Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 62.625
Filter
1.
Arch Microbiol ; 206(7): 288, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38834761

ABSTRACT

Bone infections caused by Staphylococcus aureus may lead to an inflammatory condition called osteomyelitis, which results in progressive bone loss. Biofilm formation, intracellular survival, and the ability of S. aureus to evade the immune response result in recurrent and persistent infections that present significant challenges in treating osteomyelitis. Moreover, people with diabetes are prone to osteomyelitis due to their compromised immune system, and in life-threatening cases, this may lead to amputation of the affected limbs. In most cases, bone infections are localized; thus, early detection and targeted therapy may prove fruitful in treating S. aureus-related bone infections and preventing the spread of the infection. Specific S. aureus components or overexpressed tissue biomarkers in bone infections could be targeted to deliver active therapeutics, thereby reducing drug dosage and systemic toxicity. Compounds like peptides and antibodies can specifically bind to S. aureus or overexpressed disease markers and combining these with therapeutics or imaging agents can facilitate targeted delivery to the site of infection. The effectiveness of photodynamic therapy and hyperthermia therapy can be increased by the addition of targeting molecules to these therapies enabling site-specific therapy delivery. Strategies like host-directed therapy focus on modulating the host immune mechanisms or signaling pathways utilized by S. aureus for therapeutic efficacy. Targeted therapeutic strategies in conjunction with standard surgical care could be potential treatment strategies for S. aureus-associated osteomyelitis to overcome antibiotic resistance and disease recurrence. This review paper presents information about the targeting strategies and agents for the therapy and diagnostic imaging of S. aureus bone infections.


Subject(s)
Anti-Bacterial Agents , Osteomyelitis , Staphylococcal Infections , Staphylococcus aureus , Osteomyelitis/microbiology , Osteomyelitis/drug therapy , Humans , Staphylococcus aureus/drug effects , Staphylococcus aureus/physiology , Staphylococcal Infections/drug therapy , Staphylococcal Infections/microbiology , Anti-Bacterial Agents/therapeutic use , Biofilms/drug effects , Animals
2.
Invest Ophthalmol Vis Sci ; 65(6): 12, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38842829

ABSTRACT

Purpose: To test the hypothesis that (C-C motif) ligand 2 (CCL2) and CCL3 impact retinal function decline and inflammation during Staphylococcus aureus endophthalmitis. Methods: Experimental endophthalmitis was initiated by intravitreal injection of 5000 colony-forming units of S. aureus into the eyes of C57BL/6J, CCL2-/-, or CCL3-/- mice. At 12 and 24 hours post-infection, retinal function, bacterial load, and myeloperoxidase levels were quantified. Results: During S. aureus endophthalmitis, we observed a significant improvement in retinal function in CCL2-/- mice relative to C57BL/6J mice at 12 hours but not at 24 hours. In CCL3-/- mice, retinal function was significantly improved relative to C57BL/6J mice at 12 and 24 hours. The absence of CCL2 did not alter intraocular S. aureus intraocular concentrations. However, CCL3-/- mice had significantly lower intraocular S. aureus at 12 hours but not at 24 hours. No difference in myeloperoxidase levels was observed between C57BL/6J and CCL2-/- mice at 12 hours. CCL3-/- mice had almost no myeloperoxidase at 12 hours. At 24 hours, increased myeloperoxidase was observed in CCL2-/- and CCL3-/- mice relative to C57BL/6J mice. Conclusions: Although the absence of CCL2 resulted in improved retinal function retention at 12 hours, CCL3 deficiency resulted in improved retinal function at 12 and 24 hours. CCL3 deficiency, but not CCL2 deficiency, resulted in almost no inflammation at 12 hours. However, at 24 hours, the absence of CCL2 or CCL3 resulted in significantly increased inflammation. These results suggest that, although both CCL2 and CCL3 impact intraocular infection outcomes, CCL3 may have a more significant impact in S. aureus endophthalmitis.


Subject(s)
Chemokine CCL2 , Chemokine CCL3 , Disease Models, Animal , Endophthalmitis , Eye Infections, Bacterial , Mice, Inbred C57BL , Staphylococcal Infections , Staphylococcus aureus , Animals , Endophthalmitis/microbiology , Endophthalmitis/metabolism , Mice , Staphylococcal Infections/microbiology , Eye Infections, Bacterial/microbiology , Chemokine CCL2/metabolism , Chemokine CCL3/metabolism , Mice, Knockout , Peroxidase/metabolism , Retina/metabolism , Retina/microbiology , Electroretinography
3.
Front Public Health ; 12: 1354461, 2024.
Article in English | MEDLINE | ID: mdl-38846602

ABSTRACT

Background: Staphylococcus aureus nasal carriage has been linked to higher rates of infection and morbidity. People with Methicillin-resistant Staphylococcus aureus can be a potential source of infection for others. University students living together in crowded conditions increase their risk of acquiring infections. The prevalence of S. aureus, particularly Methicillin-resistant Staphylococcus aureus nasal carriage, in Ethiopian university students is sparse. Objective: This study aimed to determine the nasal carriage rate, associated factors, and antimicrobial susceptibility patterns of methicillin-resistant Staphylococcus aureus among pre-clinical students at the College of Health and Medical Sciences, Haramaya University, Ethiopia, from 1 July to 30 August 2022. Methods: An institutional-based cross-sectional study was conducted among 270 randomly selected pre-clinical Health and Medical Sciences students. Data on associated factors were collected using pre-tested, structured questionnaires. A nasal swab was taken from each participant and sent to the microbiology laboratory via Amies transport media in a cold chain. There, it was cultivated using conventional techniques. The isolated colonies were found to be S. aureus, and its antimicrobial susceptibility was performed using the Kirby-Bauer disk diffusion method on Muller-Hinton agar. Methicillin-resistant Staphylococcus aureus expressing using cefoxitin based on CLSI breakpoint. Data were entered into Epi-Data version 4.4.2.1 and exported to the Statistical Package for Social Sciences (SPSS) software version 25 for analysis. Pearson's chi-square test was performed to predict the associations between variables. A p-value less than 0.05 was regarded as statistically significant. Result: Methicillin-resistant Staphylococcus aureus nasal carriage was 5.9% (95% CI: 3.09-8.7) of cases of S. aureus nasal colonization, which was found to be 12.96% (95% CI: 8.85-16.96). Methicillin-resistant Staphylococcus aureus nasal colonization was significantly associated with the history of cigarette smoking (p = 0.000), intake of khat (p = 0.042), nose-picking habit (p = 0.003), history of sharing personal goods (p = 0.021), and history of hospitalizations (p = 0.00). All of the Methicillin-resistant Staphylococcus aureus isolates were resistant to ampicillin and cefoxitin. Conclusion: Based on the findings, a considerable proportion of healthy students harbored Methicillin-resistant Staphylococcus aureus strains associated with behavioral factors. Furthermore, these isolates showed high resistance to cefoxitin and ampicillin. Hence, it is crucial to regularly test pre-clinical students to prevent endogenous infections and the spread of Methicillin-resistant Staphylococcus aureus.


Subject(s)
Carrier State , Methicillin-Resistant Staphylococcus aureus , Microbial Sensitivity Tests , Staphylococcal Infections , Humans , Ethiopia/epidemiology , Methicillin-Resistant Staphylococcus aureus/isolation & purification , Methicillin-Resistant Staphylococcus aureus/drug effects , Cross-Sectional Studies , Male , Female , Staphylococcal Infections/epidemiology , Staphylococcal Infections/microbiology , Young Adult , Universities , Carrier State/microbiology , Students/statistics & numerical data , Anti-Bacterial Agents/pharmacology , Adult , Adolescent , Prevalence , Risk Factors , Surveys and Questionnaires
4.
Front Immunol ; 15: 1373553, 2024.
Article in English | MEDLINE | ID: mdl-38846955

ABSTRACT

Introduction: Staphylococcus aureus bacteremia (SAB) is a life-threatening infection particularly involving methicillin-resistant S. aureus (MRSA). In contrast to resolving MRSA bacteremia (RB), persistent MRSA bacteremia (PB) blood cultures remain positive despite appropriate antibiotic treatment. Host immune responses distinguishing PB vs. RB outcomes are poorly understood. Here, integrated transcriptomic, IL-10 cytokine levels, and genomic analyses sought to identify signatures differentiating PB vs. RB outcomes. Methods: Whole-blood transcriptomes of propensity-matched PB (n=28) versus RB (n=30) patients treated with vancomycin were compared in one independent training patient cohort. Gene expression (GE) modules were analyzed and prioritized relative to host IL-10 cytokine levels and DNA methyltransferase-3A (DNMT3A) genotype. Results: Differential expression of T and B lymphocyte gene expression early in MRSA bacteremia discriminated RB from PB outcomes. Significant increases in effector T and B cell signaling pathways correlated with RB, lower IL-10 cytokine levels and DNMT3A heterozygous A/C genotype. Importantly, a second PB and RB patient cohort analyzed in a masked manner demonstrated high predictive accuracy of differential signatures. Discussion: Collectively, the present findings indicate that human PB involves dysregulated immunity characterized by impaired T and B cell responses associated with excessive IL-10 expression in context of the DNMT3A A/A genotype. These findings reveal distinct immunologic programs in PB vs. RB outcomes, enable future studies to define mechanisms by which host and/or pathogen drive differential signatures and may accelerate prediction of PB outcomes. Such prognostic assessment of host risk could significantly enhance early anti-infective interventions to avert PB and improve patient outcomes.


Subject(s)
Bacteremia , Gene Expression Profiling , Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Transcriptome , Humans , Bacteremia/diagnosis , Bacteremia/immunology , Bacteremia/genetics , Bacteremia/microbiology , Staphylococcal Infections/immunology , Staphylococcal Infections/genetics , Staphylococcal Infections/diagnosis , Staphylococcal Infections/microbiology , Male , Female , Middle Aged , Aged , Interleukin-10/genetics , Interleukin-10/blood , DNA Methyltransferase 3A , Anti-Bacterial Agents/therapeutic use , Adult
5.
Appl Microbiol Biotechnol ; 108(1): 360, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38836914

ABSTRACT

In the fight against hospital-acquired infections, the challenge posed by methicillin-resistant Staphylococcus aureus (MRSA) necessitates the development of novel treatment methods. This study focused on undermining the virulence of S. aureus, especially by targeting surface proteins crucial for bacterial adherence and evasion of the immune system. A primary aspect of our approach involves inhibiting sortase A (SrtA), a vital enzyme for attaching microbial surface components recognizing adhesive matrix molecules (MSCRAMMs) to the bacterial cell wall, thereby reducing the pathogenicity of S. aureus. Verbascoside, a phenylethanoid glycoside, was found to be an effective SrtA inhibitor in our research. Advanced fluorescence quenching and molecular docking studies revealed a specific interaction between verbascoside and SrtA, pinpointing the critical active sites involved in this interaction. This molecular interaction significantly impedes the SrtA-mediated attachment of MSCRAMMs, resulting in a substantial reduction in bacterial adhesion, invasion, and biofilm formation. The effectiveness of verbascoside has also been demonstrated in vivo, as shown by its considerable protective effects on pneumonia and Galleria mellonella (wax moth) infection models. These findings underscore the potential of verbascoside as a promising component in new antivirulence therapies for S. aureus infections. By targeting crucial virulence factors such as SrtA, agents such as verbascoside constitute a strategic and potent approach for tackling antibiotic resistance worldwide. KEY POINTS: • Verbascoside inhibits SrtA, reducing S. aureus adhesion and biofilm formation. • In vivo studies demonstrated the efficacy of verbascoside against S. aureus infections. • Targeting virulence factors such as SrtA offers new avenues against antibiotic resistance.


Subject(s)
Aminoacyltransferases , Anti-Bacterial Agents , Bacterial Adhesion , Bacterial Proteins , Biofilms , Cysteine Endopeptidases , Glucosides , Methicillin-Resistant Staphylococcus aureus , Molecular Docking Simulation , Phenols , Staphylococcal Infections , Bacterial Proteins/metabolism , Bacterial Proteins/antagonists & inhibitors , Aminoacyltransferases/antagonists & inhibitors , Aminoacyltransferases/metabolism , Cysteine Endopeptidases/metabolism , Methicillin-Resistant Staphylococcus aureus/drug effects , Methicillin-Resistant Staphylococcus aureus/pathogenicity , Glucosides/pharmacology , Animals , Staphylococcal Infections/drug therapy , Staphylococcal Infections/microbiology , Phenols/pharmacology , Bacterial Adhesion/drug effects , Biofilms/drug effects , Anti-Bacterial Agents/pharmacology , Moths/microbiology , Virulence/drug effects , Disease Models, Animal , Virulence Factors/metabolism , Enzyme Inhibitors/pharmacology , Polyphenols
6.
Sci Rep ; 14(1): 12919, 2024 06 05.
Article in English | MEDLINE | ID: mdl-38839902

ABSTRACT

People who inject drugs are frequently colonized with Staphylococcus aureus and have an increased risk for skin and soft tissue infections. This longitudinal study aims to describe S. aureus carriage in this group and the risk for infections during a 1-year follow-up. We included 61 participants from the Malmö Needle Exchange Program. Mapping of S. aureus carriage was conducted by screening cultures every third month and S. aureus growth was semi-quantified. Data regarding infections and living conditions were collected from structured interviews. Statistics included univariate analysis with the Fischer's exact test, univariate logistic regression and multivariate logistic regression. S. aureus carriage was detected in 46-63% of participants, and 75% reported one or more infections during the study period. Self-reported infections were associated with carriage in perineum (OR 5.08 [95% CI 1.45-17.73]), in skin lesions (OR 1.48 [95% CI 1.21-1.81]), and unstable housing situation (OR 12.83 [95% CI 1.56-105.81]). Thus, people who inject drugs are frequent carriers of S. aureus and report a surprisingly high prevalence of skin and soft tissue infections. Homeless people and those with skin carriage seem to be at highest risk. Effective clinical interventions are needed, aiming at preventing infections in this vulnerable group.


Subject(s)
Carrier State , Soft Tissue Infections , Staphylococcus aureus , Substance Abuse, Intravenous , Humans , Soft Tissue Infections/epidemiology , Soft Tissue Infections/microbiology , Male , Longitudinal Studies , Female , Staphylococcus aureus/isolation & purification , Adult , Prevalence , Substance Abuse, Intravenous/complications , Substance Abuse, Intravenous/epidemiology , Carrier State/epidemiology , Carrier State/microbiology , Staphylococcal Skin Infections/epidemiology , Staphylococcal Skin Infections/microbiology , Middle Aged , Staphylococcal Infections/epidemiology , Staphylococcal Infections/microbiology , Risk Factors
7.
BMC Res Notes ; 17(1): 151, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38831376

ABSTRACT

Staphylococcus aureus is a pathogen with high epidemic potential frequently involved in nosocomials and communities infections. The pathogenicity of Staphylococcus aureus is due to both its ability to resist antibiotics and to Produce toxins. This work aims at studying the resistance and Molecular Epidemiology of Staphylococcus aureus. Antibiotic susceptibility of the 70 strains isolates of Staphylococcus aureus was determined by agar diffusion while Multiplex PCR and MLST were used to search toxin-coding genes and MRSA typing, respectively. 14.28% of isolates were multidrug resistant. Staphylococcus aureus showed high susceptibility to aminoglycoside and Macrolides familly. lukS-PV/lukF-PV and sea genes were detected in 45% and 3% of Staphylococcus aureus respectively. Ten (10) sequence types including ST5710, ST2430, ST5289, ST5786, ST6942, ST6943, ST6944, ST6945, ST6946, ST6947 have been reported. The study showed a diversity of antibiotic resistance phenotypes and a great diversity of MRSA clones causing infections.


Subject(s)
Anti-Bacterial Agents , Microbial Sensitivity Tests , Staphylococcal Infections , Staphylococcus aureus , Humans , Staphylococcus aureus/genetics , Staphylococcus aureus/drug effects , Staphylococcus aureus/isolation & purification , Staphylococcus aureus/pathogenicity , Staphylococcal Infections/microbiology , Staphylococcal Infections/epidemiology , Burkina Faso/epidemiology , Anti-Bacterial Agents/pharmacology , Methicillin-Resistant Staphylococcus aureus/genetics , Methicillin-Resistant Staphylococcus aureus/isolation & purification , Methicillin-Resistant Staphylococcus aureus/drug effects , Methicillin-Resistant Staphylococcus aureus/pathogenicity , Multilocus Sequence Typing , Drug Resistance, Multiple, Bacterial/genetics
8.
Arch Microbiol ; 206(7): 289, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38847838

ABSTRACT

Staphylococcus epidermidis is an opportunistic pathogen commonly implicated in medical device-related infections. Its propensity to form biofilms not only leads to chronic infections but also exacerbates the issue of antibiotic resistance, necessitating high-dose antimicrobial treatments. In this study, we explored the use of diclofenac sodium, a non-steroidal anti-inflammatory drug, as an anti-biofilm agent against S. epidermidis. In this study, crystal violet staining and confocal laser scanning microscope analysis showed that diclofenac sodium, at subinhibitory concentration (0.4 mM), significantly inhibited biofilm formation in both methicillin-susceptible and methicillin-resistant S. epidermidis isolates. MTT assays demonstrated that 0.4 mM diclofenac sodium reduced the metabolic activity of biofilms by 25.21-49.01% compared to untreated controls. Additionally, the treatment of diclofenac sodium resulted in a significant decrease (56.01-65.67%) in initial bacterial adhesion, a crucial early phase of biofilm development. Notably, diclofenac sodium decreased the production of polysaccharide intercellular adhesin (PIA), a key component of the S. epidermidis biofilm matrix, in a dose-dependent manner. Real-time quantitative PCR analysis revealed that diclofenac sodium treatment downregulated biofilm-associated genes icaA, fnbA, and sigB and upregulated negative regulatory genes icaR and luxS, providing potential mechanistic insights. These findings indicate that diclofenac sodium inhibits S. epidermidis biofilm formation by affecting initial bacterial adhesion and the PIA synthesis. This underscores the potential of diclofenac sodium as a supplementary antimicrobial agent in combating staphylococcal biofilm-associated infections.


Subject(s)
Anti-Bacterial Agents , Biofilms , Diclofenac , Staphylococcus epidermidis , Biofilms/drug effects , Staphylococcus epidermidis/drug effects , Staphylococcus epidermidis/physiology , Diclofenac/pharmacology , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Bacterial Adhesion/drug effects , Humans , Polysaccharides, Bacterial/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Staphylococcal Infections/microbiology , Staphylococcal Infections/drug therapy , Gene Expression Regulation, Bacterial/drug effects
9.
Int J Biol Sci ; 20(7): 2555-2575, 2024.
Article in English | MEDLINE | ID: mdl-38725861

ABSTRACT

Staphylococcus aureus (S. aureus) persistence in macrophages, potentially a reservoir for recurrence of chronic osteomyelitis, contributes to resistance and failure in treatment. As the mechanisms underlying survival of S. aureus in macrophages remain largely unknown, there has been no treatment approved. Here, in a mouse model of S. aureus osteomyelitis, we identified significantly up-regulated expression of SLC7A11 in both transcriptomes and translatomes of CD11b+F4/80+ macrophages, and validated a predominant distribution of SLC7A11 in F4/80+ cells around the S. aureus abscess. Importantly, pharmacological inhibition or genetic knockout of SLC7A11 promoted the bactericidal function of macrophages, reduced bacterial burden in the bone and improved bone structure in mice with S. aureus osteomyelitis. Mechanistically, aberrantly expressed SLC7A11 down-regulated the level of intracellular ROS and reduced lipid peroxidation, contributing to the impaired bactericidal function of macrophages. Interestingly, blocking SLC7A11 further activated expression of PD-L1 via the ROS-NF-κB axis, and a combination therapy of targeting both SLC7A11 and PD-L1 significantly enhanced the efficacy of clearing S. aureus in vitro and in vivo. Our findings suggest that targeting both SLC7A11 and PD-L1 is a promising therapeutic approach to reprogram the bactericidal function of macrophages and promote bacterial clearance in S. aureus osteomyelitis.


Subject(s)
Macrophages , Osteomyelitis , Staphylococcal Infections , Staphylococcus aureus , Animals , Osteomyelitis/microbiology , Osteomyelitis/metabolism , Osteomyelitis/genetics , Mice , Macrophages/metabolism , Staphylococcal Infections/metabolism , Staphylococcal Infections/microbiology , Amino Acid Transport System y+/metabolism , Amino Acid Transport System y+/genetics , Mice, Inbred C57BL , Reactive Oxygen Species/metabolism
10.
Sci Rep ; 14(1): 10466, 2024 05 07.
Article in English | MEDLINE | ID: mdl-38714772

ABSTRACT

Right-sided infective endocarditis (RSIE) is less common than left-sided infective endocarditis (LSIE) and exhibits distinct epidemiological, clinical, and microbiological characteristics. Previous studies have focused primarily on RSIE in patients with intravenous drug use. We investigated the characteristics and risk factors for RSIE in an area where intravenous drug use is uncommon. A retrospective cohort study was conducted at a tertiary hospital in South Korea. Patients diagnosed with infective endocarditis between November 2005 and August 2017 were categorized into LSIE and RSIE groups. Of the 406 patients, 365 (89.9%) had LSIE and 41 (10.1%) had RSIE. The mortality rates were 31.7% in the RSIE group and 31.5% in the LSIE group (P = 0.860). Patients with RSIE had a higher prevalence of infection with Staphylococcus aureus (29.3% vs. 13.7%, P = 0.016), coagulase-negative staphylococci (17.1% vs. 6.0%, P = 0.022), and gram-negative bacilli other than HACEK (12.2% vs. 2.2%, P = 0.003). Younger age (adjusted odds ratio [aOR] 0.97, 95% confidence interval [CI] 0.95-0.99, P = 0.006), implanted cardiac devices (aOR 37.75, 95% CI 11.63-141.64, P ≤ 0.001), and central venous catheterization  (aOR 4.25, 95%  CI 1.14-15.55, P = 0.029) were independent risk factors for RSIE. Treatment strategies that consider the epidemiologic and microbiologic characteristics of RSIE are warranted.


Subject(s)
Endocarditis , Humans , Male , Republic of Korea/epidemiology , Female , Risk Factors , Retrospective Studies , Middle Aged , Aged , Endocarditis/epidemiology , Endocarditis/mortality , Endocarditis/microbiology , Adult , Staphylococcal Infections/epidemiology , Staphylococcal Infections/microbiology , Endocarditis, Bacterial/epidemiology , Endocarditis, Bacterial/microbiology , Endocarditis, Bacterial/mortality , Staphylococcus aureus/isolation & purification , Staphylococcus aureus/pathogenicity , Prevalence , Tertiary Care Centers
11.
BMC Vet Res ; 20(1): 169, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38698383

ABSTRACT

BACKGROUND: Bovine mastitis is one of the most widespread diseases affecting cattle, leading to significant losses for the dairy industry. Currently, the so-called gold standard in mastitis diagnosis involves determining the somatic cell count (SCC). Apart from a number of advantages, this method has one serious flaw: It does not identify the etiological factor causing a particular infection, making it impossible to introduce targeted antimicrobial therapy. This can contribute to multidrug-resistance in bacterial species. The diagnostic market lacks a test that has the advantages of SCC and also recognizes the species of pathogen causing the inflammation. Therefore, the aim of our study was to develop a lateral flow immunoassay (LFIA) based on elongation factor Tu for identifying most prevalent Gram-positive cocci responsible for causing mastitis including Streptococcus uberis, Streptococcus agalactiae and Staphylococcus aureus. RESULTS: As a result, we showed that the assay for S. uberis detection demonstrated a specificity of 89.02%, a sensitivity of 43.59%, and an accuracy of 80.3%. In turn, the second variant - assay for Gram-positive cocci reached a specificity of 95.59%, a sensitivity of 43.28%, and an accuracy of 78.33%. CONCLUSIONS: Our study shows that EF-Tu is a promising target for LFIA and we have delivered evidence that further evaluation could improve test parameters and fill the gap in the mastitis diagnostics market.


Subject(s)
Mastitis, Bovine , Streptococcus agalactiae , Streptococcus , Mastitis, Bovine/diagnosis , Mastitis, Bovine/microbiology , Animals , Cattle , Female , Streptococcus agalactiae/isolation & purification , Streptococcus/isolation & purification , Staphylococcus aureus/isolation & purification , Sensitivity and Specificity , Streptococcal Infections/veterinary , Streptococcal Infections/diagnosis , Streptococcal Infections/microbiology , Gram-Positive Cocci/isolation & purification , Immunoassay/veterinary , Immunoassay/methods , Staphylococcal Infections/veterinary , Staphylococcal Infections/diagnosis , Staphylococcal Infections/microbiology , Milk/microbiology , Milk/cytology
12.
Sci Rep ; 14(1): 10021, 2024 05 01.
Article in English | MEDLINE | ID: mdl-38693249

ABSTRACT

Staphylococcus aureus is one of the most important human pathogenic bacteria and environmental surfaces play an important role in the spread of the bacterium. Presence of S. aureus on children's playgrounds and on toys was described in international studies, however, little is known about the prevalence and characteristics of S. aureus at playgrounds in Europe. In this study, 355 samples were collected from playgrounds from 16 cities in Hungary. Antibiotic susceptibility of the isolates was tested for nine antibiotics. Presence of virulence factors was detected by PCR. Clonal diversity of the isolates was tested by PFGE and MLST. The overall prevalence of S. aureus was 2.81% (10/355) and no MRSA isolates were found. Presence of spa (10), fnbA (10), fnbB (5), icaA (8), cna (7), sea (2), hla (10), hlb (2) and hlg (6) virulence genes were detected. The isolates had diverse PFGE pulsotypes. With MLST, we have detected isolates belonging to ST8 (CC8), ST22 (CC22), ST944 and ST182 (CC182), ST398 (CC398), ST6609 (CC45), ST3029 and ST2816. We have identified a new sequence type, ST6609 of CC45. S. aureus isolates are present on Hungarian playgrounds, especially on plastic surfaces. The isolates were clonally diverse and showed resistance to commonly used antibiotics. These data reinforce the importance of the outdoor environment in the spread for S. aureus in the community.


Subject(s)
Multilocus Sequence Typing , Staphylococcus aureus , Virulence Factors , Hungary/epidemiology , Humans , Staphylococcus aureus/genetics , Staphylococcus aureus/isolation & purification , Staphylococcus aureus/drug effects , Staphylococcus aureus/pathogenicity , Staphylococcus aureus/classification , Child , Virulence Factors/genetics , Anti-Bacterial Agents/pharmacology , Staphylococcal Infections/microbiology , Staphylococcal Infections/epidemiology , Microbial Sensitivity Tests , Genetic Variation , Play and Playthings
13.
Nat Commun ; 15(1): 3666, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38693120

ABSTRACT

Respiratory viral infection increases host susceptibility to secondary bacterial infections, yet the precise dynamics within airway epithelia remain elusive. Here, we elucidate the pivotal role of CD47 in the airway epithelium during bacterial super-infection. We demonstrated that upon influenza virus infection, CD47 expression was upregulated and localized on the apical surface of ciliated cells within primary human nasal or bronchial epithelial cells. This induced CD47 exposure provided attachment sites for Staphylococcus aureus, thereby compromising the epithelial barrier integrity. Through bacterial adhesion assays and in vitro pull-down assays, we identified fibronectin-binding proteins (FnBP) of S. aureus as a key component that binds to CD47. Furthermore, we found that ciliated cell-specific CD47 deficiency or neutralizing antibody-mediated CD47 inactivation enhanced in vivo survival rates. These findings suggest that interfering with the interaction between airway epithelial CD47 and pathogenic bacterial FnBP holds promise for alleviating the adverse effects of super-infection.


Subject(s)
CD47 Antigen , Epithelial Cells , Staphylococcal Infections , Staphylococcus aureus , Superinfection , CD47 Antigen/metabolism , CD47 Antigen/genetics , Humans , Animals , Superinfection/microbiology , Mice , Epithelial Cells/metabolism , Epithelial Cells/microbiology , Epithelial Cells/virology , Staphylococcal Infections/immunology , Staphylococcal Infections/metabolism , Staphylococcal Infections/microbiology , Influenza, Human/metabolism , Influenza, Human/immunology , Influenza, Human/virology , Bacterial Adhesion , Respiratory Mucosa/metabolism , Respiratory Mucosa/microbiology , Respiratory Mucosa/virology , Mice, Inbred C57BL , Bronchi/metabolism , Bronchi/cytology , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/metabolism , Orthomyxoviridae Infections/virology , Mice, Knockout , Influenza A Virus, H1N1 Subtype
14.
Ugeskr Laeger ; 186(16)2024 Apr 15.
Article in Danish | MEDLINE | ID: mdl-38704724

ABSTRACT

Pyomyositis is a bacterial infection of striated muscle, usually located to muscles in the extremities or pelvis. We present a microbiologically unique case report of pyomyositis in the sternocleidomastoid muscle (the first of its kind in Denmark) caused by Staphylococcus epidermidis, S. capitis and possibly Streptococcus pneumoniae. Pyomyositis is very rare but can lead to critical complications such as endocarditis and sepsis. It is therefore important to know the condition when evaluating an infected patient with muscle pain. Treatment consists of antibiotics and - if relevant - surgical abscess drainage.


Subject(s)
Anti-Bacterial Agents , Neck Muscles , Pyomyositis , Staphylococcal Infections , Humans , Pyomyositis/microbiology , Pyomyositis/diagnosis , Pyomyositis/drug therapy , Female , Adult , Neck Muscles/pathology , Neck Muscles/diagnostic imaging , Staphylococcal Infections/diagnosis , Staphylococcal Infections/drug therapy , Staphylococcal Infections/microbiology , Anti-Bacterial Agents/therapeutic use , Staphylococcus epidermidis/isolation & purification , Streptococcus pneumoniae/isolation & purification
15.
J Med Microbiol ; 73(5)2024 May.
Article in English | MEDLINE | ID: mdl-38743043

ABSTRACT

Introduction. Staphylococcus epidermidis biofilms are one of the major causes of bloodstream infections related to the use of medical devices. The diagnosis of these infections is challenging, delaying their treatment and resulting in increased morbidity and mortality rates. As such, it is urgent to characterize the mechanisms employed by this bacterium to endure antibiotic treatments and the response of the host immune system, to develop more effective therapeutic strategies. In several bacterial species, the gene codY was shown to encode a protein that regulates the expression of genes involved in biofilm formation and immune evasion. Additionally, in a previous study, our group generated evidence indicating that codY is involved in the emergence of viable but non-culturable (VBNC) cells in S. epidermidis.Gap statement/Hypothesis. As such, we hypothesized that the gene codY has have an important role in this bacterium virulence.Aim. This study aimed to assess, for the first time, the impact of the deletion of the gene codY in S. epidermidis virulence, namely, in antibiotic susceptibility, biofilm formation, VBNC state emergence and in vitro host immune system response.Methodology. Using an allelic replacement strategy, we constructed and then characterized an S. epidermidis strain lacking codY, in regards to biofilm and VBNC cell formation, susceptibility to antibiotics as well as their role in the interaction with human blood and plasma. Additionally, we investigate whether the codY gene can impact the activation of innate immune cells by evaluating the production of both pro- and anti-inflammatory cytokines by THP-1 macrophages.Results. We demonstrated that the deletion of the gene codY resulted in biofilms with less c.f.u. counts and fewer VBNC cells. Furthermore, we show that although WT and mutant cells were similarly internalized in vitro by human macrophages, a stronger cytokine response was elicited by the mutant in a toll-like receptor 4-dependent manner.Conclusion. Our results indicate that codY contributes to S. epidermidis virulence, which in turn may have an impact on our ability to manage the biofilm-associated infections caused by this bacterium.


Subject(s)
Bacterial Proteins , Biofilms , Cytokines , Macrophages , Staphylococcus epidermidis , Staphylococcus epidermidis/genetics , Staphylococcus epidermidis/physiology , Biofilms/growth & development , Humans , Macrophages/microbiology , Macrophages/immunology , Cytokines/metabolism , Cytokines/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Anti-Bacterial Agents/pharmacology , Staphylococcal Infections/microbiology , Gene Deletion , Virulence , Microbial Viability
16.
Virulence ; 15(1): 2352476, 2024 12.
Article in English | MEDLINE | ID: mdl-38741276

ABSTRACT

Staphylococcus aureus (S. aureus) is well known for its biofilm formation ability and is responsible for serious, chronic refractory infections worldwide. We previously demonstrated that advanced glycation end products (AGEs), a hallmark of chronic hyperglycaemia in diabetic tissues, enhanced biofilm formation by promoting eDNA release via sigB upregulation in S. aureus, contributing to the high morbidity and mortality of patients presenting a diabetic foot ulcer infection. However, the exact regulatory network has not been completely described. Here, we used pull-down assay and LC-MS/MS to identify the GlmS as a candidate regulator of sigB in S. aureus stimulated by AGEs. Dual-luciferase assays and electrophoretic mobility shift assays (EMSAs) revealed that GlmS directly upregulated the transcriptional activity of sigB. We constructed NCTC 8325 ∆glmS for further validation. qRT-PCR analysis revealed that AGEs promoted both glmS and sigB expression in the NCTC 8325 strain but had no effect on NCTC 8325 ∆glmS. NCTC 8325 ∆glmS showed a significant attenuation in biofilm formation and virulence factor expression, accompanied by a decrease in sigB expression, even under AGE stimulation. All of the changes, including pigment deficiency, decreased haemolysis ability, downregulation of hla and hld expression, and less and sparser biofilms, indicated that sigB and biofilm formation ability no longer responded to AGEs in NCTC 8325 ∆glmS. Our data extend the understanding of GlmS in the global regulatory network of S. aureus and demonstrate a new mechanism by which AGEs can upregulate GlmS, which directly regulates sigB and plays a significant role in mediating biofilm formation and virulence factor expression.


Subject(s)
Bacterial Proteins , Biofilms , Gene Expression Regulation, Bacterial , Glycation End Products, Advanced , Staphylococcal Infections , Staphylococcus aureus , Virulence Factors , Biofilms/growth & development , Staphylococcus aureus/genetics , Staphylococcus aureus/pathogenicity , Virulence Factors/genetics , Glycation End Products, Advanced/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Staphylococcal Infections/microbiology , Sigma Factor/genetics , Sigma Factor/metabolism , Humans
17.
BMC Vet Res ; 20(1): 200, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38745199

ABSTRACT

BACKGROUND: In dairy cattle, mastitis causes high financial losses and impairs animal well-being. Genetic selection is used to breed cows with reduced mastitis susceptibility. Techniques such as milk cell flow cytometry may improve early mastitis diagnosis. In a highly standardized in vivo infection model, 36 half-sib cows were selected for divergent paternal Bos taurus chromosome 18 haplotypes (Q vs. q) and challenged with Escherichia coli for 24 h or Staphylococcus aureus for 96 h, after which the samples were analyzed at 12 h intervals. Vaginal temperature (VT) was recorded every three minutes. The objective of this study was to compare the differential milk cell count (DMCC), milk parameters (fat %, protein %, lactose %, pH) and VT between favorable (Q) and unfavorable (q) haplotype cows using Bayesian models to evaluate their potential as improved early indicators of differential susceptibility to mastitis. RESULTS: After S. aureus challenge, compared to the Q half-sibship cows, the milk of the q cows exhibited higher PMN levels according to the DMCC (24 h, p < 0.001), a higher SCC (24 h, p < 0.01 and 36 h, p < 0.05), large cells (24 h, p < 0.05) and more dead (36 h, p < 0.001) and live cells (24 h, p < 0.01). The protein % was greater in Q milk than in q milk at 0 h (p = 0.025). In the S. aureus group, Q cows had a greater protein % (60 h, p = 0.048) and fat % (84 h, p = 0.022) than q cows. Initially, the greater VT of S. aureus-challenged q cows (0 and 12-24 h, p < 0.05) reversed to a lower VT in q cows than in Q cows (48-60 h, p < 0.05). Additionally, the following findings emphasized the validity of the model: in the S. aureus group all DMCC subpopulations (24 h-96 h, p < 0.001) and in the E. coli group nearly all DMCC subpopulations (12 h-24 h, p < 0.001) were higher in challenged quarters than in unchallenged quarters. The lactose % was lower in the milk samples of E. coli-challenged quarters than in those of S. aureus-challenged quarters (24 h, p < 0.001). Between 12 and 18 h, the VT was greater in cows challenged with E. coli than in those challenged with S. aureus (3-h interval approach, p < 0.001). CONCLUSION: This in vivo infection model confirmed specific differences between Q and q cows with respect to the DMCC, milk component analysis results and VT results after S. aureus inoculation but not after E. coli challenge. However, compared with conventional milk cell analysis monitoring, e.g., the global SCC, the DMCC analysis did not provide refined phenotyping of the pathogen response.


Subject(s)
Escherichia coli Infections , Escherichia coli , Haplotypes , Mastitis, Bovine , Milk , Staphylococcal Infections , Staphylococcus aureus , Animals , Cattle , Milk/microbiology , Milk/cytology , Female , Mastitis, Bovine/microbiology , Staphylococcus aureus/physiology , Escherichia coli Infections/veterinary , Escherichia coli Infections/microbiology , Staphylococcal Infections/veterinary , Staphylococcal Infections/microbiology , Cell Count/veterinary , Body Temperature , Vagina/microbiology
18.
Iran J Med Sci ; 49(5): 332-338, 2024 May.
Article in English | MEDLINE | ID: mdl-38751870

ABSTRACT

The present study aimed to investigate secondary bacterial infections among patients infected with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Coagulase-negative Staphylococci can infect immunocompromised patients. Linezolid resistance among Staphylococcus epidermidis is one of the most critical issues. In 2019, 185 SARS-CoV-2-positive patients who were admitted to North Khorasan Province Hospital (Bojnurd, Iran), were investigated. Patients having positive SARS-CoV-2 reverse transcriptase real-time polymerase chain reaction (RT-PCR) test results, who had a history of intubation, mechanical ventilation, and were hospitalized for more than 48 hours were included. After microbiological evaluation of pulmonary samples, taken from intubated patients with clinical manifestation of pneumonia, co-infections were found in 11/185 patients (5.94%) with S. epidermidis, Staphylococcus aureus, and Acinetobacter baumani, respectively. Remarkably, seven out of nine S. epidermidis isolates were linezolid resistant. Selected isolates were characterized using antimicrobial resistance patterns and molecular methods, such as Staphylococcal cassette chromosome mec (SCCmec) typing, and gene detection for ica, methicillin resistance (mecA), vancomycin resistance (vanA), and chloramphenicol-florfenicol resistance (cfr) genes. All of the isolates were resistant to methicillin, and seven isolates were resistant to linezolid. Nine out of 11 isolated belonged to the SCCmec I, while two belonged to the SCCmec IV. It should be noted that all patients had the underlying disease, and six patients had already passed away. The increasing linezolid resistance in bacterial strains becomes a real threat to patients, and monitoring such infections, in conjunction with surveillance and infection prevention programs, is very critical for reducing the number of linezolid-resistant Staphylococcal strains. A preprint of this study was published at https://europepmc.org/article/ppr/ppr417742.


Subject(s)
COVID-19 , Linezolid , Staphylococcal Infections , Staphylococcus epidermidis , Humans , Linezolid/pharmacology , Linezolid/therapeutic use , Staphylococcus epidermidis/drug effects , Iran/epidemiology , COVID-19/epidemiology , Male , Female , Staphylococcal Infections/drug therapy , Staphylococcal Infections/epidemiology , Middle Aged , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Aged , Coinfection/epidemiology , Coinfection/drug therapy , Coinfection/microbiology , Drug Resistance, Bacterial/drug effects , Adult , SARS-CoV-2 , Microbial Sensitivity Tests/methods
19.
PLoS One ; 19(5): e0301200, 2024.
Article in English | MEDLINE | ID: mdl-38753608

ABSTRACT

Bovine mastitis is a widespread and costly disease that affects dairy farming globally, characterized by mammary gland inflammation. Bovine intramammary gland infection has been associated with more than 135 different pathogens of which Staphylococcus aureus is the main etiology of sub-clinical mastitis (SCM). The current study was designed to investigate the prevalence, antibiotic resistance pattern, and the presence of antibiotic resistance genes (mecA, tetK, aacA-aphD and blaZ) in S. aureus isolated from the raw milk of cows with subclinical mastitis. A total of 543 milk samples were collected from lactating cows such as Holstein Friesian (n = 79), Sahiwal (n = 175), Cholistani (n = 107), and Red Sindhi (n = 182) from different dairy farms in Pakistan. From the milk samples microscopic slides were prepared and the somatic cell count was assessed to find SCM. To isolate and identify S. aureus, milk was streaked on mannitol salt agar (MSA) plates. Further confirmation was done based on biochemical assays, including gram staining (+ coccus), catalase test (+), and coagulase test (+). All the biochemically confirmed S. aureus isolates were molecularly identified using the thermonuclease (nuc) gene. The antibiotic resistance pattern of all the S. aureus isolates was evaluated through the disc diffusion method. Out of 543 milk samples, 310 (57.09%) were positive for SCM. Among the SCM-positive samples, S. aureus was detected in 30.32% (94/310) samples. Out of 94 isolates, 47 (50%) were determined to be multidrug resistant (MDR). Among these MDR isolates, 11 exhibited resistance to Cefoxitin, and hence were classified as methicillin-resistant Staphylococcus aureus (MRSA). The S. aureus isolates showed the highest resistance to Lincomycin (84.04%) followed by Ampicillin (45.74%), while the least resistance was shown to Sulfamethoxazole/Trimethoprim (3.19%) and Gentamycin (6.38%). Polymerase chain reaction (PCR) analysis revealed that 55.31% of the isolates carried blaZ gene, 46.80% carried tetK gene, 17.02% harbored the mecA gene, whereas, aacA-aphD gene was found in 13.82% samples. Our findings revealed a significant level of contamination of milk with S. aureus and half (50%) of the isolates were MDR. The isolated S. aureus harbored various antibiotic resistance genes responsible for the absorbed phenotypic resistance. The alarmingly high prevalence of MDR S. aureus isolates and MRSA strains in these cases possess a serious risk to public health, emphasizes the urgent need to address this issue to protect both human and animal health in Pakistan.


Subject(s)
Anti-Bacterial Agents , Mastitis, Bovine , Milk , Staphylococcal Infections , Staphylococcus aureus , Animals , Cattle , Mastitis, Bovine/microbiology , Mastitis, Bovine/epidemiology , Milk/microbiology , Female , Staphylococcus aureus/genetics , Staphylococcus aureus/drug effects , Staphylococcus aureus/isolation & purification , Anti-Bacterial Agents/pharmacology , Staphylococcal Infections/microbiology , Staphylococcal Infections/epidemiology , Staphylococcal Infections/veterinary , Microbial Sensitivity Tests , Drug Resistance, Multiple, Bacterial/genetics , Pakistan/epidemiology , Bacterial Proteins/genetics
20.
Front Cell Infect Microbiol ; 14: 1386483, 2024.
Article in English | MEDLINE | ID: mdl-38756229

ABSTRACT

Background: Ducrosia anethifolia is an aromatic desert plant used in Saudi folk medicine to treat skin infections. It is widely found in Middle Eastern countries. Methods: A methanolic extract of the plant was prepared, and its phytoconstituents were determined using LC-MS. In-vitro and in-vivo antibacterial and antibiofilm activities of the methanolic extract were evaluated against multidrug-resistant bacteria. The cytotoxic effect was assessed using HaCaT cell lines in-vitro. Diabetic mice were used to study the in-vivo antibiofilm and wound healing activity using the excision wound method. Results: More than 50 phytoconstituents were found in the extract after LC-MS analysis. The extract exhibited antibacterial activity against both the tested pathogens. The extract was free of irritant effects on mice skin, and no cytotoxicity was observed on HaCaT cells with an IC50 value of 1381 µg/ml. The ointment formulation of the extract increased the healing of diabetic wounds. The microbial load of both pathogens in the wounded tissue was also reduced after the treatment. The extract was more effective against methicillin-resistant Staphylococcus aureus (MRSA) than MDR-P. aeruginosa in both in vitro and in vivo experiments. Further, skin regeneration was also observed in histological studies. Conclusions: The results showed that D. anethifolia methanol extract supports wound healing in infected wounds in diabetic mice through antibacterial, antibiofilm, and wound healing activities.


Subject(s)
Anti-Bacterial Agents , Biofilms , Diabetes Mellitus, Experimental , Methicillin-Resistant Staphylococcus aureus , Plant Extracts , Pseudomonas aeruginosa , Wound Healing , Animals , Biofilms/drug effects , Methicillin-Resistant Staphylococcus aureus/drug effects , Plant Extracts/pharmacology , Plant Extracts/chemistry , Mice , Anti-Bacterial Agents/pharmacology , Wound Healing/drug effects , Pseudomonas aeruginosa/drug effects , Humans , Diabetes Mellitus, Experimental/drug therapy , Microbial Sensitivity Tests , Pseudomonas Infections/drug therapy , Pseudomonas Infections/microbiology , Cell Line , HaCaT Cells , Male , Wound Infection/drug therapy , Wound Infection/microbiology , Disease Models, Animal , Staphylococcal Infections/drug therapy , Staphylococcal Infections/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...