Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.521
Filter
1.
Vet Immunol Immunopathol ; 272: 110770, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38735115

ABSTRACT

Interferon lambda (IFN-λ) is an important type III interferon triggered mainly by viral infection. IFN-λ binds to their heterodimeric receptors and signals through JAK-STAT pathways similar to type I IFN. In this study, we deduced the buffalo IFN-λ sequences through the polymerase chain reaction, and then studied IFN-λ's expression patterns in different tissues, and post induction with poly I:C and live MRSA using RT-qPCR. The full-length sequences of buffalo IFN-λ3, IFN-λ receptors, and a transcript variant of IFN-λ4 were determined. IFN-λ1 is identified as a pseudogene. Virus response elements and a recombination hotspot factor was observed in the regulatory region of IFN-λ. The IFN-λ3 expressed highest in lungs and monocytes but IFN-λ4 did not. The expression of Interferon Lambda Receptor 1 was tissue specific, while Interleukin 10 Receptor subunit beta was ubiquitous. Following poly I:C induction, IFN-λ3 expression was primarily observed in epithelial cells as opposed to fibroblasts, displaying cell type-dependent expression. The cytosolic RNA sensors were expressed highest in endometrial epithelial cells, whereas the endosomal receptor was higher in fibroblasts. 2',5'-oligoadenylate synthetase expressed higher in fibroblasts, myxoma resistance protein 1 and IFN-stimulated gene 56 in epithelial cells, displaying cell-specific antiviral response of the interferon stimulated genes (ISGs). The endometrial epithelial cells expressed IFN-λ3 after live S. aureus infection indicating its importance in bacterial infection. The induction of IFN-λ3 was S. aureus isolate specific at the same multiplicity of infection (MOI). This study elucidates the IFN-λ sequences, diverse expression patterns revealing tissue specificity, and specificity in response to poly I:C and bacterial stimuli, emphasising its crucial role in innate immune response modulation.


Subject(s)
Buffaloes , Interferons , Animals , Buffaloes/immunology , Buffaloes/genetics , Interferons/genetics , Interferons/immunology , Poly I-C/pharmacology , Gene Expression Profiling/veterinary , Phylogeny , Interferon Lambda , Amino Acid Sequence , Receptors, Interferon/genetics , Receptors, Interferon/immunology , Female , 2',5'-Oligoadenylate Synthetase/genetics , 2',5'-Oligoadenylate Synthetase/metabolism , Staphylococcus aureus/immunology
2.
PLoS One ; 19(5): e0298502, 2024.
Article in English | MEDLINE | ID: mdl-38814922

ABSTRACT

The skin microbiome maintains healthy human skin, and disruption of the microbiome balance leads to inflammatory skin diseases such as folliculitis and atopic dermatitis. Staphylococcus aureus and Cutibacterium acnes are pathogenic bacteria that simultaneously inhabit the skin and cause inflammatory diseases of the skin through the activation of innate immune responses. Silkworms are useful invertebrate animal models for evaluating innate immune responses. In silkworms, phenoloxidase generates melanin as an indicator of innate immune activation upon the recognition of bacterial or fungal components. We hypothesized that S. aureus and C. acnes interact to increase the innate immunity-activating properties of S. aureus. In the present study, we showed that acidification is involved in the activation of silkworm hemolymph melanization by S. aureus. Autoclaved-killed S. aureus (S. aureus [AC]) alone does not greatly activate silkworm hemolymph melanization. On the other hand, applying S. aureus [AC] treated with C. acnes culture supernatant increased the silkworm hemolymph melanization. Adding C. acnes culture supernatant to the medium decreased the pH. S. aureus [AC] treated with propionic acid, acetic acid, or lactic acid induced higher silkworm hemolymph melanization activity than untreated S. aureus [AC]. S. aureus [AC] treated with hydrochloric acid also induced silkworm hemolymph melanization. The silkworm hemolymph melanization activity of S. aureus [AC] treated with hydrochloric acid was inhibited by protease treatment of S. aureus [AC]. These results suggest that acid treatment of S. aureus induces innate immune activation in silkworms and that S. aureus proteins are involved in the induction of innate immunity in silkworms.


Subject(s)
Bombyx , Hemolymph , Melanins , Staphylococcus aureus , Animals , Hemolymph/metabolism , Hemolymph/microbiology , Hemolymph/immunology , Bombyx/microbiology , Bombyx/immunology , Staphylococcus aureus/immunology , Melanins/metabolism , Immunity, Innate , Hydrogen-Ion Concentration , Monophenol Monooxygenase/metabolism
3.
JCI Insight ; 9(9)2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38716729

ABSTRACT

Atopic dermatitis (AD) is an inflammatory skin condition with a childhood prevalence of up to 25%. Microbial dysbiosis is characteristic of AD, with Staphylococcus aureus the most frequent pathogen associated with disease flares and increasingly implicated in disease pathogenesis. Therapeutics to mitigate the effects of S. aureus have had limited efficacy and S. aureus-associated temporal disease flares are synonymous with AD. An alternative approach is an anti-S. aureus vaccine, tailored to AD. Experimental vaccines have highlighted the importance of T cells in conferring protective anti-S. aureus responses; however, correlates of T cell immunity against S. aureus in AD have not been identified. We identify a systemic and cutaneous immunological signature associated with S. aureus skin infection (ADS.aureus) in a pediatric AD cohort, using a combined Bayesian multinomial analysis. ADS.aureus was most highly associated with elevated cutaneous chemokines IP10 and TARC, which preferentially direct Th1 and Th2 cells to skin. Systemic CD4+ and CD8+ T cells, except for Th2 cells, were suppressed in ADS.aureus, particularly circulating Th1, memory IL-10+ T cells, and skin-homing memory Th17 cells. Systemic γδ T cell expansion in ADS.aureus was also observed. This study suggests that augmentation of protective T cell subsets is a potential therapeutic strategy in the management of S. aureus in AD.


Subject(s)
Dermatitis, Atopic , Staphylococcal Skin Infections , Staphylococcus aureus , Dermatitis, Atopic/immunology , Dermatitis, Atopic/microbiology , Humans , Staphylococcus aureus/immunology , Child , Female , Staphylococcal Skin Infections/immunology , Staphylococcal Skin Infections/microbiology , Male , Child, Preschool , Skin/microbiology , Skin/immunology , Skin/pathology , Chemokine CXCL10/immunology , Chemokine CXCL10/metabolism , Th1 Cells/immunology , Th2 Cells/immunology , Th17 Cells/immunology , Bayes Theorem , CD8-Positive T-Lymphocytes/immunology , Interleukin-10/metabolism , Interleukin-10/immunology , Intraepithelial Lymphocytes/immunology , Antigens, Differentiation, T-Lymphocyte , Membrane Glycoproteins
4.
Proc Natl Acad Sci U S A ; 121(22): e2402764121, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38771879

ABSTRACT

Staphylococcus aureus (S. aureus) can evade antibiotics and host immune defenses by persisting within infected cells. Here, we demonstrate that in infected host cells, S. aureus type VII secretion system (T7SS) extracellular protein B (EsxB) interacts with the stimulator of interferon genes (STING) protein and suppresses the inflammatory defense mechanism of macrophages during early infection. The binding of EsxB with STING disrupts the K48-linked ubiquitination of EsxB at lysine 33, thereby preventing EsxB degradation. Furthermore, EsxB-STING binding appears to interrupt the interaction of 2 vital regulatory proteins with STING: aspartate-histidine-histidine-cysteine domain-containing protein 3 (DHHC3) and TNF receptor-associated factor 6. This persistent dual suppression of STING interactions deregulates intracellular proinflammatory pathways in macrophages, inhibiting STING's palmitoylation at cysteine 91 and its K63-linked ubiquitination at lysine 83. These findings uncover an immune-evasion mechanism by S. aureus T7SS during intracellular macrophage infection, which has implications for developing effective immunomodulators to combat S. aureus infections.


Subject(s)
Bacterial Proteins , Macrophages , Membrane Proteins , Staphylococcal Infections , Staphylococcus aureus , Type VII Secretion Systems , Ubiquitination , Staphylococcus aureus/immunology , Membrane Proteins/metabolism , Membrane Proteins/immunology , Humans , Bacterial Proteins/metabolism , Bacterial Proteins/immunology , Macrophages/immunology , Macrophages/metabolism , Macrophages/microbiology , Animals , Staphylococcal Infections/immunology , Staphylococcal Infections/microbiology , Staphylococcal Infections/metabolism , Type VII Secretion Systems/metabolism , Type VII Secretion Systems/immunology , Type VII Secretion Systems/genetics , Mice , Immune Evasion , Host-Pathogen Interactions/immunology
5.
Pestic Biochem Physiol ; 201: 105852, 2024 May.
Article in English | MEDLINE | ID: mdl-38685211

ABSTRACT

C-type lectins (CTLs) play essential roles in humoral and cellular immune responses of invertebrates. Previous studies have demonstrated the involvement of CTLs in the humoral immunity of Tribolium castaneum, a worldwide pest in stored products. However, the function of CTLs in cellular immunity remains unclear. Here, we identified a CTL gene located on chromosome X and designated it as CTL2 (TcCTL2) from T. castaneum. It encodes a protein of 305 amino acids with a secretion signal peptide and a carbohydrate-recognition domain. TcCTL2 was mainly expressed in the early pupae and primarily distributed in the hemocytes in the late larvae. It was significantly upregulated after larvae were infected with Escherichia coli or Staphylococcus aureus, while knockdown of TcCTL2 exacerbates larval mortality and bacterial colonization after infection. The purified recombinant TcCTL2 (rTcCTL2) can bind to pathogen-associated molecular patterns and microbes and promote hemocyte-mediated encapsulation, melanization and phagocytosis in vitro. rTcCTL2 also induced bacterial agglutination in a Ca2+-dependent manner. Knockdown of TcCTL2 drastically suppressed encapsulation, melanization, and phagocytosis. Furthermore, silencing of TcCTL2 followed by bacterial infection significantly decreased the expression of transcription factors in Toll and IMD pathways, antimicrobial peptides, and prophenoloxidases and phenoloxidase activity. These results unveiled that TcCTL2 mediates both humoral and cellular immunity to promote bacterial clearance and protect T. castaneum from infectious microbes, which will deepen the understanding of the interaction between CTLs and innate immunity in T. castaneum and permit the optimization of pest control strategies by a combination of RNAi technology and bacterial infection.


Subject(s)
Immunity, Cellular , Immunity, Humoral , Insect Proteins , Lectins, C-Type , Staphylococcus aureus , Tribolium , Animals , Lectins, C-Type/metabolism , Lectins, C-Type/genetics , Staphylococcus aureus/immunology , Tribolium/immunology , Tribolium/genetics , Insect Proteins/metabolism , Insect Proteins/genetics , Hemocytes/immunology , Hemocytes/metabolism , Escherichia coli , Phagocytosis , Larva/immunology , Larva/microbiology
6.
Exp Dermatol ; 33(5): e15087, 2024 May.
Article in English | MEDLINE | ID: mdl-38685821

ABSTRACT

Hidradenitis Suppurativa (HS) is a chronic autoinflammatory skin disease with activated keratinocytes, tunnel formation and a complex immune infiltrate in tissue. The HS microbiome is polymicrobial with an abundance of commensal gram-positive facultative (GPs) Staphylococcus species and gram-negative anaerobic (GNA) bacteria like Prevotella, Fusobacterium and Porphyromonas with increasing predominance of GNAs with disease severity. We sought to define the keratinocyte response to bacteria commonly isolated from HS lesions to probe pathogenic relationships between HS and the microbiome. Type strains of Prevotella nigrescens, Prevotella melaninogenica, Prevotella intermedia, Prevotella asaccharolytica, Fusobacterium nucleatum, as well as Staphylococcus aureus and the normal skin commensal Staphylococcus epidermidis were heat-killed and co-incubated with normal human keratinocytes. RNA was collected and analysed using RNAseq and RT-qPCR. The supernatant was collected from cell culture for protein quantification. Transcriptomic profiles between HS clinical samples and stimulated keratinocytes were compared. Co-staining of patient HS frozen sections was used to localize bacteria in lesions. A mouse intradermal injection model was used to investigate early immune recruitment. TLR4 and JAK inhibitors were used to investigate mechanistic avenues of bacterial response inhibition. GNAs, especially F. nucleatum, stimulated vastly higher CXCL8, IL17C, CCL20, IL6, TNF and IL36γ transcription in normal skin keratinocytes than the GPs S. epidermidis and S. aureus. Using RNAseq, we found that F. nucleatum (and Prevotella) strongly induced the IL-17 pathway in keratinocytes and overlapped with transcriptome profiles of HS patient clinical samples. Bacteria were juxtaposed to activated keratinocytes in vivo, and F. nucleatum strongly recruited murine neutrophil and macrophage migration. Both the TLR4 and pan-JAK inhibitors reduced cytokine production. Detailed transcriptomic profiling of healthy skin keratinocytes exposed to GNAs prevalent in HS revealed a potent, extensive inflammatory response vastly stronger than GPs. GNAs stimulated HS-relevant genes, including many genes in the IL-17 response pathway, and were significantly associated with HS tissue transcriptomes. The close association of activated keratinocytes with bacteria in HS lesions and innate infiltration in murine skin cemented GNA pathogenic potential. These novel mechanistic insights could drive future targeted therapies.


Subject(s)
Hidradenitis Suppurativa , Keratinocytes , Keratinocytes/immunology , Keratinocytes/microbiology , Keratinocytes/metabolism , Humans , Animals , Mice , Hidradenitis Suppurativa/microbiology , Hidradenitis Suppurativa/immunology , Staphylococcus aureus/immunology , Staphylococcus epidermidis/immunology , Fusobacterium nucleatum/immunology , Transcriptome , Cytokines/metabolism , Bacteria, Anaerobic , Interleukin-17/metabolism , Microbiota , Prevotella/immunology
7.
Immunol Cell Biol ; 102(5): 365-380, 2024.
Article in English | MEDLINE | ID: mdl-38572664

ABSTRACT

Staphylococcus aureus is a significant bacterial pathogen in both community and hospital settings, and the escalation of antimicrobial-resistant strains is of immense global concern. Vaccination is an inviting long-term strategy to curb staphylococcal disease, but identification of an effective vaccine has proved to be challenging. Three well-characterized, ubiquitous, secreted immune evasion factors from the staphylococcal superantigen-like (SSL) protein family were selected for the development of a vaccine. Wild-type SSL3, 7 and 11, which inhibit signaling through Toll-like receptor 2, cleavage of complement component 5 and neutrophil function, respectively, were successfully combined into a stable, active fusion protein (PolySSL7311). Vaccination of mice with an attenuated form of the PolySSL7311 protein stimulated significantly elevated specific immunoglobulin G and splenocyte proliferation responses to each component relative to adjuvant-only controls. Vaccination with PolySSL7311, but not a mixture of the individual proteins, led to a > 102 reduction in S. aureus tissue burden compared with controls after peritoneal challenge. Comparable antibody responses were elicited after coadministration of the vaccine in either AddaVax (an analog of MF59) or an Alum-based adjuvant; but only AddaVax conferred a significant reduction in bacterial load, aligning with other studies that suggest both cellular and humoral immune responses are necessary for protective immunity to S. aureus. Anti-sera from mice immunized with PolySSL7311, but not individual proteins, partially neutralized the functional activities of SSL7. This study confirms the importance of these SSLs for the survival of S. aureus in vivo and suggests that PolySSL7311 is a promising vaccine candidate.


Subject(s)
Bacterial Proteins , Staphylococcal Infections , Staphylococcal Vaccines , Staphylococcus aureus , Superantigens , Animals , Staphylococcus aureus/immunology , Staphylococcal Vaccines/immunology , Superantigens/immunology , Staphylococcal Infections/immunology , Staphylococcal Infections/prevention & control , Mice , Bacterial Proteins/immunology , Antibodies, Bacterial/immunology , Antibodies, Bacterial/blood , Female , Recombinant Fusion Proteins/immunology , Immunoglobulin G/immunology , Immunoglobulin G/blood , Feasibility Studies , Vaccination , Antigens, Bacterial/immunology , Mice, Inbred BALB C , Adjuvants, Immunologic
8.
Biomed Pharmacother ; 174: 116611, 2024 May.
Article in English | MEDLINE | ID: mdl-38643540

ABSTRACT

BACKGROUND: The emergence of drug-resistant strains of Klebsiella pneumoniae (K. pneumoniae) has become a significant challenge in the field of infectious diseases, posing an urgent need for the development of highly protective vaccines against this pathogen. METHODS AND RESULTS: In this study, we identified three immunogenic extracellular loops based on the structure of five candidate antigens using sera from K. pneumoniae infected mice. The sequences of these loops were linked to the C-terminal of an alpha-hemolysin mutant (mHla) from Staphylococcus aureus to generate a heptamer, termed mHla-EpiVac. In vivo studies confirmed that fusion with mHla significantly augmented the immunogenicity of EpiVac, and it elicited both humoral and cellular immune responses in mice, which could be further enhanced by formulation with aluminum adjuvant. Furthermore, immunization with mHla-EpiVac demonstrated enhanced protective efficacy against K. pneumoniae channeling compared to EpiVac alone, resulting in reduced bacterial burden, secretion of inflammatory factors, histopathology and lung injury. Moreover, mHla fusion facilitated antigen uptake by mouse bone marrow-derived cells (BMDCs) and provided sustained activation of these cells. CONCLUSIONS: These findings suggest that mHla-EpiVac is a promising vaccine candidate against K. pneumoniae, and further validate the potential of mHla as a versatile carrier protein and adjuvant for antigen design.


Subject(s)
Bacterial Vaccines , Epitopes , Klebsiella Infections , Klebsiella pneumoniae , Animals , Klebsiella pneumoniae/immunology , Klebsiella Infections/prevention & control , Klebsiella Infections/immunology , Klebsiella Infections/microbiology , Bacterial Vaccines/immunology , Bacterial Vaccines/administration & dosage , Mice , Female , Epitopes/immunology , Mice, Inbred BALB C , Antigens, Bacterial/immunology , Lung/microbiology , Lung/immunology , Lung/pathology , Immunity, Cellular/drug effects , Staphylococcus aureus/immunology , Adjuvants, Immunologic/pharmacology , Immunity, Humoral/drug effects
9.
Talanta ; 274: 126021, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38569370

ABSTRACT

α-hemolysin (Hla), a toxin secreted by Staphylococcus aureus (S. aureus), has been proved to be involved in the occurrence and aggravation of food poisoning. Hence, it is quite essential to establish its rapid detection methods to guarantee food safety. Sandwich ELISA based on nanobody is well known to be viable for toxins, but there is absence of nanobody against Hla, let alone a pair for it. Therefore, in this paper, we screened specific nanobodies by bio-panning and obtained the optimal nanobody pair for sandwich ELISA firstly. Then, RANbody, a novel nanobody owning both recognition and catalytic capability, is generated in a single step and at low cost through molecular recombination technology. Subsequently, sandwich ELISA was developed to detect Hla based on the nanobody and RANbody, that not only eliminated the use of secondary antibodies and animal-derived antibody, but also reduced detection time and cost, compared with traditional sandwich ELISA. Lastly, the performance has been evaluated, especially for specificity which showed no response to other hemolysins and a low limit of detection of 10 ng/mL. Besides, the proposed sandwich ELISA exhibits favorable feasibility and was successfully employed for the detection of Hla in milk and pork samples.


Subject(s)
Enzyme-Linked Immunosorbent Assay , Hemolysin Proteins , Milk , Hemolysin Proteins/immunology , Hemolysin Proteins/analysis , Hemolysin Proteins/chemistry , Enzyme-Linked Immunosorbent Assay/methods , Animals , Milk/chemistry , Single-Domain Antibodies/immunology , Single-Domain Antibodies/chemistry , Food Contamination/analysis , Bacterial Toxins/analysis , Bacterial Toxins/immunology , Swine , Staphylococcus aureus/isolation & purification , Staphylococcus aureus/immunology , Limit of Detection , Food Analysis/methods
10.
Nat Microbiol ; 9(5): 1312-1324, 2024 May.
Article in English | MEDLINE | ID: mdl-38565896

ABSTRACT

Dormant prophages protect lysogenic cells by expressing diverse immune systems, which must avoid targeting their cognate prophages upon activation. Here we report that multiple Staphylococcus aureus prophages encode Tha (tail-activated, HEPN (higher eukaryotes and prokaryotes nucleotide-binding) domain-containing anti-phage system), a defence system activated by structural tail proteins of incoming phages. We demonstrate the function of two Tha systems, Tha-1 and Tha-2, activated by distinct tail proteins. Interestingly, Tha systems can also block reproduction of the induced tha-positive prophages. To prevent autoimmunity after prophage induction, these systems are inhibited by the product of a small overlapping antisense gene previously believed to encode an excisionase. This genetic organization, conserved in S. aureus prophages, allows Tha systems to protect prophages and their bacterial hosts against phage predation and to be turned off during prophage induction, balancing immunity and autoimmunity. Our results show that the fine regulation of these processes is essential for the correct development of prophages' life cycle.


Subject(s)
Prophages , Staphylococcus aureus , Prophages/genetics , Staphylococcus aureus/virology , Staphylococcus aureus/immunology , Autoimmunity , Lysogeny , Staphylococcus Phages/genetics , Staphylococcus Phages/immunology , Staphylococcus Phages/physiology , Viral Tail Proteins/genetics , Viral Tail Proteins/metabolism , Bacteriophages/genetics , Bacteriophages/immunology , Bacteriophages/physiology
11.
Clin Immunol ; 263: 110221, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38636891

ABSTRACT

Staphylococcus aureus mucosal biofilms are associated with recalcitrant chronic rhinosinusitis (CRS). However, S. aureus colonisation of sinus mucosa is frequent in the absence of mucosal inflammation. This questions the relevance of S. aureus biofilms in CRS etiopathogenesis. This study aimed to investigate whether strain-level variation in in vitro-grown S. aureus biofilm properties relates to CRS disease severity, in vitro toxicity, and immune B cell responses in sinonasal tissue from CRS patients and non-CRS controls. S. aureus clinical isolates, tissue samples, and matched clinical datasets were collected from CRS patients with nasal polyps (CRSwNP), CRS without nasal polyps (CRSsNP), and controls. B cell responses in tissue samples were characterised by FACS. S. aureus biofilms were established in vitro, followed by measuring their properties of metabolic activity, biomass, colony-forming units, and exoprotein production. S. aureus virulence was evaluated using whole-genome sequencing, mass spectrometry and application of S. aureus biofilm exoproteins to air-liquid interface cultures of primary human nasal epithelial cells (HNEC-ALI). In vitro S. aureus biofilm properties were correlated with increased CRS severity scores, infiltration of antibody-secreting cells and loss of regulatory B cells in tissue samples. Biofilm exoproteins from S. aureus with high biofilm metabolic activity had enriched virulence genes and proteins, and negatively affected the barrier function of HNEC-ALI cultures. These findings support the notion of strain-level variation in S. aureus biofilms to be critical in the pathophysiology of CRS.


Subject(s)
Biofilms , Rhinitis , Sinusitis , Staphylococcal Infections , Staphylococcus aureus , Humans , Sinusitis/immunology , Sinusitis/microbiology , Staphylococcus aureus/immunology , Rhinitis/immunology , Rhinitis/microbiology , Chronic Disease , Staphylococcal Infections/immunology , Staphylococcal Infections/microbiology , Male , Female , Middle Aged , Nasal Polyps/immunology , Nasal Polyps/microbiology , Adult , Nasal Mucosa/immunology , Nasal Mucosa/microbiology , B-Lymphocytes/immunology , Severity of Illness Index , Aged , Rhinosinusitis
12.
Vaccine ; 42(15): 3445-3454, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38631956

ABSTRACT

Major histocompatibility complex class II (MHC-II) molecules are involved in immune responses against pathogens and vaccine candidates' immunogenicity. Immunopeptidomics for identifying cancer and infection-related antigens and epitopes have benefited from advances in immunopurification methods and mass spectrometry analysis. The mouse anti-MHC-II-DR monoclonal antibody L243 (mAb-L243) has been effective in recognising MHC-II-DR in both human and non-human primates. It has also been shown to cross-react with other animal species, although it has not been tested in livestock. This study used mAb-L243 to identify Staphylococcus aureus and Salmonella enterica serovar Typhimurium peptides binding to cattle and swine macrophage MHC-II-DR molecules using flow cytometry, mass spectrometry and two immunopurification techniques. Antibody cross-reactivity led to identifying expressed MHC-II-DR molecules, together with 10 Staphylococcus aureus peptides in cattle and 13 S. enterica serovar Typhimurium peptides in swine. Such data demonstrates that MHC-II-DR expression and immunocapture approaches using L243 mAb represents a viable strategy for flow cytometry and immunopeptidomics analysis of bovine and swine antigen-presenting cells.


Subject(s)
Antibodies, Monoclonal , Macrophages , Salmonella typhimurium , Staphylococcus aureus , Animals , Cattle , Swine/immunology , Staphylococcus aureus/immunology , Antibodies, Monoclonal/immunology , Macrophages/immunology , Salmonella typhimurium/immunology , Histocompatibility Antigens Class II/immunology , Cross Reactions/immunology , Flow Cytometry , Mass Spectrometry , Mice
13.
Nat Commun ; 15(1): 3420, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38658531

ABSTRACT

Poly-ß-(1-6)-N-acetylglucosamine (PNAG) is an important vaccine target, expressed on many pathogens. A critical hurdle in developing PNAG based vaccine is that the impacts of the number and the position of free amine vs N-acetylation on its antigenicity are not well understood. In this work, a divergent strategy is developed to synthesize a comprehensive library of 32 PNAG pentasaccharides. This library enables the identification of PNAG sequences with specific patterns of free amines as epitopes for vaccines against Staphylococcus aureus (S. aureus), an important human pathogen. Active vaccination with the conjugate of discovered PNAG epitope with mutant bacteriophage Qß as a vaccine carrier as well as passive vaccination with diluted rabbit antisera provides mice with near complete protection against infections by S. aureus including methicillin-resistant S. aureus (MRSA). Thus, the comprehensive PNAG pentasaccharide library is an exciting tool to empower the design of next generation vaccines.


Subject(s)
Staphylococcal Infections , Staphylococcus aureus , Animals , Staphylococcal Infections/prevention & control , Staphylococcal Infections/immunology , Staphylococcal Infections/microbiology , Mice , Staphylococcus aureus/immunology , Rabbits , Staphylococcal Vaccines/immunology , Staphylococcal Vaccines/administration & dosage , Female , Methicillin-Resistant Staphylococcus aureus/immunology , Acetylglucosamine/immunology , Humans , Epitopes/immunology , Mice, Inbred BALB C
14.
Genes Cells ; 29(5): 397-416, 2024 May.
Article in English | MEDLINE | ID: mdl-38454012

ABSTRACT

Staphylococcus aureus is a noteworthy pathogen in allergic diseases, as four staphylococcal exotoxins activate mast cells, a significant contributor to inflammation, in an IgE-independent manner. Although the adhesion of mast cells is an essential process for their immune responses, only a small number of exotoxins have been reported to affect the process. Here, we demonstrated that staphylococcal superantigen-like (SSL) 3, previously identified as a toll-like receptor 2 agonist, induced the adhesion of murine bone marrow-derived mast cells to culture substratum. SSL3-induced adhesion was mediated by fibronectin in an Arg-Gly-Asp (RGD) sequence-dependent manner, suggesting the integrins were involved in the process. Additionally, SSL3 was found to bind to an anti-adhesive surface protein CD43. SSL3 induced the adhesion of HEK293 cells expressing exogenous CD43, suggesting that CD43 is the target molecule for adhesion induced by SSL3. Evaluation of SSL3-derived mutants showed that the C-terminal region (253-326), specifically T285 and H307, are necessary to induce adhesion. SSL3 augmented the IL-13 production of mast cells in response to immunocomplex and SSL12. These findings reveal a novel function of SSL3, triggering cell adhesion and enhancing mast cell activation. This study would clarify the correlation between S. aureus and allergic diseases such as atopic dermatitis.


Subject(s)
Cell Adhesion , Leukosialin , Mast Cells , Staphylococcus aureus , Superantigens , Animals , Mast Cells/metabolism , Mast Cells/immunology , Mice , Humans , Superantigens/metabolism , Staphylococcus aureus/metabolism , Staphylococcus aureus/immunology , HEK293 Cells , Leukosialin/metabolism , Bacterial Proteins/metabolism , Interleukin-13/metabolism , Mice, Inbred C57BL
15.
Dev Comp Immunol ; 156: 105166, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38521378

ABSTRACT

C-type lectin proteins (CTLs), a group of pattern recognition receptors (PRRs), play pivotal roles in immune responses. However, the signal transduction and regulation of CTLs in cephalochordates have yet to be explored. In this study, we examined the composition of CTLs in Branchiostoma japonicum, identifying a total of 272 CTLs. These CTLs underwent further analysis concerning domain arrangement, tandem and segmental duplication events. A multidomain C-type lectin gene, designated as BjCTL5, encompassing CLECT, KR, CUB, MAM, and SR domains, was the focal point of our investigation. BjCTL5 exhibits ubiquitous expression across all detected tissues and is responsive to stimulation by LPS, mannose, and poly (I:C). The recombinant protein of BjCTL5 can bind to Escherichia coli and Staphylococcus aureus, inducing their agglutination and inhibiting the proliferation of S. aureus. Yeast two-hybrid, CoIP, and confocal immunofluorescence experiments revealed the interaction between BjCTL5 and apoptosis-stimulating proteins of p53, BjASPP. Intriguingly, BjCTL5 was observed to induce the luciferase activity of the NF-κB promoter in HEK293T cells. These results suggested a potential interaction between BjCTL5 and BjASPP, implicating that they involve in the activation of the NF-κB signaling pathway, which provides an evolutionary viewpoint on NF-κB signaling pathway in primitive chordate.


Subject(s)
Lancelets , Lectins, C-Type , NF-kappa B , Signal Transduction , Staphylococcus aureus , Animals , NF-kappa B/metabolism , Lancelets/genetics , Lancelets/immunology , Lancelets/metabolism , Lectins, C-Type/metabolism , Lectins, C-Type/genetics , Staphylococcus aureus/immunology , Staphylococcus aureus/physiology , Humans , Apoptosis , Apoptosis Regulatory Proteins/metabolism , Apoptosis Regulatory Proteins/genetics , Protein Binding , HEK293 Cells , Receptors, Pattern Recognition/metabolism , Receptors, Pattern Recognition/genetics , Immunity, Innate
16.
Cell Mol Immunol ; 21(6): 533-545, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38532043

ABSTRACT

The skin is the most common site of Staphylococcus aureus infection, which can lead to various diseases, including invasive and life-threatening infections, through evasion of host defense. However, little is known about the host factors that facilitate the innate immune evasion of S. aureus in the skin. Chemerin, which is abundantly expressed in the skin and can be activated by proteases derived from S. aureus, has both direct bacteria-killing activity and immunomodulatory effects via interactions with its receptor CMKLR1. Here, we demonstrate that a lack of the chemerin/CMKLR1 axis increases the neutrophil-mediated host defense against S. aureus in a mouse model of cutaneous infection, whereas chemerin overexpression, which mimics high levels of chemerin in obese individuals, exacerbates S. aureus cutaneous infection. Mechanistically, we identified keratinocytes that express CMKLR1 as the main target of chemerin to suppress S. aureus-induced IL-33 expression, leading to impaired skin neutrophilia and bacterial clearance. CMKLR1 signaling specifically inhibits IL-33 expression induced by cell wall components but not secreted proteins of S. aureus by inhibiting Akt activation in mouse keratinocytes. Thus, our study revealed that the immunomodulatory effect of the chemerin/CMKLR1 axis mediates innate immune evasion of S. aureus in vivo and likely increases susceptibility to S. aureus infection in obese individuals.


Subject(s)
Chemokines , Immunity, Innate , Intercellular Signaling Peptides and Proteins , Keratinocytes , Receptors, Chemokine , Staphylococcus aureus , Animals , Keratinocytes/immunology , Keratinocytes/metabolism , Staphylococcus aureus/immunology , Chemokines/metabolism , Receptors, Chemokine/metabolism , Mice , Intercellular Signaling Peptides and Proteins/metabolism , Mice, Inbred C57BL , Humans , Signal Transduction , Staphylococcal Skin Infections/immunology , Staphylococcal Skin Infections/pathology , Staphylococcal Infections/immunology , Neutrophils/immunology , Neutrophils/metabolism , Skin/immunology , Skin/pathology , Skin/microbiology , Mice, Knockout
17.
J Invest Dermatol ; 144(5): 969-977, 2024 May.
Article in English | MEDLINE | ID: mdl-38530677

ABSTRACT

Atopic dermatitis (AD) is a multifactorial, heterogeneous disease characterized by epidermal barrier dysfunction, immune system dysregulation, and skin microbiome alterations. Skin microbiome studies in AD have demonstrated that disease flares are associated with microbial shifts, particularly Staphylococcus aureus predominance. AD-associated S. aureus strains differ from those in healthy individuals across various genomic loci, including virulence factors, adhesion proteins, and proinflammatory molecules-which may contribute to complex microbiome barrier-immune system interactions in AD. Different microbially based treatments for AD have been explored, and their future therapeutic successes will depend on a deeper understanding of the potential microbial contributions to the disease.


Subject(s)
Dermatitis, Atopic , Microbiota , Skin , Staphylococcus aureus , Dermatitis, Atopic/microbiology , Dermatitis, Atopic/immunology , Humans , Microbiota/immunology , Skin/microbiology , Skin/immunology , Staphylococcus aureus/immunology
18.
Fish Shellfish Immunol ; 149: 109526, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38554743

ABSTRACT

In teleost blood, red blood cells (RBCs) are the most common type of cell, and they differ from mammalian RBCs in having a nucleus and other organelles. As nucleated cells, teleost RBCs contribute to the immune response against pathogens, but their antibacterial mechanism remains unclear. Here, we utilized RNA-Seq to analyze gene expression patterns of grass carp (Ctenopharyngodon idellus) RBCs (GcRBCs) stimulated by Aeromonas hydrophila, Escherichia coli, and Staphylococcus aureus. Our transcriptomic data showed that bacterial stimulation generated many differentially expressed genes (DEGs). Furthermore, several inflammatory pathways responded to bacterial activation, and the TLR, IL-17, and tumor necrosis factor (TNF) signaling pathways were significantly activated based on Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. Furthermore, the findings of qRT-PCR showed markedly elevated expression of various cytokines, including IL-1ß, IL4, IL6, IL8, IL12, and TNFα, in GcRBCs after incubation with bacteria. Reactive oxygen species (ROS) production in GcRBCs was markedly increased after the cells were stimulated with the three bacteria, and the expression of superoxide dismutase, glutathione peroxidase, and antioxidant enzymes, including catalase, was altered. Flow cytometry analysis showed that the apoptosis rate of GcRBCs was enhanced after stimulation with the three bacteria for different times. In summary, our findings reveal that bacterial stimulation activates the immune response of GcRBCs by regulating ROS release, cytokine expression, and the antioxidant system, leading to apoptosis of GcRBCs.


Subject(s)
Aeromonas hydrophila , Carps , Erythrocytes , Escherichia coli , Fish Diseases , Gram-Negative Bacterial Infections , Immunity, Innate , Animals , Carps/immunology , Carps/genetics , Fish Diseases/immunology , Erythrocytes/immunology , Aeromonas hydrophila/physiology , Immunity, Innate/genetics , Escherichia coli/immunology , Escherichia coli/physiology , Gram-Negative Bacterial Infections/immunology , Gram-Negative Bacterial Infections/veterinary , Staphylococcus aureus/physiology , Staphylococcus aureus/immunology , Fish Proteins/genetics , Fish Proteins/immunology , Staphylococcal Infections/immunology , Staphylococcal Infections/veterinary , Transcriptome/immunology , Escherichia coli Infections/immunology , Escherichia coli Infections/veterinary
19.
J Innate Immun ; 16(1): 143-158, 2024.
Article in English | MEDLINE | ID: mdl-38310854

ABSTRACT

BACKGROUND: Upon infection, mucosal tissues activate a brisk inflammatory response to clear the pathogen, i.e., resistance to disease. Resistance to disease is orchestrated by tissue-resident macrophages, which undergo profound metabolic reprogramming after sensing the pathogen. These metabolically activated macrophages release many inflammatory factors, which promote their bactericidal function. However, in immunocompetent individuals, pathogens like Pseudomonas aeruginosa, Staphylococcus aureus, and Salmonella evade this type of immunity, generating communities that thrive for the long term. SUMMARY: These organisms develop features that render them less susceptible to eradication, such as biofilms and increased tolerance to antibiotics. Furthermore, after antibiotic therapy withdrawal, "persister" cells rapidly upsurge, triggering inflammatory relapses that worsen host health. How these pathogens persisted in inflamed tissues replete with activated macrophages remains poorly understood. KEY MESSAGES: In this review, we discuss recent findings indicating that the ability of P. aeruginosa, S. aureus, and Salmonella to evolve biofilms and antibiotic tolerance is promoted by the similar metabolic routes that regulate macrophage metabolic reprogramming.


Subject(s)
Anti-Bacterial Agents , Biofilms , Macrophages , Biofilms/drug effects , Humans , Animals , Macrophages/immunology , Macrophages/microbiology , Anti-Bacterial Agents/pharmacology , Bacterial Infections/immunology , Pseudomonas aeruginosa/immunology , Pseudomonas aeruginosa/physiology , Staphylococcus aureus/immunology , Staphylococcus aureus/physiology , Drug Resistance, Bacterial , Immune Evasion
20.
Int Arch Allergy Immunol ; 185(5): 466-479, 2024.
Article in English | MEDLINE | ID: mdl-38354721

ABSTRACT

INTRODUCTION: Chronic rhinosinusitis with nasal polyps (CRSwNP) is a common chronic inflammatory disease of the nose characterized by barrier disruption and environmental susceptibility, and the deletion of ZNF365 may be a factor inducing these manifestations. However, there is no study on the mechanism of action between CRSwNP and ZNF365. Therefore, this study focuses on the effect of the zinc finger protein ZNF365 on the proliferation of nasal mucosal epithelial cells and their defense against Staphylococcus aureus (S. aureus). METHODS: Immunohistochemistry and Western blot were applied to verify the changes of ZNF365 expression in nasal polyp tissues and control tissues, as well as in primary epithelial cells. ZNF365 was knocked down in human nasal mucosa epithelial cell line (HNEpc), and the proliferation, migration, and transdifferentiation of epithelium were observed by immunofluorescence, QPCR, CCK8, and cell scratch assay. The changes of mesenchymal markers and TLR4-MAPK-NF-κB pathway were also observed after the addition of S. aureus. RESULTS: ZNF365 expression was reduced in NP tissues and primary nasal mucosal epithelial cells compared to controls. Knockdown of ZNF365 in HNEpc resulted in decreased proliferation and migration ability of epithelial cells and abnormal epithelial differentiation (decreased expression of tight junction proteins). S. aureus stimulation further inhibited epithelial cell proliferation and migration, while elevated markers of epithelial-mesenchymal transition and inflammatory responses occurred. CONCLUSION: ZNF365 is instrumental in maintaining the proliferative capacity of nasal mucosal epithelial cells and defending against the invasion of S. aureus. The findings suggest that ZNF365 may participate in the development of CRSwNP.


Subject(s)
Cell Proliferation , Nasal Mucosa , Staphylococcus aureus , Humans , Cell Line , Cell Movement/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Epithelial Cells/metabolism , Epithelial Cells/immunology , Nasal Mucosa/immunology , Nasal Mucosa/microbiology , Nasal Mucosa/metabolism , Nasal Polyps/immunology , Nasal Polyps/microbiology , Rhinitis/immunology , Rhinitis/microbiology , Signal Transduction , Sinusitis/immunology , Sinusitis/microbiology , Staphylococcal Infections/immunology , Staphylococcus aureus/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...