Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 980
Filter
1.
Anal Cell Pathol (Amst) ; 2024: 8810804, 2024.
Article in English | MEDLINE | ID: mdl-38826849

ABSTRACT

Head and neck squamous cell carcinoma (HNSCC) poses significant challenges with poor survival rates and limited therapeutic strategies. Our study, using The Cancer Genome Atlas (TCGA) data, assesses cancer-associated fibroblast (CAF) gene signatures' clinical relevance. In our analysis across TCGA tumor types, differential gene expression analysis revealed that fibroblast activation protein (FAP) is upregulated in tumor tissues and associated with poorer survival rates in HNSCC. Furthermore, mechanistic studies employing gene-silencing techniques substantiated that FAP knockout led to a significant decrease in cellular proliferation, invasion, and migration in HNSCC cell lines. Through Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses, we established that high FAP expression correlates with vital biological processes such as extracellular matrix organization, angiogenesis, and cellular motility. Importantly, FAP was found to regulate these processes by promoting the expression of key proteins involved in epithelial-mesenchymal transition-related pathways. Additionally, our analysis revealed a significant correlation between FAP expression and the expression profiles of immune checkpoint molecules, underscoring its potential role in immune modulation. Collectively, our findings illuminate FAP's pivotal role in HNSCC pathogenesis and its potential as a prognostic biomarker and therapeutic target. This research lays the groundwork for understanding the multifaceted roles and regulatory mechanisms of CAFs in HNSCC, thereby offering valuable perspectives for the development of targeted therapeutic strategies aimed at improving patient outcomes.


Subject(s)
Biomarkers, Tumor , Endopeptidases , Gelatinases , Gene Expression Regulation, Neoplastic , Head and Neck Neoplasms , Membrane Proteins , Serine Endopeptidases , Squamous Cell Carcinoma of Head and Neck , Humans , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics , Prognosis , Squamous Cell Carcinoma of Head and Neck/genetics , Squamous Cell Carcinoma of Head and Neck/metabolism , Squamous Cell Carcinoma of Head and Neck/pathology , Endopeptidases/metabolism , Endopeptidases/genetics , Serine Endopeptidases/metabolism , Serine Endopeptidases/genetics , Membrane Proteins/metabolism , Membrane Proteins/genetics , Cell Line, Tumor , Head and Neck Neoplasms/genetics , Head and Neck Neoplasms/metabolism , Head and Neck Neoplasms/pathology , Gelatinases/metabolism , Gelatinases/genetics , Epithelial-Mesenchymal Transition/genetics , Cell Proliferation/genetics , Cell Movement/genetics
2.
J Cancer Res Clin Oncol ; 150(5): 240, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38713284

ABSTRACT

PURPOSE: Head and neck cancer is the sixth most common type of cancer worldwide, wherein the immune responses are closely associated with disease occurrence, development, and prognosis. Investigation of the role of immunogenic cell death-related genes (ICDGs) in adaptive immune response activation may provide cues into the mechanism underlying the outcome of HNSCC immunotherapy. METHODS: ICDGs expression patterns in HNSCC were analyzed, after which consensus clustering in HNSCC cohort conducted. A 4-gene prognostic model was constructed through LASSO and Cox regression analyses to analyze the prognostic index using the TCGA dataset, followed by validation with two GEO datasets. The distribution of immune cells and the response to immunotherapy were compared between different risk subtypes through multiple algorithms. Moreover, immunohistochemical (IHC) analyses were conducted to validate the prognostic value of HSP90AA1 as a predictor of HNSCC patient prognosis. In vitro assays were performed to further detect the effect of HSP90AA1 in the development of HNSCC. RESULTS: A novel prognostic index based on four ICDGs was constructed and proved to be useful as an independent factor of HNSCC prognosis. The risk score derived from this model grouped patients into high- and low-risk subtypes, wherein the high-risk subtype had worse survival outcomes and poorer immunotherapy response. IHC analysis validated the applicability of HSP90AA1 as a predictor of prognosis of HNSCC patients. HSP90AA1 expression in tumor cells promotes the progression of HNSCC. CONCLUSIONS: Together, these results highlight a novel four-gene prognostic signature as a valuable tool to assess survival status and prognosis of HNSCC patients.


Subject(s)
HSP90 Heat-Shock Proteins , Head and Neck Neoplasms , Squamous Cell Carcinoma of Head and Neck , Humans , Squamous Cell Carcinoma of Head and Neck/immunology , Squamous Cell Carcinoma of Head and Neck/genetics , Squamous Cell Carcinoma of Head and Neck/pathology , Squamous Cell Carcinoma of Head and Neck/metabolism , Prognosis , HSP90 Heat-Shock Proteins/genetics , HSP90 Heat-Shock Proteins/metabolism , Head and Neck Neoplasms/immunology , Head and Neck Neoplasms/pathology , Head and Neck Neoplasms/genetics , Head and Neck Neoplasms/metabolism , Female , Male , Immunogenic Cell Death , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Middle Aged , Immunotherapy/methods , Gene Expression Regulation, Neoplastic
3.
J Physiol Pharmacol ; 75(2): 205-213, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38736267

ABSTRACT

Camptothecin (CPT), a naturally occurring alkaloid derived from the Camptotheca acuminate plant, exerts anti-tumor properties. However, its specific impact on head and neck squamous cell carcinoma (HNSCC) remains uncertain. The study was to explore the action and mechanism of CPT on HNSCC cells. First, two HNSCC cell lines (FaDu and TU686) and a normal immortalized keratinocyte (HEK001) cell line, were exposed to a spectrum of CPT concentrations (ranging from 10 to 50 µM) for durations of 24 h and 48 h. Cell viability, proliferation, migration, and invasion were assessed by CCK-8 assay, EdU incorporation assay, wound healing assay and transwell assay. Subsequently, si-RAB27A or negative control (NC) was introduced into FaDu and TU686 cells through transfection, and the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway was manipulated with L740Y-P, an activator of this pathway. The expression of proliferating cell nuclear antigen (PCNA), E-cadherin, PI3K/AKT signaling factors and RAB27A were determined by Western blot analysis. RAB27A was detected by immunofluorescence assay. It was found that CPT significantly hindered the viability, proliferation (p<0.01), migration (p<0.001), and invasion (p<0.001) of FaDu and TU686 cells. At the molecular level, administration of CPT caused a decline in the expression of PCNA, P-PI3K, P-AKT, and RAB27A, alongside an elevation in E-cadherin levels within HNSCC cells (p<0.05, p<0.01 and p<0.001). Reducing RAB27A expression enhanced the suppressive impacts of CPT on HNSCC cell viability (p<0.05 and p<0.01), migration (p<0.001) and invasion (p<0.01), these effects that were reversed upon treatment with L740Y-P in HNSCC cells (p<0.001). In summary, our study highlights the efficacy of CPT in HNSCC, demonstrating its influence on cell processes via the RAB27A-mediated PI3K/AKT pathway.


Subject(s)
Head and Neck Neoplasms , Proto-Oncogene Proteins c-akt , Signal Transduction , Squamous Cell Carcinoma of Head and Neck , rab27 GTP-Binding Proteins , Humans , Antineoplastic Agents, Phytogenic/pharmacology , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Head and Neck Neoplasms/pathology , Head and Neck Neoplasms/drug therapy , Head and Neck Neoplasms/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , rab27 GTP-Binding Proteins/metabolism , Signal Transduction/drug effects , Squamous Cell Carcinoma of Head and Neck/drug therapy , Squamous Cell Carcinoma of Head and Neck/pathology , Squamous Cell Carcinoma of Head and Neck/metabolism
4.
Commun Biol ; 7(1): 567, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38745046

ABSTRACT

Lymph node metastasis, primarily caused by the migration of oral squamous cell carcinoma (OSCC) cells, stands as a crucial prognostic marker. We have previously demonstrated that EP4, a subtype of the prostaglandin E2 (PGE2) receptor, orchestrates OSCC cell migration via Ca2+ signaling. The exact mechanisms by which EP4 influences cell migration through Ca2+ signaling, however, is unclear. Our study aims to clarify how EP4 controls OSCC cell migration through this pathway. We find that activating EP4 with an agonist (ONO-AE1-473) increased intracellular Ca2+ levels and the migration of human oral cancer cells (HSC-3), but not human gingival fibroblasts (HGnF). Further RNA sequencing linked EP4 to calmodulin-like protein 6 (CALML6), whose role remains undefined in OSCC. Through protein-protein interaction network analysis, a strong connection is identified between CALML6 and calcium/calmodulin-dependent protein kinase kinase 2 (CaMKK2), with EP4 activation also boosting mitochondrial function. Overexpressing EP4 in HSC-3 cells increases experimental lung metastasis in mice, whereas inhibiting CaMKK2 with STO-609 markedly lowers these metastases. This positions CaMKK2 as a potential new target for treating OSCC metastasis. Our findings highlight CALML6 as a pivotal regulator in EP4-driven mitochondrial respiration, affecting cell migration and metastasis via the CaMKK2 pathway.


Subject(s)
Carcinoma, Squamous Cell , Cell Movement , Mitochondria , Mouth Neoplasms , Receptors, Prostaglandin E, EP4 Subtype , Humans , Mouth Neoplasms/pathology , Mouth Neoplasms/metabolism , Mouth Neoplasms/genetics , Mitochondria/metabolism , Receptors, Prostaglandin E, EP4 Subtype/metabolism , Receptors, Prostaglandin E, EP4 Subtype/genetics , Animals , Mice , Cell Line, Tumor , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/genetics , Calcium-Calmodulin-Dependent Protein Kinase Kinase/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Kinase/genetics , Calmodulin/metabolism , Calmodulin/genetics , Squamous Cell Carcinoma of Head and Neck/metabolism , Squamous Cell Carcinoma of Head and Neck/genetics , Squamous Cell Carcinoma of Head and Neck/pathology
5.
Biomolecules ; 14(5)2024 May 18.
Article in English | MEDLINE | ID: mdl-38786003

ABSTRACT

Oral squamous cell carcinoma (OSCC) stands as a prevalent subtype of head and neck squamous cell carcinoma, leading to disease recurrence and low survival rates. PPARγ, a ligand-dependent nuclear transcription factor, holds significance in tumor development. However, the role of PPARγ in the development of OSCC has not been fully elucidated. Through transcriptome sequencing analysis, we discovered a notable enrichment of ferroptosis-related molecules upon treatment with PPARγ antagonist. We subsequently confirmed the occurrence of ferroptosis through transmission electron microscopy, iron detection, etc. Notably, ferroptosis inhibitors could not completely rescue the cell death caused by PPARγ inhibitors, and the rescue effect was the greatest when disulfidptosis and ferroptosis inhibitors coexisted. We confirmed that the disulfidptosis phenotype indeed existed. Mechanistically, through qPCR and Western blotting, we observed that the inhibition of PPARγ resulted in the upregulation of heme oxygenase 1 (HMOX1), thereby promoting ferroptosis, while solute carrier family 7 member 11 (SLC7A11) was also upregulated to promote disulfidptosis in OSCC. Finally, a flow cytometry analysis of flight and multiplex immunohistochemical staining was used to characterize the immune status of PPARγ antagonist-treated OSCC tissues in a mouse tongue orthotopic transplantation tumor model, and the results showed that the inhibition of PPARγ led to ferroptosis and disulfidptosis, promoted the aggregation of cDCs and CD8+ T cells, and inhibited the progression of OSCC. Overall, our findings reveal that PPARγ plays a key role in regulating cell death in OSCC and that targeting PPARγ may be a potential therapeutic approach for OSCC.


Subject(s)
Ferroptosis , PPAR gamma , Ferroptosis/drug effects , Animals , PPAR gamma/metabolism , PPAR gamma/antagonists & inhibitors , Humans , Mice , Cell Line, Tumor , Amino Acid Transport System y+/metabolism , Amino Acid Transport System y+/antagonists & inhibitors , Amino Acid Transport System y+/genetics , Heme Oxygenase-1/metabolism , Antineoplastic Agents/pharmacology , Mouth Neoplasms/drug therapy , Mouth Neoplasms/pathology , Mouth Neoplasms/metabolism , Squamous Cell Carcinoma of Head and Neck/drug therapy , Squamous Cell Carcinoma of Head and Neck/metabolism , Squamous Cell Carcinoma of Head and Neck/pathology , Squamous Cell Carcinoma of Head and Neck/genetics , Gene Expression Regulation, Neoplastic/drug effects
6.
Int J Mol Sci ; 25(9)2024 May 03.
Article in English | MEDLINE | ID: mdl-38732216

ABSTRACT

Aspartate ß-hydroxylase (ASPH) is a protein associated with malignancy in a wide range of tumors. We hypothesize that inhibition of ASPH activity could have anti-tumor properties in patients with head and neck cancer. In this study, we screened tumor tissues of 155 head and neck squamous cell carcinoma (HNSCC) patients for the expression of ASPH using immunohistochemistry. We used an ASPH inhibitor, MO-I-1151, known to inhibit the catalytic activity of ASPH in the endoplasmic reticulum, to show its inhibitory effect on the migration of SCC35 head and neck cancer cells in cell monolayers and in matrix-embedded spheroid co-cultures with primary cancer-associated fibroblast (CAF) CAF 61137 of head and neck origin. We also studied a combined effect of MO-I-1151 and HfFucCS, an inhibitor of invasion-blocking heparan 6-O-endosulfatase activity. We found ASPH was upregulated in HNSCC tumors compared to the adjacent normal tissues. ASPH was uniformly high in expression, irrespective of tumor stage. High expression of ASPH in tumors led us to consider it as a therapeutic target in cell line models. ASPH inhibitor MO-I-1151 had significant effects on reducing migration and invasion of head and neck cancer cells, both in monolayers and matrix-embedded spheroids. The combination of the two enzyme inhibitors showed an additive effect on restricting invasion in the HNSCC cell monolayers and in the CAF-containing co-culture spheroids. We identify ASPH as an abundant protein in HNSCC tumors. Targeting ASPH with inhibitor MO-I-1151 effectively reduces CAF-mediated cellular invasion in cancer cell models. We propose that the additive effect of MO-I-1151 with HfFucCS, an inhibitor of heparan 6-O-endosulfatases, on HNSCC cells could improve interventions and needs to be further explored.


Subject(s)
Cell Movement , Head and Neck Neoplasms , Neoplasm Invasiveness , Squamous Cell Carcinoma of Head and Neck , Humans , Squamous Cell Carcinoma of Head and Neck/pathology , Squamous Cell Carcinoma of Head and Neck/metabolism , Head and Neck Neoplasms/pathology , Head and Neck Neoplasms/metabolism , Cell Line, Tumor , Cell Movement/drug effects , Up-Regulation/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Female , Middle Aged , Mixed Function Oxygenases/metabolism , Male , Coculture Techniques , Aged , Calcium-Binding Proteins , Membrane Proteins , Muscle Proteins
7.
Anticancer Res ; 44(6): 2545-2554, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38821599

ABSTRACT

BACKGROUND/AIM: Epidermal growth factor receptor (EGFR) over-expression is commonly observed in advanced head and neck squamous cell carcinoma (HNSCC) and is correlated with poor patient outcomes. However, the role of dual-specificity phosphatase 6 (DUSP6) in EGFR-associated HNSCC progression remains poorly understood. This study aimed to investigate the correlation between DUSP6 expression and EGFR signaling in malignant HNSCC tissues. MATERIALS AND METHODS: Data mining and in vitro assays were employed to assess DUSP6 expression levels in HNSCC tissues compared to normal tissues. Additionally, the correlation between DUSP6 and EGFR expression was examined. Functional assays were conducted to investigate the modulation of DUSP6 expression by EGFR signaling and its involvement in EGF-induced cell migration and anoikis resistance. RESULTS: Our analysis revealed a significant elevation in DUSP6 expression in HNSCC tissues compared to normal tissues and a strong correlation between DUSP6 and EGFR expression. EGFR signaling modulated DUSP6 expression in a dose- and time-dependent manner, primarily through the extracellular signal-regulated kinase (ERK) pathway. Knockdown experiments demonstrated the functional role of DUSP6 in EGF-induced cell migration and anoikis resistance. CONCLUSION: The findings of this study elucidate the intricate signaling networks governing DUSP6 expression and its interplay with EGFR signaling in HNSCC. Moreover, the results provide insights into the potential role of DUSP6 as a therapeutic target and highlight the importance of personalized treatment strategies in HNSCC management.


Subject(s)
Cell Movement , Disease Progression , Dual Specificity Phosphatase 6 , ErbB Receptors , Head and Neck Neoplasms , Squamous Cell Carcinoma of Head and Neck , Humans , Dual Specificity Phosphatase 6/genetics , Dual Specificity Phosphatase 6/metabolism , ErbB Receptors/metabolism , ErbB Receptors/genetics , Squamous Cell Carcinoma of Head and Neck/genetics , Squamous Cell Carcinoma of Head and Neck/pathology , Squamous Cell Carcinoma of Head and Neck/metabolism , Cell Movement/genetics , Head and Neck Neoplasms/genetics , Head and Neck Neoplasms/pathology , Head and Neck Neoplasms/metabolism , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Anoikis/genetics , Signal Transduction , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/metabolism
8.
Oral Oncol ; 153: 106799, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729036

ABSTRACT

This systematic review and meta-analysis investigates the predictive and prognostic role of PD-L1 expression in treating head and neck squamous cell carcinoma (HNSCC). Recognizing the importance of PD-L1 in patient response to treatment, the main objective was to assess its impact on overall survival and progression-free survival in HNSCC patients. A thorough search of databases such as PubMed, Scopus, and Web of Science from 2010 to 2022, along with relevant articles and references, yielded 120 studies. Of these, 7 met the criteria focusing on HNSCC patients, PD-L1 expression evaluation, and treatment with PD-1 or PD-L1 inhibitors. Data extraction followed PRISMA guidelines and involved independent review and consensus for discrepancies. The primary outcomes analyzed were overall survival and progression-free survival in relation to PD-L1 expression levels in patients undergoing immunotherapy.Theseven randomized controlled trials selected had a total of 4,477 participants. Results showed that patients with positive PD-L1 expression experienced improved overall survival when treated with PD-1 or PD-L1 inhibitors, particularly those with high PD-L1 expression. However, PD-L1 expression did not significantly affect progression-free survival. These findings suggest that PD-L1 expression can be a predictive marker for better overall survival in HNSCC patients treated with immunotherapy. However, its influence on progression-free survival remains unclear, indicating the need for further research.


Subject(s)
B7-H1 Antigen , Head and Neck Neoplasms , Humans , B7-H1 Antigen/metabolism , Head and Neck Neoplasms/metabolism , Head and Neck Neoplasms/mortality , Head and Neck Neoplasms/pathology , Squamous Cell Carcinoma of Head and Neck/mortality , Squamous Cell Carcinoma of Head and Neck/metabolism , Squamous Cell Carcinoma of Head and Neck/pathology , Prognosis , Biomarkers, Tumor/metabolism , Immune Checkpoint Inhibitors/therapeutic use
9.
PLoS One ; 19(5): e0300446, 2024.
Article in English | MEDLINE | ID: mdl-38820302

ABSTRACT

In cancer cells, the nuclear transport system is often disrupted, leading to abnormal localization of nuclear proteins and altered gene expression. This disruption can arise from various mechanisms such as mutations in genes that regulate nuclear transport, altered expression of transport proteins, and changes in nuclear envelope structure. Oncogenic protein build-up in the nucleus due to the disturbance in nuclear transport can also boost tumor growth and cell proliferation. In this study, we performed bioinformatic analyses of 23 key nuclear transport receptors using genomic and transcriptomic data from pancancer and head and neck squamous cell carcinoma (HNSCC) datasets from The Cancer Genome Atlas (TCGA) and Cancer Cell Line Encyclopedia and found that the total alteration frequency of 23 nuclear transport receptors in 2691 samples of the PCAWG Consortium was 42.1% and a high levels of genetic alterations was significantly associated with poor overall survival. Amplification was the most common type of genetic alterations, and results in the overexpression of nuclear transport receptors in HNSCC compared to normal tissues. Furthermore, our study revealed that seven out of eight cell cycle genes (CDK1, CDK2, CDK4, CDK6, CCNA1, CCNB1, and CCNE2) were significantly and positively correlated with nuclear transport receptor genes in TCGA pancancer and CCLE datasets. Additionally, functional enrichment analysis showed that nuclear transport receptor genes were mainly enriched in the adhesion junction, cell cycle, ERBB, MAPK, MTOR and WNT signaling pathways.


Subject(s)
Head and Neck Neoplasms , Humans , Head and Neck Neoplasms/genetics , Head and Neck Neoplasms/metabolism , Head and Neck Neoplasms/pathology , Gene Expression Regulation, Neoplastic , Receptors, Cytoplasmic and Nuclear/genetics , Receptors, Cytoplasmic and Nuclear/metabolism , Squamous Cell Carcinoma of Head and Neck/genetics , Squamous Cell Carcinoma of Head and Neck/metabolism , Squamous Cell Carcinoma of Head and Neck/pathology , Active Transport, Cell Nucleus , Cell Line, Tumor
10.
Med Oncol ; 41(6): 163, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38777998

ABSTRACT

Head and neck squamous cell carcinoma (HNSCC) can be defined as a deadly illness with a dismal prognosis in advanced stages. Therefore, we seek to examine P4HA2 expression and effect in HNSCC, along with the underlying mechanisms. This study utilized integrated bioinformatics analyses to evaluate the P4HA2 expression pattern, prognostic implication, and probable function in HNSCC. The study conducted various in vitro experiments, including colony formation, CCK-8, flow cytometry, wound healing, and transwell assays, on the human HNSCC cell line CAL-27 to examine the involvement of P4HA2 in HNSCC progression. Moreover, western blotting was used to investigate epithelial-mesenchymal transition (EMT) markers and PI3K/AKT pathway markers to elucidate the underlying mechanisms. P4HA2 expression was significantly enhanced in HNSCC, and its overexpression was correlated to tumor aggressiveness and a poor prognosis in patients. Based on in vitro experiments, the overexpressed P4HA2 enhanced cell proliferation, migration, invasion, as well as EMT while reducing apoptosis, whereas P4HA2 silencing exhibited the reverse effect. P4HA2 overexpression enhanced PI3K/AKT phosphorylation in HNSCC cells. Moreover, LY294002 was observed to counteract the effects of upregulated P4HA2 on proliferation, migration, invasion, and EMT in HNSCC. Collectively, we indicated that P4HA2 promoted HNSCC progression and EMT via PI3K/AKT signaling pathway.


Subject(s)
Disease Progression , Epithelial-Mesenchymal Transition , Head and Neck Neoplasms , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Signal Transduction , Squamous Cell Carcinoma of Head and Neck , Female , Humans , Male , Middle Aged , Apoptosis , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation , Epithelial-Mesenchymal Transition/physiology , Epithelial-Mesenchymal Transition/genetics , Head and Neck Neoplasms/pathology , Head and Neck Neoplasms/metabolism , Head and Neck Neoplasms/genetics , Phosphatidylinositol 3-Kinases/metabolism , Prognosis , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/physiology , Squamous Cell Carcinoma of Head and Neck/pathology , Squamous Cell Carcinoma of Head and Neck/metabolism , Squamous Cell Carcinoma of Head and Neck/genetics
11.
Technol Cancer Res Treat ; 23: 15330338241250298, 2024.
Article in English | MEDLINE | ID: mdl-38706215

ABSTRACT

Objective: Ubiquitin-specific peptidase 39 (USP39) plays a carcinogenic role in many cancers, but little research has been conducted examining whether it is involved in head and neck squamous cell carcinoma (HNSCC). Therefore, this study explored the functional role of USP39 in HNSCC. Method: Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to identify differentially expressed proteins (DEPs) between the HNSCC tumor and adjacent healthy tissues. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were used to assess the functional enrichment of DEPs. Immunohistochemistry was used to detect protein expression. The viability and migration of two HNSCC cell lines, namely CAL27 and SCC25, were detected using the cell counting kit-8 assay and a wound healing assay, respectively. Quantitative real-time PCR was used to detect the expression level of signal transducer and activator of transcription 1 (STAT1) mRNA. Results: LC-MS/MS results identified 590 DEPs between HNSCC and adjacent tissues collected from 4 patients. Through GO and KEGG pathway analyses, 34 different proteins were found to be enriched in the spliceosome pathway. The expression levels of USP39 and STAT1 were significantly higher in HNSCC tumor tissue than in adjacent healthy tissue as assessed by LC-MS/MS analysis, and the increased expression of USP39 and STAT1 protein was confirmed by immunohistochemistry in clinical samples collected from 7 additional patients with HNSCC. Knockdown of USP39 or STAT1 inhibited the viability and migration of CAL27 and SCC25 cells. In addition, USP39 knockdown inhibited the expression of STAT1 mRNA in these cells. Conclusion: Our findings indicated that USP39 knockdown may inhibit HNSCC viability and migration by suppressing STAT1 expression. The results of this study suggest that USP39 may be a potential new target for HNSCC clinical therapy or a new biomarker for HNSCC.


Subject(s)
Cell Movement , Gene Expression Regulation, Neoplastic , Head and Neck Neoplasms , STAT1 Transcription Factor , Squamous Cell Carcinoma of Head and Neck , Ubiquitin-Specific Proteases , Humans , STAT1 Transcription Factor/metabolism , STAT1 Transcription Factor/genetics , Cell Movement/genetics , Squamous Cell Carcinoma of Head and Neck/genetics , Squamous Cell Carcinoma of Head and Neck/pathology , Squamous Cell Carcinoma of Head and Neck/metabolism , Cell Line, Tumor , Ubiquitin-Specific Proteases/metabolism , Ubiquitin-Specific Proteases/genetics , Head and Neck Neoplasms/genetics , Head and Neck Neoplasms/pathology , Head and Neck Neoplasms/metabolism , Cell Survival/genetics , Tandem Mass Spectrometry , Cell Proliferation , Chromatography, Liquid , Female , Male , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics , Proteomics/methods
12.
Int J Biol Sci ; 20(7): 2576-2591, 2024.
Article in English | MEDLINE | ID: mdl-38725862

ABSTRACT

We showed that microtubule-associated tumor suppressor gene (MTUS1/ATIP) downregulation correlated with poor survival in head and neck squamous cell carcinoma (HNSCC) patients and that MTUS1/ATIP1 was the most abundant isoform in HNSCC tissue. However, the location and function of MTUS1/ATIP1 have remain unclear. In this study, we confirmed that MTUS1/ATIP1 inhibited proliferation, growth and metastasis in HNSCC in cell- and patient-derived xenograft models in vitro and in vivo. MTUS1/ATIP1 localized in the outer mitochondrial membrane, influence the morphology, movement and metabolism of mitochondria and stimulated oxidative stress in HNSCC cells by directly interacting with MFN2. MTUS1/ATIP1 activated ROS, recruiting Bax to mitochondria, facilitating cytochrome c release to the cytosol to activate caspase-3, and inducing GSDME-dependent pyroptotic death in HNSCC cells. Our findings showed that MTUS1/ATIP1 localized in the outer mitochondrial membrane in HNSCC cells and mediated anticancer effects through ROS-induced pyroptosis, which may provide a novel therapeutic strategy for HNSCC treatment.


Subject(s)
Head and Neck Neoplasms , Mitochondria , Pyroptosis , Reactive Oxygen Species , Squamous Cell Carcinoma of Head and Neck , Humans , Reactive Oxygen Species/metabolism , Head and Neck Neoplasms/metabolism , Head and Neck Neoplasms/pathology , Head and Neck Neoplasms/genetics , Animals , Cell Line, Tumor , Mitochondria/metabolism , Squamous Cell Carcinoma of Head and Neck/metabolism , Squamous Cell Carcinoma of Head and Neck/pathology , Squamous Cell Carcinoma of Head and Neck/genetics , Mice , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/genetics , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/genetics , Mice, Nude , Tumor Suppressor Proteins/metabolism , Tumor Suppressor Proteins/genetics , Mitochondrial Membranes/metabolism , Cell Proliferation
13.
BMC Cancer ; 24(1): 564, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38711026

ABSTRACT

BACKGROUND: 5-Fluorouracil (5FU) is a primary chemotherapeutic agent used to treat oral squamous cell carcinoma (OSCC). However, the development of drug resistance has significantly limited its clinical application. Therefore, there is an urgent need to determine the mechanisms underlying drug resistance and identify effective targets. In recent years, the Wingless and Int-1 (WNT) signaling pathway has been increasingly studied in cancer drug resistance; however, the role of WNT3, a ligand of the canonical WNT signaling pathway, in OSCC 5FU-resistance is not clear. This study delved into this potential connection. METHODS: 5FU-resistant cell lines were established by gradually elevating the drug concentration in the culture medium. Differential gene expressions between parental and resistant cells underwent RNA sequencing analysis, which was then substantiated via Real-time quantitative PCR (RT-qPCR) and western blot tests. The influence of the WNT signaling on OSCC chemoresistance was ascertained through WNT3 knockdown or overexpression. The WNT inhibitor methyl 3-benzoate (MSAB) was probed for its capacity to boost 5FU efficacy. RESULTS: In this study, the WNT/ß-catenin signaling pathway was notably activated in 5FU-resistant OSCC cell lines, which was confirmed through transcriptome sequencing analysis, RT-qPCR, and western blot verification. Additionally, the key ligand responsible for pathway activation, WNT3, was identified. By knocking down WNT3 in resistant cells or overexpressing WNT3 in parental cells, we found that WNT3 promoted 5FU-resistance in OSCC. In addition, the WNT inhibitor MSAB reversed 5FU-resistance in OSCC cells. CONCLUSIONS: These data underscored the activation of the WNT/ß-catenin signaling pathway in resistant cells and identified the promoting effect of WNT3 upregulation on 5FU-resistance in oral squamous carcinoma. This may provide a new therapeutic strategy for reversing 5FU-resistance in OSCC cells.


Subject(s)
Drug Resistance, Neoplasm , Fluorouracil , Mouth Neoplasms , Wnt Signaling Pathway , Wnt3 Protein , Humans , Fluorouracil/pharmacology , Fluorouracil/therapeutic use , Drug Resistance, Neoplasm/genetics , Mouth Neoplasms/drug therapy , Mouth Neoplasms/metabolism , Mouth Neoplasms/genetics , Mouth Neoplasms/pathology , Wnt Signaling Pathway/drug effects , Cell Line, Tumor , Wnt3 Protein/metabolism , Wnt3 Protein/genetics , beta Catenin/metabolism , beta Catenin/genetics , Carcinoma, Squamous Cell/drug therapy , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/pathology , Gene Expression Regulation, Neoplastic/drug effects , Antimetabolites, Antineoplastic/pharmacology , Squamous Cell Carcinoma of Head and Neck/drug therapy , Squamous Cell Carcinoma of Head and Neck/genetics , Squamous Cell Carcinoma of Head and Neck/metabolism , Squamous Cell Carcinoma of Head and Neck/pathology
14.
Cancer Genet ; 284-285: 48-57, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729078

ABSTRACT

Although lncRNAs are recognized to contribute to the development of oral squamous-cell carcinoma (OSCC), their exact function in invasion and cell migration is not clear. In this research, we explored the molecular and cellular mechanisms of FOXD2-AS1 in OSCC. Prognostic and bioinformatics analyses were used to test for the differential expression of FOXD2-AS1-PLOD1. Following FOXD2-AS1 suppression or overexpression, changes in cell viability were measured using the CCK-8 test; changes in cell migration and invasion abilities were measured using the migration and the Transwell assay. The expression of associated genes and proteins was found using Western blot and RT-qPCR. Analysis of luciferase reporter genes was done to look for regulatory connections between various molecules. The FOXD2-AS1-PLOD1 pair, which was highly expressed in OSCC, was analyzed and experimentally verified to be closely related to the prognosis of OSCC, and a nomogram model and correction curve were constructed. The inhibition of FOXD2-AS1 resulted in the reduction of cell activity, migration, invasion ability and changes in genes related to invasion and migration. In vivo validation showed that inhibition of FOXD2-AS1 expression slowed tumor growth, and related proteins changed accordingly. The experiments verified that FOXD2-AS1 negatively regulated miR-185-5 p and that miR-185-5 p negatively regulated PLOD1. In addition, it was found that the expression of PLOD1, p-Akt and p-mTOR proteins in OSCC cells was reduced by the inhibition of FOXD2-AS1, and FOXD2-AS1 and PLOD1 were closely related to the Akt/mTOR pathway. Increased expression of FOXD2-AS1 promotes OSCC growth, invasion and migration, which is important in part by targeting miR-185-5 p/PLOD1/Akt/mTOR pathway activity.


Subject(s)
Cell Movement , Cell Proliferation , MicroRNAs , Mouth Neoplasms , Neoplasm Invasiveness , Proto-Oncogene Proteins c-akt , RNA, Long Noncoding , TOR Serine-Threonine Kinases , Humans , MicroRNAs/genetics , RNA, Long Noncoding/genetics , TOR Serine-Threonine Kinases/metabolism , TOR Serine-Threonine Kinases/genetics , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/genetics , Cell Movement/genetics , Mouth Neoplasms/genetics , Mouth Neoplasms/pathology , Mouth Neoplasms/metabolism , Cell Proliferation/genetics , Mice , Animals , Procollagen-Lysine, 2-Oxoglutarate 5-Dioxygenase/genetics , Procollagen-Lysine, 2-Oxoglutarate 5-Dioxygenase/metabolism , Cell Line, Tumor , Signal Transduction/genetics , Gene Expression Regulation, Neoplastic , Female , Squamous Cell Carcinoma of Head and Neck/genetics , Squamous Cell Carcinoma of Head and Neck/pathology , Squamous Cell Carcinoma of Head and Neck/metabolism , Male , Prognosis , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/metabolism , Mice, Nude
15.
Int J Mol Sci ; 25(10)2024 May 11.
Article in English | MEDLINE | ID: mdl-38791289

ABSTRACT

EZH2 (Enhancer of zeste homolog 2) promotes tumor growth and survival through numerous mechanisms and is a promising target for novel therapeutic approaches. We aimed to characterize the expression of EZH2 in the tumors of young head-and-neck squamous cell cancer (HNSCC) patients in comparison with the general HNSCC patient population. We used formalin-fixed, paraffin-embedded tissue blocks from 68 random young HNSCC patients (≤39 years, median age: 36 years; diagnosed between 2000 and 2018), which were compared with the samples of 58 age- and gender-matched general HNSCC subjects (median age: 62 years; all diagnosed in the year 2014). EZH2 and p53 expression of the tumors was detected using immunohistochemical staining. Lower EZH2 expression was found to be characteristic of the tumors of young HNSCC patients as opposed to the general population (median EZH2 staining intensity: 1 vs. 1.5 respectively, p < 0.001; median fraction of EZH2 positive tumor cells: 40% vs. 60%, respectively, p = 0.003, Mann-Whitney). Cox analysis identified a more advanced T status (T3-4 vs. T1-2), a positive nodal status, and alcohol consumption, but neither intratumoral EZH2 nor p53 were identified as predictors of mortality in the young patient group. The lower EZH2 expression of young HNSCC patients' tumors discourages speculations of a more malignant phenotype of early-onset tumors and suggests the dominant role of patient characteristics. Furthermore, our results might indicate the possibility of an altered efficacy of the novel anti-EZH2 therapies in this patient subgroup.


Subject(s)
Enhancer of Zeste Homolog 2 Protein , Head and Neck Neoplasms , Squamous Cell Carcinoma of Head and Neck , Humans , Enhancer of Zeste Homolog 2 Protein/metabolism , Enhancer of Zeste Homolog 2 Protein/genetics , Male , Female , Squamous Cell Carcinoma of Head and Neck/metabolism , Squamous Cell Carcinoma of Head and Neck/pathology , Squamous Cell Carcinoma of Head and Neck/genetics , Adult , Middle Aged , Head and Neck Neoplasms/metabolism , Head and Neck Neoplasms/pathology , Tumor Suppressor Protein p53/metabolism , Biomarkers, Tumor/metabolism , Prognosis , Gene Expression Regulation, Neoplastic , Aged
16.
Sci Rep ; 14(1): 9824, 2024 04 29.
Article in English | MEDLINE | ID: mdl-38684755

ABSTRACT

PANoptosis plays a crucial role in cancer initiation and progression. However, the roles of PANoptosis-related genes (PARGs) in the prognosis and immune landscape of head and neck squamous cell carcinoma (HNSCC) remain unclear. Integrated bioinformatics analyses based on the data of HNSCC patients in the TCGA database were conducted. We extracted 48 PARGs expression profile and then conducted differentially expressed analysis, following building a Cox model to predict the survival of HNSCC patients. Subsequently, the relationships between the risk score, immune landscape, chemo-, and immune-therapy responses were analyzed, respectively. Moreover, we investigated the prognostic value, and further predicted the pathways influenced by PARGs. Finally, we identified the biological function of crucial PARGs. A total of 18 differentially expressed PARGs were identified in HNSCC, and a Cox model including CASP8, FADD, NLRP1, TNF, and ZBP1 was constructed, which showed that the risk score was associated with the prognosis as well as immune infiltration of HNSCC patients, and the risk score could be regarded as an independent biomarker. Additionally, patients with high-risk score might be an indicator of lymph node metastasis and advanced clinical stage. High-risk scores also contributed to the chemotherapy resistance and immune escape of HNSCC patients. In addition, FADD and ZBP1 played a crucial role in various cancer-related pathways, such as the MAPK, WNT, and MTOR signaling pathways. On the other hand, we suggested that FADD facilitated the progression and 5-fluorouracil (5-FU) resistance of HNSCC cells. A signature based on PANoptosis showed great predictive power for lymph node metastasis and advanced stage, suggesting that the risk score might be an independent prognostic biomarker for HNSCC. Meanwhile, FADD, identified as a prognostic biomarker, may represent an effective therapeutic target for HNSCC.


Subject(s)
Biomarkers, Tumor , Gene Expression Regulation, Neoplastic , Head and Neck Neoplasms , Squamous Cell Carcinoma of Head and Neck , Humans , Squamous Cell Carcinoma of Head and Neck/genetics , Squamous Cell Carcinoma of Head and Neck/pathology , Squamous Cell Carcinoma of Head and Neck/metabolism , Squamous Cell Carcinoma of Head and Neck/mortality , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics , Prognosis , Head and Neck Neoplasms/genetics , Head and Neck Neoplasms/pathology , Head and Neck Neoplasms/metabolism , Female , Male , Computational Biology/methods , Gene Expression Profiling , Fas-Associated Death Domain Protein/metabolism , Fas-Associated Death Domain Protein/genetics , Lymphatic Metastasis
17.
Cancer Lett ; 590: 216869, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38593918

ABSTRACT

Lysine acetyltransferase 7 (KAT7), a histone acetyltransferase, has recently been identified as an oncoprotein and has been implicated in the development of various malignancies. However, its specific role in head and neck squamous carcinoma (HNSCC) has not been fully elucidated. Our study revealed that high expression of KAT7 in HNSCC patients is associated with poor survival prognosis and silencing KAT7 inhibits the Warburg effect, leading to reduced proliferation, invasion, and metastatic potential of HNSCC. Further investigation uncovered a link between the high expression of KAT7 in HNSCC and tumor-specific glycolytic metabolism. Notably, KAT7 positively regulates Lactate dehydrogenase A (LDHA), a key enzyme in metabolism, to promote lactate production and create a conducive environment for tumor proliferation and metastasis. Additionally, KAT7 enhances LDHA activity and upregulates LDHA protein expression by acetylating the lysine 118 site of LDHA. Treatment with WM3835, a KAT7 inhibitor, effectively suppressed the growth of subcutaneously implanted HNSCC cells in mice. In conclusion, our findings suggest that KAT7 exerts pro-cancer effects in HNSCC by acetylating LDHA and may serve as a potential therapeutic target. Inhibiting KAT7 or LDHA expression holds promise as a therapeutic strategy to suppress the growth and progression of HNSCC.


Subject(s)
Cell Proliferation , Head and Neck Neoplasms , Histone Acetyltransferases , Squamous Cell Carcinoma of Head and Neck , Humans , Animals , Head and Neck Neoplasms/pathology , Head and Neck Neoplasms/genetics , Head and Neck Neoplasms/metabolism , Squamous Cell Carcinoma of Head and Neck/pathology , Squamous Cell Carcinoma of Head and Neck/genetics , Squamous Cell Carcinoma of Head and Neck/metabolism , Acetylation , Cell Line, Tumor , Histone Acetyltransferases/metabolism , Histone Acetyltransferases/genetics , Mice , L-Lactate Dehydrogenase/metabolism , L-Lactate Dehydrogenase/genetics , Lysine Acetyltransferases/metabolism , Lysine Acetyltransferases/genetics , Gene Expression Regulation, Neoplastic , Mice, Nude , Warburg Effect, Oncologic , Male , Female , Cell Movement , Xenograft Model Antitumor Assays , Neoplasm Invasiveness , Isoenzymes/metabolism , Isoenzymes/genetics
18.
Arch Oral Biol ; 163: 105982, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38678878

ABSTRACT

OBJECTIVES: To investigate the importance of fatty acid oxidation (FAO)-related genes in predicting the progression and prognosis of head and neck squamous cell carcinoma (HNSCC). METHODS: The FAO-related gene prognostic model was established employing Cox regression analyses, during which accuracy and sensitivity of the gene model were evaluated in The Cancer Genome Atlas (TCGA) internal testing and Gene Expression Omnibus (GEO) external validation cohorts. Ultimately, hub genes were identified among 13 model genes using STRING and Cytoscape, with preliminary validation carried out through immunohistochemistry. RESULTS: The model, which comprised 13 genes (ABCD2, ACAA1, ACACB, AKT1, CNR1, CPT1C, CROT, ECHDC2, ETFA, HADHB, IRS2, LONP2, and SLC25A17), was established. On the basis of the median risk score, the two cohorts were grouped into low-and high-risk groups in the subsequent test and validation, and the former exhibited significantly higher survival rates than the latter. Nomograms were established based on prognostic factors, including stage and risk score, and individualized for the prediction of HNSCC patients. Ultimately, immunohistochemical staining showed that ACAA1 and HADHB were significantly under-expressed in HNSCC, with a favorable prognosis associated with low HADHB and high ACAA1. CONCLUSIONS: The gene prognostic model has illustrated promising capability in predicting the prognosis, and ACAA1 and HADHB might serve as potential therapeutic biomarkers for HNSCC patients.


Subject(s)
Biomarkers, Tumor , Fatty Acids , Head and Neck Neoplasms , Nomograms , Squamous Cell Carcinoma of Head and Neck , Humans , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Squamous Cell Carcinoma of Head and Neck/genetics , Squamous Cell Carcinoma of Head and Neck/metabolism , Squamous Cell Carcinoma of Head and Neck/pathology , Retrospective Studies , Prognosis , Head and Neck Neoplasms/genetics , Head and Neck Neoplasms/metabolism , Male , Fatty Acids/metabolism , Female , Middle Aged , Oxidation-Reduction , Immunohistochemistry , Aged , Gene Expression Regulation, Neoplastic
SELECTION OF CITATIONS
SEARCH DETAIL
...