor which runs as an extended fold through the spliceosome, and which may be important for bringing its components together. We performed a whole genome analysis of the genetic interaction network of the truncated allele of PRP45 (prp45(1-169)) using synthetic genetic array technology and found chromatin remodellers and modifiers as an enriched category. In agreement with related studies, H2A.Z-encoding HTZ1, and the components of SWR1, INO80, and SAGA complexes represented prominent interactors, with htz1 conferring the strongest growth defect. Because the truncation of Prp45 disproportionately affected low copy number transcripts of intron-containing genes, we prepared strains carrying intronless versions of SRB2, VPS75, or HRB1, the most affected cases with transcription-related function. Intron removal from SRB2, but not from the other genes, partly repaired some but not all the growth phenotypes identified in the genetic screen. The interaction of prp45(1-169) and htz1Δ was detectable even in cells with SRB2 intron deleted (srb2Δi). The less truncated variant, prp45(1-330), had a synthetic growth defect with htz1Δ at 16°C, which also persisted in the srb2Δi background. Moreover, htz1Δ enhanced prp45(1-330) dependent pre-mRNA hyper-accumulation of both high and low efficiency splicers, genes ECM33 and COF1, respectively. We conclude that while the expression defects of low expression intron-containing genes contribute to the genetic interactome of prp45(1-169), the genetic interactions between prp45 and htz1 alleles demonstrate the sensitivity of spliceosome assembly, delayed in prp45(1-169), to the chromatin environment.


Subject(s)
Introns , Phenotype , RNA Splicing , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Spliceosomes , Spliceosomes/metabolism , Spliceosomes/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Gene Expression Regulation, Fungal , RNA Splicing Factors/genetics , RNA Splicing Factors/metabolism , Histones/metabolism , Histones/genetics
6.
Nature ; 629(8014): 1165-1173, 2024 May.
Article in English | MEDLINE | ID: mdl-38720076

ABSTRACT

The nucleus is highly organized, such that factors involved in the transcription and processing of distinct classes of RNA are confined within specific nuclear bodies1,2. One example is the nuclear speckle, which is defined by high concentrations of protein and noncoding RNA regulators of pre-mRNA splicing3. What functional role, if any, speckles might play in the process of mRNA splicing is unclear4,5. Here we show that genes localized near nuclear speckles display higher spliceosome concentrations, increased spliceosome binding to their pre-mRNAs and higher co-transcriptional splicing levels than genes that are located farther from nuclear speckles. Gene organization around nuclear speckles is dynamic between cell types, and changes in speckle proximity lead to differences in splicing efficiency. Finally, directed recruitment of a pre-mRNA to nuclear speckles is sufficient to increase mRNA splicing levels. Together, our results integrate the long-standing observations of nuclear speckles with the biochemistry of mRNA splicing and demonstrate a crucial role for dynamic three-dimensional spatial organization of genomic DNA in driving spliceosome concentrations and controlling the efficiency of mRNA splicing.


Subject(s)
Genome , Nuclear Speckles , RNA Precursors , RNA Splicing , RNA, Messenger , Spliceosomes , Animals , Humans , Male , Mice , Genes , Genome/genetics , Human Embryonic Stem Cells/metabolism , Mouse Embryonic Stem Cells/metabolism , Nuclear Speckles/genetics , Nuclear Speckles/metabolism , RNA Precursors/metabolism , RNA Precursors/genetics , RNA Splicing/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Spliceosomes/metabolism , Transcription, Genetic
7.
Nat Commun ; 15(1): 3888, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38719828

ABSTRACT

PRPF40A plays an important role in the regulation of pre-mRNA splicing by mediating protein-protein interactions in the early steps of spliceosome assembly. By binding to proteins at the 5´ and 3´ splice sites, PRPF40A promotes spliceosome assembly by bridging the recognition of the splices. The PRPF40A WW domains are expected to recognize proline-rich sequences in SF1 and SF3A1 in the early spliceosome complexes E and A, respectively. Here, we combine NMR, SAXS and ITC to determine the structure of the PRPF40A tandem WW domains in solution and characterize the binding specificity and mechanism for proline-rich motifs recognition. Our structure of the PRPF40A WW tandem in complex with a high-affinity SF1 peptide reveals contributions of both WW domains, which also enables tryptophan sandwiching by two proline residues in the ligand. Unexpectedly, a proline-rich motif in the N-terminal region of PRPF40A mediates intramolecular interactions with the WW tandem. Using NMR, ITC, mutational analysis in vitro, and immunoprecipitation experiments in cells, we show that the intramolecular interaction acts as an autoinhibitory filter for proof-reading of high-affinity proline-rich motifs in bona fide PRPF40A binding partners. We propose that similar autoinhibitory mechanisms are present in most WW tandem-containing proteins to enhance binding selectivity and regulation of WW/proline-rich peptide interaction networks.


Subject(s)
Proline , Protein Binding , WW Domains , Humans , Amino Acid Motifs , Models, Molecular , Proline/metabolism , Proline/chemistry , RNA Splicing , RNA Splicing Factors/metabolism , RNA Splicing Factors/chemistry , RNA Splicing Factors/genetics , Scattering, Small Angle , Spliceosomes/metabolism , X-Ray Diffraction
8.
PLoS Genet ; 20(5): e1011272, 2024 May.
Article in English | MEDLINE | ID: mdl-38768219

ABSTRACT

The position of the nucleus before it divides during mitosis is variable in different budding yeasts. Studies in the pathogenic intron-rich fungus Cryptococcus neoformans reveal that the nucleus moves entirely into the daughter bud before its division. Here, we report functions of a zinc finger motif containing spliceosome protein C. neoformans Slu7 (CnSlu7) in cell cycle progression. The budding yeast and fission yeast homologs of Slu7 have predominant roles for intron 3' splice site definition during pre-mRNA splicing. Using a conditional knockdown strategy, we show CnSlu7 is an essential factor for viability and is required for efficient cell cycle progression with major role during mitosis. Aberrant nuclear migration, including improper positioning of the nucleus as well as the spindle, were frequently observed in cells depleted of CnSlu7. However, cell cycle delays observed due to Slu7 depletion did not activate the Mad2-dependent spindle assembly checkpoint (SAC). Mining of the global transcriptome changes in the Slu7 knockdown strain identified downregulation of transcripts encoding several cell cycle regulators and cytoskeletal factors for nuclear migration, and the splicing of specific introns of these genes was CnSlu7 dependent. To test the importance of splicing activity of CnSlu7 on nuclear migration, we complemented Slu7 knockdown cells with an intron less PAC1 minigene and demonstrated that the nuclear migration defects were significantly rescued. These findings show that CnSlu7 regulates the functions of diverse cell cycle regulators and cytoskeletal components, ensuring timely cell cycle transitions and nuclear division during mitosis.


Subject(s)
Cell Nucleus , Cryptococcus neoformans , Fungal Proteins , Mitosis , RNA Splicing , Spliceosomes , Mitosis/genetics , Cryptococcus neoformans/genetics , RNA Splicing/genetics , Cell Nucleus/genetics , Cell Nucleus/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Spliceosomes/genetics , Spliceosomes/metabolism , Spindle Apparatus/metabolism , Spindle Apparatus/genetics , Gene Expression Regulation, Fungal , Cell Cycle/genetics
9.
Proc Natl Acad Sci U S A ; 121(21): e2322974121, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38743621

ABSTRACT

SRSF1 is the founding member of the SR protein family. It is required-interchangeably with other SR proteins-for pre-mRNA splicing in vitro, and it regulates various alternative splicing events. Dysregulation of SRSF1 expression contributes to cancer and other pathologies. Here, we characterized SRSF1's interactome using proximity labeling and mass spectrometry. This approach yielded 190 proteins enriched in the SRSF1 samples, independently of the N- or C-terminal location of the biotin-labeling domain. The detected proteins reflect established functions of SRSF1 in pre-mRNA splicing and reveal additional connections to spliceosome proteins, in addition to other recently identified functions. We validated a robust interaction with the spliceosomal RNA helicase DDX23/PRP28 using bimolecular fluorescence complementation and in vitro binding assays. The interaction is mediated by the N-terminal RS-like domain of DDX23 and both RRM1 and the RS domain of SRSF1. During pre-mRNA splicing, DDX23's ATPase activity is essential for the pre-B to B spliceosome complex transition and for release of U1 snRNP from the 5' splice site. We show that the RS-like region of DDX23's N-terminal domain is important for spliceosome incorporation, while larger deletions in this domain alter subnuclear localization. We discuss how the identified interaction of DDX23 with SRSF1 and other SR proteins may be involved in the regulation of these processes.


Subject(s)
DEAD-box RNA Helicases , RNA Splicing , Serine-Arginine Splicing Factors , Spliceosomes , DEAD-box RNA Helicases/metabolism , DEAD-box RNA Helicases/genetics , Humans , Spliceosomes/metabolism , Serine-Arginine Splicing Factors/metabolism , Serine-Arginine Splicing Factors/genetics , RNA Precursors/metabolism , RNA Precursors/genetics , Protein Binding , HeLa Cells
10.
Genes Dev ; 38(7-8): 322-335, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38724209

ABSTRACT

Rare, full-length circular intron RNAs distinct from lariats have been reported in several species, but their biogenesis is not understood. We envisioned and tested a hypothesis for their formation using Saccharomyces cerevisiae, documenting full-length and novel processed circular RNAs from multiple introns. Evidence implicates a previously undescribed catalytic activity of the intron lariat spliceosome (ILS) in which the 3'-OH of the lariat tail (with optional trimming and adenylation by the nuclear 3' processing machinery) attacks the branch, joining the intron 3' end to the 5' splice site in a 3'-5' linked circle. Human U2 and U12 spliceosomes produce analogous full-length and processed circles. Postsplicing catalytic activity of the spliceosome may promote intron transposition during eukaryotic genome evolution.


Subject(s)
Introns , RNA Splicing , Saccharomyces cerevisiae , Spliceosomes , Spliceosomes/metabolism , Spliceosomes/genetics , Introns/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Humans , RNA Splicing/genetics , RNA, Circular/genetics , RNA, Circular/metabolism , RNA/metabolism , RNA/genetics
11.
Nat Commun ; 15(1): 4617, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38816363

ABSTRACT

The majority of genic transcription is intronic. Introns are removed by splicing as branched lariat RNAs which require rapid recycling. The branch site is recognized during splicing catalysis and later debranched by Dbr1 in the rate-limiting step of lariat turnover. Through generation of a viable DBR1 knockout cell line, we find the predominantly nuclear Dbr1 enzyme to encode the sole debranching activity in human cells. Dbr1 preferentially debranches substrates that contain canonical U2 binding motifs, suggesting that branchsites discovered through sequencing do not necessarily represent those favored by the spliceosome. We find that Dbr1 also exhibits specificity for particular 5' splice site sequences. We identify Dbr1 interactors through co-immunoprecipitation mass spectrometry. We present a mechanistic model for Dbr1 recruitment to the branchpoint through the intron-binding protein AQR. In addition to a 20-fold increase in lariats, Dbr1 depletion increases exon skipping. Using ADAR fusions to timestamp lariats, we demonstrate a defect in spliceosome recycling. In the absence of Dbr1, spliceosomal components remain associated with the lariat for a longer period of time. As splicing is co-transcriptional, slower recycling increases the likelihood that downstream exons will be available for exon skipping.


Subject(s)
Introns , RNA Splicing , Spliceosomes , Humans , Introns/genetics , Spliceosomes/metabolism , HEK293 Cells , RNA Nucleotidyltransferases/metabolism , RNA Nucleotidyltransferases/genetics , Exons/genetics , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , HeLa Cells , RNA Splice Sites
12.
Commun Biol ; 7(1): 640, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38796645

ABSTRACT

Facioscapulohumeral muscular dystrophy (FSHD) is one of the most common autosomal dominant muscle disorders, yet no cure or amelioration exists. The clinical presentation is diverse, making it difficult to identify the actual driving pathomechanism among many downstream events. To unravel this complexity, we performed a meta-analysis of 13 original omics datasets (in total 171 FSHD and 129 control samples). Our approach confirmed previous findings about the disease pathology and specified them further. We confirmed increased expression of former proposed DUX4 biomarkers, and furthermore impairment of the respiratory chain. Notably, the meta-analysis provides insights about so far not reported pathways, including misregulation of neuromuscular junction protein encoding genes, downregulation of the spliceosome, and extensive alterations of nuclear envelope protein expression. Finally, we developed a publicly available shiny app to provide a platform for researchers who want to search our analysis for genes of interest in the future.


Subject(s)
Muscular Dystrophy, Facioscapulohumeral , Neuromuscular Junction , Nuclear Envelope , Spliceosomes , Humans , Muscular Dystrophy, Facioscapulohumeral/genetics , Muscular Dystrophy, Facioscapulohumeral/metabolism , Muscular Dystrophy, Facioscapulohumeral/pathology , Nuclear Envelope/metabolism , Nuclear Envelope/genetics , Spliceosomes/metabolism , Spliceosomes/genetics , Neuromuscular Junction/metabolism , Neuromuscular Junction/genetics , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Gene Expression Regulation
13.
Nat Commun ; 15(1): 3138, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38605034

ABSTRACT

The carboxy-terminus of the spliceosomal protein PRPF8, which regulates the RNA helicase Brr2, is a hotspot for mutations causing retinitis pigmentosa-type 13, with unclear role in human splicing and tissue-specificity mechanism. We used patient induced pluripotent stem cells-derived cells, carrying the heterozygous PRPF8 c.6926 A > C (p.H2309P) mutation to demonstrate retinal-specific endophenotypes comprising photoreceptor loss, apical-basal polarity and ciliary defects. Comprehensive molecular, transcriptomic, and proteomic analyses revealed a role of the PRPF8/Brr2 regulation in 5'-splice site (5'SS) selection by spliceosomes, for which disruption impaired alternative splicing and weak/suboptimal 5'SS selection, and enhanced cryptic splicing, predominantly in ciliary and retinal-specific transcripts. Altered splicing efficiency, nuclear speckles organisation, and PRPF8 interaction with U6 snRNA, caused accumulation of active spliceosomes and poly(A)+ mRNAs in unique splicing clusters located at the nuclear periphery of photoreceptors. Collectively these elucidate the role of PRPF8/Brr2 regulatory mechanisms in splicing and the molecular basis of retinal disease, informing therapeutic approaches.


Subject(s)
RNA Splice Sites , Retinitis Pigmentosa , Spliceosomes , Humans , Spliceosomes/genetics , Spliceosomes/metabolism , Proteomics , RNA Splicing/genetics , Alternative Splicing/genetics , RNA, Small Nuclear/genetics , RNA, Small Nuclear/metabolism , RNA, Messenger/metabolism , Mutation , DNA Helicases/metabolism , RNA-Binding Proteins/metabolism
14.
Leuk Res ; 141: 107500, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38636413

ABSTRACT

Mutations in spliceosome genes (SRSF2, SF3B1, U2AF1, ZRSR2) correlate with inferior outcomes in patients treated with intensive chemotherapy for Acute Myeloid Leukemia. However, their prognostic impact in patients treated with less intensive protocols is not well known. This study aimed to evaluate the impact of Spliceosome mutations in patients treated with Venetoclax and Azacitidine for newly diagnosed AML. 117 patients treated in 3 different hospitals were included in the analysis. 34 harbored a mutation in at least one of the spliceosome genes (splice-mut cohort). K/NRAS mutations were more frequent in the splice-mut cohort (47% vs 19%, p=0.0022). Response rates did not differ between splice-mut and splice-wt cohorts. With a median follow-up of 15 months, splice mutations were associated with a lower 18-month LFS (p=0.0045). When analyzing splice mutations separately, we found SRSF2 mutations to be associated with poorer outcomes (p=0.034 and p=0.037 for OS and LFS respectively). This negative prognostic impact remained true in our multivariate analysis. We believe this finding should warrant further studies aimed at overcoming this negative impact.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols , Leukemia, Myeloid, Acute , Mutation , Serine-Arginine Splicing Factors , Humans , Serine-Arginine Splicing Factors/genetics , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/mortality , Male , Female , Middle Aged , Prognosis , Aged , Adult , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Aged, 80 and over , Bridged Bicyclo Compounds, Heterocyclic/therapeutic use , Bridged Bicyclo Compounds, Heterocyclic/administration & dosage , Azacitidine/therapeutic use , Azacitidine/administration & dosage , Young Adult , Spliceosomes/genetics , Sulfonamides
16.
Int J Mol Sci ; 25(8)2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38673778

ABSTRACT

Pre-mRNA splicing plays a key role in the regulation of gene expression. Recent discoveries suggest that defects in pre-mRNA splicing, resulting from the dysfunction of certain splicing factors, can impact the expression of genes crucial for genome surveillance mechanisms, including those involved in cellular response to DNA damage. In this study, we analyzed how cells with a non-functional spliceosome-associated Gpl1-Gih35-Wdr83 complex respond to DNA damage. Additionally, we investigated the role of this complex in regulating the splicing of factors involved in DNA damage repair. Our findings reveal that the deletion of any component within the Gpl1-Gih35-Wdr83 complex leads to a significant accumulation of unspliced pre-mRNAs of DNA repair factors. Consequently, mutant cells lacking this complex exhibit increased sensitivity to DNA-damaging agents. These results highlight the importance of the Gpl1-Gih35-Wdr83 complex in regulating the expression of DNA repair factors, thereby protecting the stability of the genome following DNA damage.


Subject(s)
DNA Damage , DNA Repair , RNA Splicing Factors , RNA Splicing , DNA Damage/genetics , DNA Repair/genetics , Gene Expression Regulation, Fungal , RNA Precursors/genetics , RNA Precursors/metabolism , RNA Splicing Factors/metabolism , RNA Splicing Factors/genetics , Schizosaccharomyces/genetics , Schizosaccharomyces/metabolism , Schizosaccharomyces pombe Proteins/genetics , Schizosaccharomyces pombe Proteins/metabolism , Spliceosomes/metabolism , Spliceosomes/genetics , Multiprotein Complexes/genetics , Multiprotein Complexes/metabolism
17.
Cell Res ; 34(6): 428-439, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38658629

ABSTRACT

Spliceosome is often assembled across an exon and undergoes rearrangement to span a neighboring intron. Most states of the intron-defined spliceosome have been structurally characterized. However, the structure of a fully assembled exon-defined spliceosome remains at large. During spliceosome assembly, the pre-catalytic state (B complex) is converted from its precursor (pre-B complex). Here we report atomic structures of the exon-defined human spliceosome in four sequential states: mature pre-B, late pre-B, early B, and mature B. In the previously unknown late pre-B state, U1 snRNP is already released but the remaining proteins are still in the pre-B state; unexpectedly, the RNAs are in the B state, with U6 snRNA forming a duplex with 5'-splice site and U5 snRNA recognizing the 3'-end of the exon. In the early and mature B complexes, the B-specific factors are stepwise recruited and specifically recognize the exon 3'-region. Our study reveals key insights into the assembly of the exon-defined spliceosomes and identifies mechanistic steps of the pre-B-to-B transition.


Subject(s)
Exons , RNA, Small Nuclear , Spliceosomes , Humans , Spliceosomes/metabolism , Exons/genetics , RNA, Small Nuclear/metabolism , RNA, Small Nuclear/chemistry , RNA, Small Nuclear/genetics , RNA Splicing , Introns/genetics , Ribonucleoprotein, U1 Small Nuclear/metabolism , Ribonucleoprotein, U1 Small Nuclear/chemistry , Ribonucleoprotein, U1 Small Nuclear/genetics , RNA Splice Sites/genetics , Models, Molecular
18.
Mol Syst Biol ; 20(6): 676-701, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38664594

ABSTRACT

Splice-switching oligonucleotides (SSOs) are antisense compounds that act directly on pre-mRNA to modulate alternative splicing (AS). This study demonstrates the value that artificial intelligence/machine learning (AI/ML) provides for the identification of functional, verifiable, and therapeutic SSOs. We trained XGboost tree models using splicing factor (SF) pre-mRNA binding profiles and spliceosome assembly information to identify modulatory SSO binding sites on pre-mRNA. Using Shapley and out-of-bag analyses we also predicted the identity of specific SFs whose binding to pre-mRNA is blocked by SSOs. This step adds considerable transparency to AI/ML-driven drug discovery and informs biological insights useful in further validation steps. We applied this approach to previously established functional SSOs to retrospectively identify the SFs likely to regulate those events. We then took a prospective validation approach using a novel target in triple negative breast cancer (TNBC), NEDD4L exon 13 (NEDD4Le13). Targeting NEDD4Le13 with an AI/ML-designed SSO decreased the proliferative and migratory behavior of TNBC cells via downregulation of the TGFß pathway. Overall, this study illustrates the ability of AI/ML to extract actionable insights from RNA-seq data.


Subject(s)
Alternative Splicing , Artificial Intelligence , Machine Learning , Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/genetics , Cell Line, Tumor , Nedd4 Ubiquitin Protein Ligases/genetics , Nedd4 Ubiquitin Protein Ligases/metabolism , RNA Precursors/genetics , RNA Precursors/metabolism , Cell Proliferation/drug effects , Cell Proliferation/genetics , RNA Splicing Factors/genetics , RNA Splicing Factors/metabolism , Oligonucleotides, Antisense/genetics , Cell Movement/genetics , Spliceosomes/metabolism , Spliceosomes/genetics , Oligonucleotides/genetics , Female
19.
J Phys Chem Lett ; 15(13): 3502-3508, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38517341

ABSTRACT

RNA ATPases/helicases remodel substrate RNA-protein complexes in distinct ways. The different RNA ATPases/helicases, taking part in the spliceosome complex, reshape the RNA/RNA-protein contacts to enable premature-mRNA splicing. Among them, the bad response to refrigeration 2 (Brr2) helicase promotes U4/U6 small nuclear (sn)RNA unwinding via ATP-driven translocation of the U4 snRNA strand, thus playing a pivotal role during the activation, catalytic, and disassembly phases of splicing. The plastic Brr2 architecture consists of an enzymatically active N-terminal cassette (N-cassette) and a structurally similar but inactive C-terminal cassette (C-cassette). The C-cassette, along with other allosteric effectors and regulators, tightly and timely controls Brr2's function via an elusive mechanism. Here, microsecond-long molecular dynamics simulations, dynamical network theory, and community network analysis are combined to elucidate how allosteric effectors/regulators modulate the Brr2 function. We unexpectedly reveal that U4 snRNA itself acts as an allosteric regulator, amplifying the cross-talk of distal Brr2 domains and triggering a conformational reorganization of the protein. Our findings offer fundamental understanding into Brr2's mechanism of action and broaden our knowledge on the sophisticated regulatory mechanisms by which spliceosome ATPases/helicases control gene expression. This includes their allosteric regulation exerted by client RNA strands, a mechanism that may be broadly applicable to other RNA-dependent ATPases/helicases.


Subject(s)
Ribonucleoproteins, Small Nuclear , Spliceosomes , Humans , Adenosine Triphosphatases/metabolism , Ribonucleoprotein, U4-U6 Small Nuclear/chemistry , Ribonucleoprotein, U4-U6 Small Nuclear/genetics , Ribonucleoprotein, U4-U6 Small Nuclear/metabolism , RNA/metabolism , RNA Helicases/chemistry , RNA Helicases/genetics , RNA Helicases/metabolism , Spliceosomes/genetics , Spliceosomes/metabolism , Ribonucleoproteins, Small Nuclear/metabolism
20.
Rev Mal Respir ; 41(4): 294-298, 2024 Apr.
Article in French | MEDLINE | ID: mdl-38461087

ABSTRACT

Lung cancer is the first cancer-related cause of death worldwide. This is in partially due to therapeutic resistance, which occurs in around 70% of patients, especially those receiving platinum salts, the gold-standard chemotherapy. The massive deregulation of alternative transcript splicing processes observed in many cancers has led to the development of a new class of pharmacological agents aimed at inhibiting the activity of the splicing machinery (spliceosome). The molecular mechanisms by which these inhibitors act remain largely unknown, as do the benefits of using them in combination with other therapies. In this context, our work is focused on an inhibitor of the SRPK1 kinase, a major regulator of the spliceosome.


Subject(s)
Lung Neoplasms , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Spliceosomes/genetics , Spliceosomes/metabolism , RNA Splicing , Alternative Splicing , Protein Serine-Threonine Kinases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...