Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.031
Filter
1.
BMC Plant Biol ; 24(1): 508, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844843

ABSTRACT

Phytophthora cinnamomi Rands is a highly prevalent phytopathogen worldwide, ranking among the top ten in terms of distribution. It inflicts crown rot, canker, and root rot on numerous plant species, significantly impacting the biodiversity of both flora and fauna within affected environments. With a host range spanning over 5,000 species, including important plants like Quercus suber, Quercus ilex, Castanea sativa, and commercially significant crops such as avocado (Persea americana), maize (Zea mays), and tomato (Solanum lycopersicum), Phytophthora cinnamomi poses a substantial threat to agriculture and ecosystems. The efficient dissemination of the oomycete relies on its short-lived asexually motile zoospores, which depend on water currents to infect host roots. However, managing these zoospores in the laboratory has long been challenging due to the complexity of the life cycle. Current protocols involve intricate procedures, including alternating cycles of growth, drought, and flooding. Unfortunately, these artificial conditions often result in a rapid decline in virulence, necessitating additional steps to maintain infectivity during cultivation. In our research, we sought to address this challenge by investigating zoospore survival under various conditions. Our goal was to develop a stable stock of zoospores that is both easily deployable and highly infective. Through direct freezing in liquid nitrogen, we have successfully preserved their virulence. This breakthrough eliminates the need for repeated culture transfers, simplifying the process of plant inoculation. Moreover, it enables more comprehensive studies of Phytophthora cinnamomi and its interactions with host plants.


Subject(s)
Phytophthora , Plant Diseases , Phytophthora/physiology , Plant Diseases/microbiology , Host-Pathogen Interactions , Plant Roots/microbiology , Spores/physiology
2.
Am J Bot ; 111(5): e16332, 2024 May.
Article in English | MEDLINE | ID: mdl-38762794

ABSTRACT

PREMISE: Apomixis in ferns is relatively common and obligatory. Sterile hybrids may restore fertility via apomixis at a cost of long-term genetic stagnation. In this study, we outlined apomixis as a possible temporary phase leading to sexuality and analyzed factors relating to transitioning to and away from apomixis, such as unreduced and reduced spore formation in apomict and apo-sex hybrid ferns. METHODS: We analyzed the genome size of 15 fern species or hybrids ("taxa") via flow cytometry. The number of reduced and unreduced gametophytes was established as a proxy for viable spore formation of either type. We also calculated the spore abortion ratio (sign of reduced spores) in several taxa, including the apo-sex hybrid Dryopteris × critica and its 16 apomictically formed offspring. RESULTS: Four of 15 sampled taxa yielded offspring variable in genome size. Specifically, each variable taxon formed one viable reduced plant among 12-451 sampled gametophytes per taxon. Thus, haploid spore formation in the studied apomicts was very rare but possible. Spore abortion analyses indicated gradually decreasing abortion (haploid spore formation) over time. In Dryopteris × critica, abortion decreased from 93.8% to mean 89.5% in one generation. CONCLUSIONS: Our results support apomixis as a transitionary phase toward sexuality. Newly formed apomicts hybridize with sexual relatives and continue to form haploid spores early on. Thus, they may get the genomic content necessary for regular meiosis and restore sexuality. If the missing relative goes extinct, the lineage gets locked into apomixis as may be the case with the Dryopteris affinis complex.


Subject(s)
Apomixis , Ferns , Genome Size , Genome, Plant , Spores , Ferns/genetics , Ferns/physiology , Apomixis/genetics , Spores/physiology , Spores/genetics , Hybridization, Genetic
3.
Food Microbiol ; 121: 104509, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38637073

ABSTRACT

Quantifying spore germination and outgrowth heterogeneity is challenging. Single cell level analysis should provide supplementary knowledge regarding the impact of unfavorable conditions on germination and outgrowth dynamics. This work aimed to quantify the impact of pH on spore germination and outgrowth, investigating the behavior of individual spore crops, produced under optimal and suboptimal conditions. Bacillus mycoides (formerly B. weihenstephanensis) KBAB4 spores, produced at pH 7.4 and at pH 5.5 were incubated at different pH values, from pH 5.2 to 7.4. The spores were monitored by microscopy live imaging, in controlled conditions, at 30 °C. The images were analyzed using SporeTracker, to determine the state of single cells. The impact of pH on germination and outgrowth times and rates was estimated and the correlation between these parameters was quantified. The correlation between germination and outgrowth times was significantly higher at low pH. These results suggest that an environmental pressure highlights the heterogeneity of spore germination and outgrowth within a spore population. Results were consistent with previous observations at population level, now confirmed and extended to single cell level. Therefore, single cell level analyses can be used to quantify the heterogeneity of spore populations, which is of interest in order to control the development of spore-forming bacteria, responsible for food safety issues.


Subject(s)
Bacillus , Spores, Bacterial , Humans , Spores , Hydrogen-Ion Concentration , Bacillus subtilis
4.
J Phycol ; 60(3): 741-754, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38578201

ABSTRACT

Environmental changes associated with rapid climate change in the Arctic, such as the increased rates of sedimentation from climatic or anthropogenic sources, can enhance the impact of abiotic stressors on coastal ecosystems. High sedimentation rates can be detrimental to nearshore kelp abundance and distribution, possibly due to increased mortality at the spore settlement stage. Spore settlement and viability of the Arctic kelp Laminaria solidungula were examined through a series of lab-based sedimentation experiments. Spores were exposed to increasing sediment loads in three experimental designs simulating different sedimentation scenarios: sediment deposition above settled spores, settlement of spores on sediment-covered substrate, and simultaneous suspension of spores and sediments during settlement. Spore settlement was recorded upon completion of each experiment, and gametophyte abundance was assessed following a growth period with sediments removed to examine short-term spore viability via a gametophyte-to-settled-spore ratio. In all three types of sediment exposure, the addition of sediments caused a 30%-40% reduction in spore settlement relative to a no-sediment control. Spore settlement decreased significantly between the low and high sediment treatments when spores were settled onto sediment-covered substrates. In all experiments, increasing amounts of sediment had no significant effect on spore viability, indicating that spores that had settled under different short-term sediment conditions were viable. Our results indicate that depending on spore-sediment interaction type, higher rates of sedimentation resulting from increased sediment loading could affect L. solidungula spore settlement success with potential impacts on the long-term persistence of a diverse and productive benthic habitat.


Subject(s)
Geologic Sediments , Laminaria , Spores , Laminaria/physiology , Spores/physiology , Arctic Regions , Kelp/physiology
5.
Nat Commun ; 15(1): 3596, 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38678037

ABSTRACT

The long-term effects of the Central Atlantic Magmatic Province, a large igneous province connected to the end-Triassic mass-extinction (201.5 Ma), remain largely elusive. Here, we document the persistence of volcanic-induced mercury (Hg) pollution and its effects on the biosphere for ~1.3 million years after the extinction event. In sediments recovered in Germany (Schandelah-1 core), we record not only high abundances of malformed fern spores at the Triassic-Jurassic boundary, but also during the lower Jurassic Hettangian, indicating repeated vegetation disturbance and stress that was eccentricity-forced. Crucially, these abundances correspond to increases in sedimentary Hg-concentrations. Hg-isotope ratios (δ202Hg, Δ199Hg) suggest a volcanic source of Hg-enrichment at the Triassic-Jurassic boundary but a terrestrial source for the early Jurassic peaks. We conclude that volcanically injected Hg across the extinction was repeatedly remobilized from coastal wetlands and hinterland areas during eccentricity-forced phases of severe hydrological upheaval and erosion, focusing Hg-pollution in the Central European Basin.


Subject(s)
Extinction, Biological , Ferns , Fossils , Geologic Sediments , Mercury , Mercury/analysis , Geologic Sediments/chemistry , Germany , Volcanic Eruptions , Mutagenesis , Climate , Spores
6.
mBio ; 15(4): e0018124, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38477597

ABSTRACT

A comprehensive microbial surveillance was conducted at NASA's Mars 2020 spacecraft assembly facility (SAF), where whole-genome sequencing (WGS) of 110 bacterial strains was performed. One isolate, designated 179-BFC-A-HST, exhibited less than 80% average nucleotide identity (ANI) to known species, suggesting a novel organism. This strain demonstrated high-level resistance [minimum inhibitory concentration (MIC) >256 mg/L] to third-generation cephalosporins, including ceftazidime, cefpodoxime, combination ceftazidime/avibactam, and the fourth-generation cephalosporin cefepime. The results of a comparative genomic analysis revealed that 179-BFC-A-HST is most closely related to Virgibacillus halophilus 5B73CT, sharing an ANI of 78.7% and a digital DNA-DNA hybridization (dDDH) value of 23.5%, while their 16S rRNA gene sequences shared 97.7% nucleotide identity. Based on these results and the recent recognition that the genus Virgibacillus is polyphyletic, strain 179-BFC-A-HST is proposed as a novel species of a novel genus, Tigheibacillus jepli gen. nov., sp. nov (type strain 179-BFC-A-HST = DSM 115946T = NRRL B-65666T), and its closest neighbor, V. halophilus, is proposed to be reassigned to this genus as Tigheibacillus halophilus comb. nov. (type strain 5B73CT = DSM 21623T = JCM 21758T = KCTC 13935T). It was also necessary to reclassify its second closest neighbor Virgibacillus soli, as a member of a novel genus Paracerasibacillus, reflecting its phylogenetic position relative to the genus Cerasibacillus, for which we propose Paracerasibacillus soli comb. nov. (type strain CC-YMP-6T = DSM 22952T = CCM 7714T). Within Amphibacillaceae (n = 64), P. soli exhibited 11 antibiotic resistance genes (ARG), while T. jepli encoded for 3, lacking any known ß-lactamases, suggesting resistance from variant penicillin-binding proteins, disrupting cephalosporin efficacy. P. soli was highly resistant to azithromycin (MIC >64 mg/L) yet susceptible to cephalosporins and penicillins. IMPORTANCE: The significance of this research extends to understanding microbial survival and adaptation in oligotrophic environments, such as those found in SAF. Whole-genome sequencing of several strains isolated from Mars 2020 mission assembly cleanroom facilities, including the discovery of the novel species Tigheibacillus jepli, highlights the resilience and antimicrobial resistance (AMR) in clinically relevant antibiotic classes of microbes in nutrient-scarce settings. The study also redefines the taxonomic classifications within the Amphibacillaceae family, aligning genetic identities with phylogenetic data. Investigating ARG and virulence factors (VF) across these strains illuminates the microbial capability for resistance under resource-limited conditions while emphasizing the role of human-associated VF in microbial survival, informing sterilization practices and microbial management in similar oligotrophic settings beyond spacecraft assembly cleanrooms such as pharmaceutical and medical industry cleanrooms.


Subject(s)
Ceftazidime , Fatty Acids , Humans , Fatty Acids/analysis , Phylogeny , RNA, Ribosomal, 16S/genetics , Base Composition , Nucleic Acid Hybridization , Spores/chemistry , Nucleotides , DNA , DNA, Bacterial/genetics , DNA, Bacterial/chemistry , Sequence Analysis, DNA , Bacterial Typing Techniques
7.
J Bacteriol ; 206(3): e0045623, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38426722

ABSTRACT

Actinoplanes missouriensis is a filamentous bacterium that differentiates into terminal sporangia, each containing a few hundred spores. Previously, we reported that a cell wall-hydrolyzing N-acetylglucosaminidase, GsmA, is required for the maturation process of sporangiospores in A. missouriensis; sporangia of the gsmA null mutant (ΔgsmA) strain released chains of 2-20 spores under sporangium dehiscence-inducing conditions. In this study, we identified and characterized a putative cell wall hydrolase (AsmA) that is also involved in sporangiospore maturation. AsmA was predicted to have a signal peptide for the general secretion pathway and an N-acetylmuramoyl-l-alanine amidase domain. The transcript level of asmA increased during the early stages of sporangium formation. The asmA null mutant (ΔasmA) strain showed phenotypes similar to those of the wild-type strain, but sporangia of the ΔgsmAΔasmA double mutant released longer spore chains than those from the ΔgsmA sporangia. Furthermore, a weak interaction between AsmA and GsmA was detected in a bacterial two-hybrid assay using Escherichia coli as the host. Based on these results, we propose that AsmA is an enzyme that hydrolyzes peptidoglycan at septum-forming sites to separate adjacent spores during sporangiospore maturation in cooperation with GsmA in A. missouriensis.IMPORTANCEActinoplanes missouriensis produces sporangiospores as dormant cells. The spores inside the sporangia are assumed to be formed from prespores generated by the compartmentalization of intrasporangium hyphae via septation. Previously, we identified GsmA as a cell wall hydrolase responsible for the separation of adjacent spores inside sporangia. However, we predicted that an additional cell wall hydrolase(s) is inevitably involved in the maturation process of sporangiospores because the sporangia of the gsmA null mutant strain released not only tandemly connected spore chains (2-20 spores) but also single spores. In this study, we successfully identified a putative cell wall hydrolase (AsmA) that is involved in sporangiospore maturation in A. missouriensis.


Subject(s)
Actinoplanes , N-Acetylmuramoyl-L-alanine Amidase , Spores , Hydrolases , Cell Wall
8.
PLoS One ; 19(3): e0293817, 2024.
Article in English | MEDLINE | ID: mdl-38512884

ABSTRACT

Phytophthora pluvialis is an oomycete that primarily infects Pinus radiata and Pseudotsuga menziesii causing the destructive foliar disease red needle cast (RNC). Recent observations show that P. pluvialis can also infect western hemlock inducing resinous cankers. High-throughput and reproducible infection assays are integral to find key information on tree health and oomycete pathogenicity. In this protocol, we describe the propagation and spore induction of P. pluvialis, followed by detached needle assays for verification and quantification of virulence of P. pluvialis in P. radiata needles. These needle assays can be employed for high-throughput screening of tree needles with diverse genetic backgrounds. In downstream analysis, Quantitative PCR (qPCR) was utilized to assess relative gene expression, as exemplified by candidate RxLR effector protein PpR01. Additional techniques like RNA sequencing, metabolomics, and proteomics can be combined with needle assays and can offer comprehensive insights into P. pluvialis infection mechanisms.


Subject(s)
Phytophthora , Pinus , Phytophthora/genetics , Proteins/metabolism , Pinus/genetics , Base Sequence , Trees/genetics , Spores , Plant Diseases
9.
Mol Phylogenet Evol ; 194: 108040, 2024 May.
Article in English | MEDLINE | ID: mdl-38395320

ABSTRACT

Fern-spore-feeding (FSF) is rare and found in only four families of Lepidoptera. Stathmopodidae is the most speciose family that contains FSF species, and its subfamily Cuprininae exclusively specializes on FSF. However, three species of Stathmopodinae also specialize on FSF. To better understand the evolutionary history of FSF and, more generally, the significance of specialization on a peculiar host, a phylogenetic and taxonomic revision for this group is necessary. We reconstructed the most comprehensive molecular phylogeny, including one mitochondrial and four nuclear genes, of Stathmopodidae to date, including 137 samples representing 62 species, with a particular focus on the FSF subfamily, Cuprininae, including 33 species (41% of named species) from 6 of the 7 Cuprininae genera. Species from two other subfamilies, Stathmopodinae and Atkinsoniinae, were also included. We found that FSF evolved only once in Stathmopodidae and that the previous hypothesis of multiple origins of FSF was misled by inadequate taxonomy. Moreover, we showed that (1) speciation/extinction rates do not differ significantly between FSF and non-FSF groups and that (2) oligophage is the ancestral character state in Cuprininae. We further revealed that a faster rate of accumulating specialists over time, and thus a higher number of specialists, was achieved by a higher transition rate from oligophagages to specialists compared to the transition rate in the opposite direction. We finish by describing three new genera, Trigonodagen. nov., Petalagen. nov., and Pediformisgen. nov., and revalidating five genera: Cuprina, Calicotis, Thylacosceles, Actinoscelis, Thylacosceloides in Cuprininae, and we provide an updated taxonomic key to genera and a revised global checklist of Cuprininae.


Subject(s)
Ferns , Lepidoptera , Animals , Lepidoptera/genetics , Phylogeny , Insecta , Spores
10.
Nano Lett ; 24(7): 2289-2298, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38341876

ABSTRACT

Antibiotic therapeutics to combat intestinal pathogen infections often exacerbate microbiota dysbiosis and impair mucosal barrier functions. Probiotics are promising strategies, because they inhibit pathogen colonization and improve intestinal microbiota imbalance. Nevertheless, their limited targeting ability and susceptibility to oxidative stress have hindered their therapeutic potential. To tackle these challenges, Ces3 is synthesized by in situ growth of CeO2 nanozymes with positive charges on probiotic spores, facilitating electrostatic interactions with negatively charged pathogens and possessing a high reactive oxygen species (ROS) scavenging activity. Importantly, Ces3 can resist the harsh environment of the gastrointestinal tract. In mice with S. Typhimurium-infected acute gastroenteritis, Ces3 shows potent anti-S. Typhimurium activity, thereby alleviating the dissemination of S. Typhimurium into other organs. Additionally, owing to its O2 deprivation capacity, Ces3 promotes the proliferation of anaerobic probiotics, reshaping a healthy intestinal microbiota. This work demonstrates the promise of combining antibacterial, anti-inflammatory, and O2 content regulation properties for acute gastroenteritis therapy.


Subject(s)
Gastroenteritis , Probiotics , Animals , Mice , Intestines , Gastroenteritis/drug therapy , Gastroenteritis/microbiology , Anti-Bacterial Agents/therapeutic use , Probiotics/therapeutic use , Spores
11.
Microsc Res Tech ; 87(7): 1413-1428, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38385770

ABSTRACT

The present study was carried out to record the color, size, and ornamentation of megaspores in 18 species of the family Selaginellaceae from Arunachal Pradesh using scanning electron microscope (SEM) and light microscope (LM). Electron microscopic study of the spore features revealed the type of ornamentation and microsculptural detail. SEM study on megaspore of Selaginella pentagona (S. pentagona), Selaginella tenuifolia, Selaginella semicordata, and Selaginella chrysorrhizos is presented for the first time. Variation in the megaspore ornamentation is noted at the interspecific level and intraspecific level in some cases. Examination of the megaspores under study found all the megaspores as trilete, with a size ranging from 116 to 560 µm in diameter. Taxonomic key is prepared to differentiate the species. Short descriptions of megaspores are provided and supported by photo plates. New features are recorded for seven species. The study contributes to the separation of species within the genus Selaginella based on the spore feature and brings forward the use of spore as a diagnostic tool in the taxonomy of the genus. These works contribute to the systematic of the family Selaginellaceae and provide useful information in the field of palynology. RESEARCH HIGHLIGHTS: Study on megaspore features of Selaginella species collected from Arunachal Pradesh, using SEM and LM. Taxonomic key is provided for each species based on megaspores features. New megaspore features are recorded for the seven species. The study brings forward the use of spore as a diagnostic tool in the taxonomy of the genus. These works provide useful information in the field of systematic and palynology.


Subject(s)
Microscopy, Electron, Scanning , Selaginellaceae , Selaginellaceae/anatomy & histology , Selaginellaceae/classification , Selaginellaceae/ultrastructure , India , Spores/ultrastructure , Microscopy
12.
Genes Dev ; 38(1-2): 1-3, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38316519

ABSTRACT

Germination is the process by which spores emerge from dormancy. Although spores can remain dormant for decades, the study of germination is an active field of research. In this issue of Genes & Development, Gao and colleagues (pp. 31-45) address a perplexing question: How can a dormant spore initiate germination in response to environmental cues? Three distinct complexes are involved: GerA, a germinant-gated ion channel; 5AF/FigP, a second ion channel required for amplification; and SpoVA, a channel for dipicolinic acid (DPA). DPA release is followed by rehydration of the spore core, thus allowing the resumption of metabolic activity.


Subject(s)
Bacterial Proteins , Spores, Bacterial , Spores, Bacterial/genetics , Spores, Bacterial/metabolism , Bacterial Proteins/metabolism , Spores/metabolism , Ion Channels/metabolism , Bacillus subtilis/metabolism
13.
J Biosci Bioeng ; 137(4): 254-259, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38342665

ABSTRACT

Biosilicification is the process by which organisms incorporate soluble, monomeric silicic acid, Si(OH)4, in the form of polymerized insoluble silica, SiO2. Although the mechanisms underlying eukaryotic biosilicification have been intensively investigated, prokaryotic biosilicification has only recently begun to be studied. We previously reported that biosilicification occurs in the gram-positive, spore-forming bacterium Bacillus cereus, and that silica is intracellularly deposited on the spore coat as a protective coating against acids, although the underlying mechanism is not yet fully understood. In eukaryotic biosilicifying organisms, such as diatoms and siliceous sponges, several relevant biomolecules are embedded in biogenic silica (biosilica). These biomolecules include peptides, proteins, and long-chain polyamines. In this study, we isolated organic compounds embedded in B. cereus biosilica to investigate the biomolecules involved in the prokaryotic biosilicification process and identified long-chain polyamines with a chemical structure of H2N-(CH2)4-[NH-(CH2)3]n-NH2 (n: up to 55). Our results demonstrate the common presence of long-chain polyamines in different evolutionary lineages of biosilicifying organisms, i.e., diatoms, siliceous sponges, and B. cereus, suggesting a common mechanism underlying eukaryotic and prokaryotic biosilicification.


Subject(s)
Diatoms , Polyamines , Polyamines/metabolism , Silicon Dioxide/chemistry , Bacillus cereus , Proteins/chemistry , Spores/metabolism , Diatoms/metabolism
14.
J Plant Res ; 137(2): 161-165, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38194203

ABSTRACT

Haploid sporophytes of Anisocampium niponicum with 2n = 40, were produced artificially by induced apogamy in vitro. They were subsequently transplanted into pots and two of them have been cultivated for the investigation of sporogenesis and/or production of chimera for more than 20 years. Haploid A. niponicum is sterile, but an abnormal chimeric pinnule that developed spontaneously in a single frond produced sporangia with spores. Each sporangium bore approximately 32 spores that were almost uniform in size. Sowing of these spores resulted in 50 gametophytes. Of 20 gametophytes cultured individually, five produced sporophytes apogamously after eight months. Both the gametophytes and subsequent apogamous sporophytes showed a chromosome number of 2n = 40. Our study demonstrates that a haploid sporophyte offspring can be produced from a haploid mother sporophyte via haploid spores. Since asexual reproduction is a prominent evolutionary process in ferns, the reproduction of a haploid A. niponicum sporophyte by unreduced spore formation might help to elucidate how apogamous ferns occur and evolve.


Subject(s)
Ferns , Haploidy , Ferns/genetics , Reproduction , Spores , Germ Cells, Plant
15.
Int J Food Microbiol ; 413: 110576, 2024 Mar 02.
Article in English | MEDLINE | ID: mdl-38246025

ABSTRACT

Alicyclobacillus acidoterrestris has received much attention due to its unique thermo-acidophilic property and implication in the spoilage of pasteurized juices. The objective of this study was to evaluate the sterilization characteristics and mechanisms of pulsed light (PL) against A. acidoterrestris vegetative cells and spores in apple juice. The results indicated that bacteria cells in apple juice (8-20°Brix) can be completely inactivated within the fluence range of 20.25-47.25 J/cm2, which mainly depended on the soluble solids content (SSC) of juice, and the spores in apple juice (12°Brix) can be completely inactivated by PL with the fluence of 54.00 J/cm2. The PL treatment can significantly increase the leakage of reactive oxygen species (ROS) and proteins from cells and spores. Fluorescence studies of bacterial adenosine triphosphate (ATP) indicated that the loss of ATP was evident. Scanning electron microscopy and confocal laser scanning microscope presented that PL-treated cells or spores had serious morphological damage, which reduced the integrity of cell membrane and led to intracellular electrolyte leakage. In addition, there were no significant negative effects on total sugars, total acids, total phenols, pH value, SSC and soluble sugars, and organic acid content decreased slightly during the PL treatment. The contents of esters and acids in aroma components had a certain loss, while that of alcohols, aldehydes and ketones were increased. These results demonstrated that PL treatment can effectively inactivate the bacteria cells and spores in apple juice with little effect on its quality. This study provides an efficient method for the inactivation of A. acidoterrestris in fruit juice.


Subject(s)
Alicyclobacillus , Malus , Fruit and Vegetable Juices , Malus/microbiology , Beverages/microbiology , Spores, Bacterial , Spores , Adenosine Triphosphate , Sugars
16.
Food Res Int ; 177: 113918, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38225119

ABSTRACT

The tailing phenomenon, where the survival curve of bacteria shows a slow tailing period after a rapid decline, is a ubiquitous inactivation kinetics process in the advanced plasma sterilization field. While classical models suggest that bacterial resistance dispersion causes the tailing phenomenon, experiments suggest that the non-uniform spatial distribution of spores (clustered structure) is the cause. However, no existing inactivation kinetics model can accurately describe spatial heterogeneity. In this paper, we propose a lattice model based on percolation theory to explain the inactivation kinetics by considering the non-uniform spatial distribution of spores and plasma. Our model divides spores into non-clustered and clustered types and distinguishes between short-tailing and long-tailing compositions and their formation mechanisms. By systematically studying the effects of different spore and plasma parameters on the tailing phenomenon, we provide a reasonable explanation for the kinetic law of the plasma sterilization survival curve and the mechanism of the tailing phenomenon in various cases. As an example, our model accurately explains the 80-second kinetics of atmospheric pressure plasma inactivation of spores, a process that previous models struggled to understand due to its multi-stage and long-tail phenomena. Our model predicts that increasing the spatial distribution probability of plasma can shorten the complete killing time under the same total energy, and we validate this prediction through experiments. Our model successfully explains the seemingly irregular plasma sterilization survival curve and deepens our understanding of the tailing phenomenon in plasma sterilization. This study offers valuable insights for the sterilization of food surfaces using plasma technology, and could serve as a guide for practical applications.


Subject(s)
Plasma Gases , Spores, Bacterial , Plasma Gases/pharmacology , Decontamination , Sterilization , Spores
17.
Curr Biol ; 34(4): 895-901.e5, 2024 02 26.
Article in English | MEDLINE | ID: mdl-38280380

ABSTRACT

Sporopollenin is often said to be one of the toughest biopolymers known to man. The shift in dormancy cell wall deposition from around the diploid zygotes of charophycean algae to sporopollenin around the haploid spores of land plants essentially imparted onto land plants the gift of passive motility, a key acquisition that contributed to their vast and successful colonization across terrestrial habitats.1,2 A putative transcription factor controlling the land plant mode of sporopollenin deposition is the subclass II bHLHs, which are conserved and novel to land plants, with mutants of genes in angiosperms and mosses divulging roles relating to tapetum degeneration and spore development.3,4,5,6,7 We demonstrate that a subclass II bHLH gene, MpbHLH37, regulates sporopollenin biosynthesis and deposition in the model liverwort Marchantia polymorpha. Mpbhlh37 sporophytes show a striking loss of secondary wall deposits of the capsule wall, the elaters, and the spore exine, all while maintaining spore viability, identifying MpbHLH37 as a master regulator of secondary wall deposits of the sporophyte. Localization of MpbHLH37 to the capsule wall and elaters of the sporophyte directly designates these tissue types as a bona fide tapetum in liverworts, giving support to the notion that the presence of a tapetum is an ancestral land plant trait. Finally, as early land plant spore walls exhibit evidence of tapetal deposition,8,9,10,11,12 a tapetal capsule wall could have provided these plants with a developmental mechanism for sporopollenin deposition.


Subject(s)
Biopolymers , Carotenoids , Embryophyta , Marchantia , Humans , Marchantia/genetics , Basic Helix-Loop-Helix Transcription Factors/genetics , Plants , Spores/genetics , Gene Expression Regulation, Plant
18.
J Invertebr Pathol ; 203: 108066, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38246321

ABSTRACT

Ameson portunus, the recently discovered causative agent of "toothpaste disease" of pond-cultured swimming crabs in China has caused enormous economic losses in aquaculture. Understanding the process of spore germination is helpful to elucidate the molecular mechanism of its invasion of host cells. Here, we obtained mature and germinating spores by isolation and purification and in vitro stimulation, respectively. Then, non-germinated and germinated spores were subjected to the comparative transcriptomic analysis to disclose differential molecular responses of these two stages. The highest germination rate, i.e., 71.45 %, was achieved in 0.01 mol/L KOH germination solution. There were 9,609 significantly differentially expressed genes (DEGs), with 685 up-regulated and 8,924 down-regulated DEGs. The up-regulated genes were significantly enriched in ribosome pathway, and the down-regulated genes were significantly enriched in various metabolic pathways, including carbohydrate metabolism, amino acid metabolism and other metabolism. The results suggested that spores require various carbohydrates and amino acids as energy to support their life activities during germination and synthesize large amounts of ribosomal proteins to provide sites for DNA replication, transcription, translation and protein synthesis of the spores of A. portunus within the host cells. Functional genes related to spore germination, such as protein phosphatase CheZ and aquaporin, were also analyzed. The analysis of transcriptome data and identification of functional genes will help to understand the process of spore germination and invasion.


Subject(s)
Microsporidia , Transcriptome , Animals , Spores , Microsporidia/genetics , Gene Expression Profiling , Spores, Bacterial/genetics
19.
Int J Older People Nurs ; 19(1): e12596, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38073273

ABSTRACT

BACKGROUND: The impact of the physical environment on healthcare staff well-being and work performance is well recognised, yet there is a lack of instruments assessing environmental features from the perspective of staff working in residential care facilities (RCFs) for older people. OBJECTIVES: To develop and provide initial validation of the instrument Staff Perceptions Of Residential care facility Environments (SPORE). DESIGN: An instrument development and psychometric evaluation study. METHODS: Based on material from a British project, items were translated and adapted for Swedish residential care facilities as SPORE. Care staff (N = 200), recruited from 20 Swedish RCFs, completed a questionnaire-based survey containing the SPORE instrument and two other instruments selected as suitable for use in the validation. In addition, an environmental assessment instrument was used for further validation. Analyses were performed at individual (staff) level and home (RCF) level. RESULTS: The SPORE subscales demonstrated good internal consistency reliability and were moderately to strongly correlated at the individual level with the subscales of measures of person-centred care, and strongly correlated with the same measures at the home level. The SPORE subscales were also highly correlated with the total score of the instrument used to assess the quality of the physical environment. CONCLUSION: The initial validation indicates that the SPORE instrument is promising for measuring care staff perceptions of environmental features in care facilities for older people. SPORE can be a valuable instrument for use in research and in practice to evaluate the environment as part of working towards high-quality care. IMPLICATIONS FOR PRACTICE: The design of the physical environment within RCFs can affect the staff's health and work performance. The instrument is useful for evaluating the environment and informing decisions about design solutions that support staff in their important work.


Subject(s)
Delivery of Health Care , Residential Facilities , Humans , Aged , Reproducibility of Results , Surveys and Questionnaires , Psychometrics , Perception , Spores
20.
Plant J ; 117(5): 1466-1486, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38059656

ABSTRACT

The establishment of moss spores is considered a milestone in plant evolution. They harbor protein networks underpinning desiccation tolerance and accumulation of storage compounds that can be found already in algae and that are also utilized in seeds and pollen. Furthermore, germinating spores must produce proteins that drive the transition through heterotrophic growth to the autotrophic plant. To get insight into the plasticity of this proteome, we investigated it at five timepoints of moss (Physcomitrium patens) spore germination and in protonemata and gametophores. The comparison to previously published Arabidopsis proteome data of seedling establishment showed that not only the proteomes of spores and seeds are functionally related, but also the proteomes of germinating spores and young seedlings. We observed similarities with regard to desiccation tolerance, lipid droplet proteome composition, control of dormancy, and ß-oxidation and the glyoxylate cycle. However, there were also striking differences. For example, spores lacked any obvious storage proteins. Furthermore, we did not detect homologs to the main triacylglycerol lipase in Arabidopsis seeds, SUGAR DEPENDENT1. Instead, we discovered a triacylglycerol lipase of the oil body lipase family and a lipoxygenase as being the overall most abundant proteins in spores. This finding indicates an alternative pathway for triacylglycerol degradation via oxylipin intermediates in the moss. The comparison of spores to Nicotiana tabacum pollen indicated similarities for example in regards to resistance to desiccation and hypoxia, but the overall developmental pattern did not align as in the case of seedling establishment and spore germination.


Subject(s)
Arabidopsis , Bryopsida , Arabidopsis/metabolism , Proteome/metabolism , Germination , Heterotrophic Processes , Lipase/metabolism , Seedlings/metabolism , Spores/metabolism , Bryopsida/metabolism , Seeds/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...