Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 14.810
Filter
1.
Appl Immunohistochem Mol Morphol ; 32(5): 207-214, 2024.
Article in English | MEDLINE | ID: mdl-38712585

ABSTRACT

The New South Wales Brain Tissue Resource Centre is a human brain bank that provides top-quality brain tissue for cutting-edge neuroscience research spanning various conditions from alcohol use disorder to neurodegenerative diseases. However, the conventional practice of preserving brain tissue in formalin poses challenges for immunofluorescent staining primarily due to the formalin's tendency, over time, to create cross-links between antigens, which can obscure epitopes of interest. In addition, researchers can encounter issues such as spectral bleeding, limitations in using multiple colors, autofluorescence, and cross-reactivity when working with long-term formalin-fixed brain tissue. The purpose of the study was to test chromogen-based double immunolabeling to negate the issues with immunofluorescent staining. Colocalization of antigens was explored using chromogens 3-amino-9-ethylcarbazole (AEC) and 3,3,-diaminobenzidine in a sequential staining procedure where the AEC signal was eliminated by alcohol treatment. Combinations of 2 or 3 primary antibodies from the same or different species were trialed successfully with this protocol. The colocalization of antigens was also demonstrated with pseudocoloring that mimicked immunofluorescence staining. This staining technique increases the utility of archival formalin-fixed tissue samples.


Subject(s)
Formaldehyde , Immunohistochemistry , Tissue Fixation , Humans , Immunohistochemistry/methods , Tissue Fixation/methods , Staining and Labeling/methods , Tissue Banks , Brain/metabolism , Brain/pathology , Animals , 3,3'-Diaminobenzidine , Biological Specimen Banks
2.
PLoS One ; 19(5): e0301761, 2024.
Article in English | MEDLINE | ID: mdl-38718025

ABSTRACT

Tracking small extracellular vesicles (sEVs), such as exosomes, requires staining them with dyes that penetrate their lipid bilayer, a process that leaves excess dye that needs to be mopped up to achieve high specificity. Current methods to remove superfluous dye have limitations, among them that they are time-intensive, carry the risk of losing sample and can require specialized equipment and materials. Here we present a fast, easy-to-use, and cost-free protocol for cleaning excess dye from stained sEV samples by adding their parental cells to the mixture to absorb the extra dye much like sponges do. Since sEVs are considered a next-generation drug delivery system, we further show the success of our approach at removing excess chemotherapeutic drug, daunorubicin, from the sEV solution.


Subject(s)
Extracellular Vesicles , Extracellular Vesicles/chemistry , Extracellular Vesicles/metabolism , Humans , Daunorubicin/economics , Coloring Agents/chemistry , Staining and Labeling/methods , Staining and Labeling/economics
3.
J Pharmacol Exp Ther ; 389(3): 243-245, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38772714
4.
Methods Mol Biol ; 2775: 225-237, 2024.
Article in English | MEDLINE | ID: mdl-38758321

ABSTRACT

The polysaccharide capsule of Cryptococcus neoformans is the primary virulence factor and one of the most commonly studied aspects of this pathogenic yeast. Capsule size varies widely between strains, has the ability to grow rapidly when introduced to stressful or low-nutrient conditions, and has been positively correlated with strain virulence. For these reasons, the size of the capsule is of great interest to C. neoformans researchers. Inducing the growth of the C. neoformans capsule is used during phenotypic testing to help understand the effects of different treatments on the yeast or size differences between strains. Here, we describe one of the standard methods of capsule induction and detail two accepted methods of staining: (i) India ink, a negative stain, used in conjunction with conventional light microscopy and (ii) co-staining with fluorescent dyes of both the cell wall and capsule followed by confocal microscopy. Finally, we outline how to measure capsule diameter manually and offer a protocol for automated diameter measurement of India ink-stained samples using computational image analysis.


Subject(s)
Cryptococcus neoformans , Staining and Labeling , Cryptococcus neoformans/cytology , Staining and Labeling/methods , Microscopy, Confocal/methods , Cell Wall/metabolism , Cell Wall/ultrastructure , Fungal Capsules/metabolism , Image Processing, Computer-Assisted/methods , Fluorescent Dyes/chemistry , Carbon
5.
Curr Protoc ; 4(5): e1052, 2024 May.
Article in English | MEDLINE | ID: mdl-38752278

ABSTRACT

Cells continuously remodel their intracellular proteins with the monosaccharide O-linked N-acetylglucosamine (O-GlcNAc) to regulate metabolism, signaling, and stress. This protocol describes the use of GlycoID tools to capture O-GlcNAc dynamics in live cells. GlycoID constructs contain an O-GlcNAc binding domain linked to a proximity labeling domain and a subcellular localization sequence. When expressed in mammalian cells, GlycoID tracks changes in O-GlcNAc-modified proteins and their interactomes in response to chemical induction with biotin over time. Pairing the subcellular localization of GlycoID with the chemical induction of activity enables spatiotemporal studies of O-GlcNAc biology during cellular events such as insulin signaling. However, optimizing intracellular labeling experiments requires attention to several variables. Here, we describe two protocols to adapt GlycoID methods to a cell line and biological process of interest. Next, we describe how to conduct a semiquantitative proteomic analysis of O-GlcNAcylated proteins and their interactomes using insulin versus glucagon signaling as a sample application. This articles aims to establish baseline GlycoID protocols for new users and set the stage for widespread use over diverse cellular applications for the functional study of O-GlcNAc glycobiology. © 2024 Wiley Periodicals LLC. Basic Protocol 1: Expression of targeted GlycoID constructs to verify subcellular location and labeling activity in mammalian cells Basic Protocol 2: GlycoID labeling in live HeLa cells for O-GlcNAc proteomic comparisons.


Subject(s)
Acetylglucosamine , Humans , Acetylglucosamine/metabolism , Proteomics/methods , Insulin/metabolism , Animals , Staining and Labeling/methods , Signal Transduction , Proteins/metabolism , HeLa Cells
6.
Anal Biochem ; 691: 115553, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38697592

ABSTRACT

We describe a microwave-assisted, methanol and acetic acid-free, inexpensive method for rapid staining of SDS-PAGE proteins. Only citric acid, benzoic acid, and Coomassie brilliant blue G-250 (CBG) were used. Microwave irradiation reduced the detection duration, and proteins in a clear background were visualized within 30 min of destaining, after 2 min of fixing and 12 min of staining. By using this protocol, comparable band intensities were obtained to the conventional methanol/acetic acid method.


Subject(s)
Acetic Acid , Electrophoresis, Polyacrylamide Gel , Methanol , Microwaves , Proteins , Electrophoresis, Polyacrylamide Gel/methods , Methanol/chemistry , Proteins/analysis , Acetic Acid/chemistry , Staining and Labeling/methods , Rosaniline Dyes/chemistry
7.
Eur Radiol Exp ; 8(1): 58, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38735899

ABSTRACT

BACKGROUND: Chondrosarcomas are rare malignant bone tumors diagnosed by analyzing radiological images and histology of tissue biopsies and evaluating features such as matrix calcification, cortical destruction, trabecular penetration, and tumor cell entrapment. METHODS: We retrospectively analyzed 16 cartilaginous tumor tissue samples from three patients (51-, 54-, and 70-year-old) diagnosed with a dedifferentiated chondrosarcoma at the femur, a moderately differentiated chondrosarcoma in the pelvis, and a predominantly moderately differentiated chondrosarcoma at the scapula, respectively. We combined a hematein-based x-ray staining with high-resolution three-dimensional (3D) microscopic x-ray computed tomography (micro-CT) for nondestructive 3D tumor assessment and tumor margin evaluation. RESULTS: We detected trabecular entrapment on 3D micro-CT images and followed bone destruction throughout the volume. In addition to staining cell nuclei, hematein-based staining also improved the visualization of the tumor matrix, allowing for the distinction between the tumor and the bone marrow cavity. The hematein-based staining did not interfere with further conventional histology. There was a 5.97 ± 7.17% difference between the relative tumor area measured using micro-CT and histopathology (p = 0.806) (Pearson correlation coefficient r = 0.92, p = 0.009). Signal intensity in the tumor matrix (4.85 ± 2.94) was significantly higher in the stained samples compared to the unstained counterparts (1.92 ± 0.11, p = 0.002). CONCLUSIONS: Using nondestructive 3D micro-CT, the simultaneous visualization of radiological and histopathological features is feasible. RELEVANCE STATEMENT: 3D micro-CT data supports modern radiological and histopathological investigations of human bone tumor specimens. It has the potential for being an integrative part of clinical preoperative diagnostics. KEY POINTS: • Matrix calcifications are a relevant diagnostic feature of bone tumors. • Micro-CT detects all clinically diagnostic relevant features of x-ray-stained chondrosarcoma. • Micro-CT has the potential to be an integrative part of clinical diagnostics.


Subject(s)
Bone Neoplasms , Chondrosarcoma , Feasibility Studies , Imaging, Three-Dimensional , X-Ray Microtomography , Humans , Chondrosarcoma/diagnostic imaging , Chondrosarcoma/pathology , X-Ray Microtomography/methods , Aged , Bone Neoplasms/diagnostic imaging , Bone Neoplasms/pathology , Middle Aged , Retrospective Studies , Imaging, Three-Dimensional/methods , Male , Female , Staining and Labeling/methods
8.
Anal Bioanal Chem ; 416(14): 3459-3471, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38727737

ABSTRACT

Concerns regarding microplastic (MP) contamination in aquatic ecosystems and its impact on seafood require a better understanding of human dietary MP exposure including extensive monitoring. While conventional techniques for MP analysis like infrared or Raman microspectroscopy provide detailed particle information, they are limited by low sample throughput, particularly when dealing with high particle numbers in seafood due to matrix-related residues. Consequently, more rapid techniques need to be developed to meet the requirements of large-scale monitoring. This study focused on semi-automated fluorescence imaging analysis after Nile red staining for rapid MP screening in seafood. By implementing RGB-based fluorescence threshold values, the need for high operator expertise to prevent misclassification was addressed. Food-relevant MP was identified with over 95% probability and differentiated from natural polymers with a 1% error rate. Comparison with laser direct infrared imaging (LDIR), a state-of-the-art method for rapid MP analysis, showed similar particle counts, indicating plausible results. However, highly variable recovery rates attributed to inhomogeneous particle spiking experiments highlight the need for future development of certified reference material including sample preparation. The proposed method demonstrated suitability of high throughput analysis for seafood samples, requiring 0.02-0.06 h/cm2 filter surface compared to 4.5-14.7 h/cm with LDIR analysis. Overall, the method holds promise as a screening tool for more accurate yet resource-intensive MP analysis methods such as spectroscopic or thermoanalytical techniques.


Subject(s)
Oxazines , Seafood , Seafood/analysis , Oxazines/analysis , Food Contamination/analysis , Microplastics/analysis , Animals , Water Pollutants, Chemical/analysis , Staining and Labeling/methods , Plastics/analysis , Humans , Fluorescent Dyes/chemistry
9.
Methods Cell Biol ; 186: 1-24, 2024.
Article in English | MEDLINE | ID: mdl-38705595

ABSTRACT

Broadly speaking, cell tracking dyes are fluorescent compounds that bind stably to components on or within the cells so the fate of the labeled cells can be followed. Their staining should be bright and homogeneous without affecting cell function. For purposes of monitoring cell proliferation, each time a cell divides the intensity of cell tracking dye should diminish equally between daughter cells. These dyes can be grouped into two different classes. Protein reactive dyes label cells by reacting covalently but non-selectively with intracellular proteins. Carboxyfluorescein diacetate succinimidyl ester (CFSE) is the prototypic general protein label. Membrane intercalating dyes label cells by partitioning non-selectively and non-covalently within the plasma membrane. The PKH membrane dyes are examples of lipophilic compounds whose chemistry allows for their retention within biological membranes without affecting cellular growth, viability, or proliferation when used properly. Here we provide considerations based for labeling cell lines and peripheral blood mononuclear cells using both classes of dyes. Examples from optimization experiments are presented along with critical aspects of the staining procedures to help mitigate common risks. Of note, we present data where a logarithmically growing cell line is labeled with both a protein dye and a membrane tracking dye to compare dye loss rates over 6days. We found that dual stained cells paralleled dye loss of the corresponding single stained cells. The decrease in fluorescence intensity by protein reactive dyes, however, was more rapid than that with the membrane reactive dyes, indicating the presence of additional division-independent dye loss.


Subject(s)
Cell Proliferation , Fluoresceins , Fluorescent Dyes , Staining and Labeling , Succinimides , Humans , Fluorescent Dyes/chemistry , Fluoresceins/chemistry , Succinimides/chemistry , Staining and Labeling/methods , Cell Tracking/methods , Leukocytes, Mononuclear/cytology , Leukocytes, Mononuclear/metabolism , Animals , Cell Membrane/metabolism , Cell Membrane/chemistry
10.
Methods Cell Biol ; 186: 51-90, 2024.
Article in English | MEDLINE | ID: mdl-38705606

ABSTRACT

Technological advancements in fluorescence flow cytometry and an ever-expanding understanding of the complexity of the immune system, have led to the development of large flow cytometry panels, reaching up to 40 markers at the single-cell level. Full spectrum flow cytometry, that measures the full emission range of all the fluorophores present in the panel instead of only the emission peaks is now routinely used in many laboratories internationally, and the demand for this technology is rapidly increasing. With the capacity to use larger and more complex staining panels, optimized protocols are required for the best panel design, panel validation and high-dimensional data analysis outcomes. In addition, for ex vivo experiments, tissue preparation methods for single-cell analysis should also be optimized to ensure that samples are of the highest quality and are truly representative of tissues in situ. Here we provide optimized step-by-step protocols for full spectrum flow cytometry panel design, tissue digestion and panel optimization to facilitate the analysis of challenging tissue types.


Subject(s)
Flow Cytometry , Immunophenotyping , Flow Cytometry/methods , Immunophenotyping/methods , Humans , Single-Cell Analysis/methods , Staining and Labeling/methods , Fluorescent Dyes/chemistry , Animals
11.
Methods Cell Biol ; 187: 139-174, 2024.
Article in English | MEDLINE | ID: mdl-38705623

ABSTRACT

Array tomography (AT) allows one to localize sub-cellular components within the structural context of cells in 3D through the imaging of serial sections. Using this technique, the z-resolution can be improved physically by cutting ultra-thin sections. Nevertheless, conventional immunofluorescence staining of those sections is time consuming and requires relatively large amounts of costly antibody solutions. Moreover, epitopes are only readily accessible at the section's surface, leaving the volume of the serial sections unlabeled. Localization of receptors at neuronal synapses in 3D in their native cellular ultrastructural context is important for understanding signaling processes. Here, we present in vivo labeling of receptors via fluorophore-coupled tags in combination with super-resolution AT. We present two workflows where we label receptors at the plasma membrane: first, in vivo labeling via microinjection with a setup consisting of readily available components and self-manufactured microscope table equipment and second, live receptor labeling by using a cell-permeable tag. To take advantage of a near-to-native preservation of tissues for subsequent scanning electron microscopy (SEM), we also apply high-pressure freezing and freeze substitution. The advantages and disadvantages of our workflows are discussed.


Subject(s)
Synapses , Tomography , Animals , Synapses/metabolism , Synapses/ultrastructure , Tomography/methods , Imaging, Three-Dimensional/methods , Staining and Labeling/methods , Mice , Microscopy, Electron, Scanning/methods , Fluorescent Dyes/chemistry , Microinjections/methods , Neurons/metabolism , Rats
12.
Ann Clin Lab Sci ; 54(2): 170-178, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38802155

ABSTRACT

OBJECTIVE: Meningioma is the most common primary adult intracranial neoplasm, and proliferation indices (PI) rise with increasing grade from WHO CNS grade 1 to 3. Ki-67 immunohistochemistry (IHC) poses a variety of technical and interpretative challenges. Here, we specifically investigated the staining intensity and its effect on interpretation and final diagnosis. METHODS: 124 high and low-grade meningiomas of various grades were blindly evaluated using different counting strategies (CS) based on the staining intensity of the nuclei as darkest (CS1), darkest+intermediate (CS2), and any staining (CS3) in hot-spots (HS) and in the context of overall proliferative activity (OPA). RESULT: CSs in HS, OPA, and their average results were significantly different between low-grade and high-grade groups. PI obtained using CS3 yielded results that matched best with values expected for the corresponding WHO grade. CS had a profound impact on whether a LG meningioma would be diagnosed as one with a "high proliferation index." CONCLUSION: A large body of work exists on the counting methods, clinically significant cut-off values, and inter- and intra-observer variability for Ki-67 PI interpretation. We show that Ki-67 IHC staining intensity, which to our knowledge has not been previously systematically investigated, can have a significant effect on PI interpretation in settings that influence diagnostic and clinical management decisions.


Subject(s)
Cell Proliferation , Immunohistochemistry , Ki-67 Antigen , Meningeal Neoplasms , Meningioma , Humans , Meningioma/pathology , Meningioma/metabolism , Ki-67 Antigen/metabolism , Meningeal Neoplasms/pathology , Meningeal Neoplasms/metabolism , Immunohistochemistry/methods , Neoplasm Grading , Female , Staining and Labeling/methods , Male , Middle Aged , Aged , Adult , Mitotic Index/methods
14.
Commun Biol ; 7(1): 554, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724559

ABSTRACT

Promiscuous labeling enzymes, such as APEX2 or TurboID, are commonly used in in situ biotinylation studies of subcellular proteomes or protein-protein interactions. Although the conventional approach of enriching biotinylated proteins is widely implemented, in-depth identification of specific biotinylation sites remains challenging, and current approaches are technically demanding with low yields. A novel method to systematically identify specific biotinylation sites for LC-MS analysis followed by proximity labeling showed excellent performance compared with that of related approaches in terms of identification depth with high enrichment power. The systematic identification of biotinylation sites enabled a simpler and more efficient experimental design to identify subcellular localized proteins within membranous organelles. Applying this method to the processing body (PB), a non-membranous organelle, successfully allowed unbiased identification of PB core proteins, including novel candidates. We anticipate that our newly developed method will replace the conventional method for identifying biotinylated proteins labeled by promiscuous labeling enzymes.


Subject(s)
Biotinylation , Humans , Biotin/chemistry , Biotin/metabolism , Proteomics/methods , Animals , Staining and Labeling/methods , Chromatography, Liquid/methods , Proteome/metabolism , Mass Spectrometry/methods
15.
Front Immunol ; 15: 1379154, 2024.
Article in English | MEDLINE | ID: mdl-38742102

ABSTRACT

Imaging mass cytometry (IMC) is a metal mass spectrometry-based method allowing highly multiplex immunophenotyping of cells within tissue samples. However, some limitations of IMC are its 1-µm resolution and its time and costs of analysis limiting respectively the detailed histopathological analysis of IMC-produced images and its application to small selected tissue regions of interest (ROI) of one to few square millimeters. Coupling on a single-tissue section, IMC and histopathological analyses could permit a better selection of the ROI for IMC analysis as well as co-analysis of immunophenotyping and histopathological data until the single-cell level. The development of this method is the aim of the present study in which we point to the feasibility of applying the IMC process to tissue sections previously Alcian blue-stained and digitalized before IMC tissue destructive analyses. This method could help to improve the process of IMC in terms of ROI selection, time of analysis, and the confrontation between histopathological and immunophenotypic data of cells.


Subject(s)
Image Cytometry , Immunophenotyping , Staining and Labeling , Staining and Labeling/methods , Immunophenotyping/methods , Image Cytometry/methods , Humans , Mass Spectrometry/methods , Animals , Single-Cell Analysis/methods
16.
Nat Chem ; 16(5): 682-683, 2024 May.
Article in English | MEDLINE | ID: mdl-38594367
17.
Nat Chem ; 16(5): 717-726, 2024 May.
Article in English | MEDLINE | ID: mdl-38594368

ABSTRACT

RNA localization is highly regulated, with subcellular organization driving context-dependent cell physiology. Although proximity-based labelling technologies that use highly reactive radicals or carbenes provide a powerful method for unbiased mapping of protein organization within a cell, methods for unbiased RNA mapping are scarce and comparably less robust. Here we develop α-alkoxy thioenol and chloroenol esters that function as potent acylating agents upon controlled ester unmasking. We pair these probes with subcellular-localized expression of a bioorthogonal esterase to establish a platform for spatial analysis of RNA: bioorthogonal acylating agents for proximity labelling and sequencing (BAP-seq). We demonstrate that, by selectively unmasking the enol probe in a locale of interest, we can map RNA distribution in membrane-bound and membrane-less organelles. The controlled-release acylating agent chemistry and corresponding BAP-seq method expand the scope of proximity labelling technologies and provide a powerful approach to interrogate the cellular organization of RNAs.


Subject(s)
RNA , RNA/chemistry , RNA/metabolism , Humans , Acylation , Staining and Labeling/methods , Esterases/metabolism , Esterases/chemistry
18.
Pharmacol Res Perspect ; 12(3): e1203, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38682818

ABSTRACT

Interference in cell cycle progression has been noted as one of the important properties of anticancer drugs. In this study, we developed the cell cycle prediction model using high-content imaging data of recipient cells after drug exposure and DNA-staining with a low-toxic DNA dye, SiR-DNA. For this purpose, we exploited HeLa and MCF7 cells introduced with a fluorescent ubiquitination-based cell cycle indicator (Fucci). Fucci-expressing cancer cells were subjected to high-content imaging analysis using OperettaCLS after 36-h exposure to anticancer drugs; the nuclei were segmented, and the morphological and intensity properties of each nucleus characterized by SiR-DNA staining were calculated using imaging analysis software, Harmony. For the use of training, we classified cells into each phase of the cell cycle using the Fucci system. Training data (n = 7500) and validation data (n = 2500) were randomly sampled and the binary classification prediction models for G1, early S, and S/G2/M phases of the cell cycle were developed using four supervised machine learning algorithms. We selected random forest as the model with the best performance through 10-fold cross-validation; the accuracy rate was approximately 75%-87%. Regarding feature importance, variables expected to be biologically related to the cell cycle, for example, signal intensity and nuclear size, were highly ranked, suggesting the validity of the model. These results showed that the cell cycle can be predicted in cancer cells by simply exploiting the current prediction model using fluorescent images of DNA-staining dye, and the model could be applied for the use of future ex vivo drug sensitivity diagnosis.


Subject(s)
Antineoplastic Agents , Cell Cycle , Fluorescent Dyes , Humans , Cell Cycle/drug effects , Antineoplastic Agents/pharmacology , HeLa Cells , MCF-7 Cells , DNA , Machine Learning , Staining and Labeling/methods , Cell Nucleus
19.
Chem Commun (Camb) ; 60(36): 4785-4788, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38602157

ABSTRACT

We show that covalent labelling of sialic acids on live cell surfaces or mucin increases the fluorescence of the fluorescence molecular rotors (FMRs) CCVJ, Cy3 and thioazole orange, enabling wash-free imaging of cell surfaces. Dual labelling with an FMR and an environmentally insensitive dye allows detection of changes that occur, for example, when cross-linking is altered.


Subject(s)
Fluorescent Dyes , Fluorescent Dyes/chemistry , Humans , Polysaccharides/chemistry , Nucleic Acids/chemistry , Nucleic Acids/analysis , Carbocyanines/chemistry , Staining and Labeling/methods , Fluorescence , Quinolines/chemistry , Benzothiazoles/chemistry
20.
Cells ; 13(8)2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38667298

ABSTRACT

STED nanoscopy allows for the direct observation of dynamic processes in living cells and tissues with diffraction-unlimited resolution. Although fluorescent proteins can be used for STED imaging, these labels are often outperformed in photostability by organic fluorescent dyes. This feature is especially crucial for time-lapse imaging. Unlike fluorescent proteins, organic fluorophores cannot be genetically fused to a target protein but require different labeling strategies. To achieve simultaneous imaging of more than one protein in the interior of the cell with organic fluorophores, bioorthogonal labeling techniques and cell-permeable dyes are needed. In addition, the fluorophores should preferentially emit in the red spectral range to reduce the potential phototoxic effects that can be induced by the STED light, which further restricts the choice of suitable markers. In this work, we selected five different cell-permeable organic dyes that fulfill all of the above requirements and applied them for SPIEDAC click labeling inside living cells. By combining click-chemistry-based protein labeling with other orthogonal and highly specific labeling methods, we demonstrate two-color STED imaging of different target structures in living specimens using different dye pairs. The excellent photostability of the dyes enables STED imaging for up to 60 frames, allowing the observation of dynamic processes in living cells over extended time periods at super-resolution.


Subject(s)
Click Chemistry , Fluorescent Dyes , Fluorescent Dyes/chemistry , Humans , Click Chemistry/methods , HeLa Cells , Microscopy, Fluorescence/methods , Color , Nanotechnology/methods , Biomarkers/metabolism , Staining and Labeling/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...