Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.527
Filter
1.
Commun Biol ; 7(1): 572, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750133

ABSTRACT

Long-chain fatty acids with antimicrobial properties are abundant on the skin and mucosal surfaces, where they are essential to restrict the proliferation of opportunistic pathogens such as Staphylococcus aureus. These antimicrobial fatty acids (AFAs) elicit bacterial adaptation strategies, which have yet to be fully elucidated. Characterizing the pervasive mechanisms used by S. aureus to resist AFAs could open new avenues to prevent pathogen colonization. Here, we identify the S. aureus lipase Lip2 as a novel resistance factor against AFAs. Lip2 detoxifies AFAs via esterification with cholesterol. This is reminiscent of the activity of the fatty acid-modifying enzyme (FAME), whose identity has remained elusive for over three decades. In vitro, Lip2-dependent AFA-detoxification was apparent during planktonic growth and biofilm formation. Our genomic analysis revealed that prophage-mediated inactivation of Lip2 was rare in blood, nose, and skin strains, suggesting a particularly important role of Lip2 for host - microbe interactions. In a mouse model of S. aureus skin colonization, bacteria were protected from sapienic acid (a human-specific AFA) in a cholesterol- and lipase-dependent manner. These results suggest Lip2 is the long-sought FAME that exquisitely manipulates environmental lipids to promote bacterial growth in otherwise inhospitable niches.


Subject(s)
Fatty Acids , Lipase , Staphylococcus aureus , Staphylococcus aureus/metabolism , Fatty Acids/metabolism , Animals , Mice , Lipase/metabolism , Lipase/genetics , Humans , Staphylococcal Infections/microbiology , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Biofilms/growth & development , Female , Staphylococcal Skin Infections/microbiology
2.
Int J Nanomedicine ; 19: 4007-4019, 2024.
Article in English | MEDLINE | ID: mdl-38715701

ABSTRACT

Introduction: Nanosized outer membrane vesicles (OMVs) from Gram-negative bacteria have attracted increasing interest because of their antitumor activity. However, the antitumor effects of MVs isolated from Gram-positive bacteria have rarely been investigated. Methods: MVs of Staphylococcus aureus USA300 were prepared and their antitumor efficacy was evaluated using tumor-bearing mouse models. A gene knock-in assay was performed to generate luciferase Antares2-MVs for bioluminescent detection. Cell counting kit-8 and lactic dehydrogenase release assays were used to detect the toxicity of the MVs against tumor cells in vitro. Active caspase-1 and gasdermin D (GSDMD) levels were determined using Western blot, and the tumor inhibition ability of MVs was determined in B16F10 cells treated with a caspase-1 inhibitor. Results: The vesicular particles of S. aureus USA300 MVs were 55.23 ± 8.17 nm in diameter, and 5 µg of MVs remarkably inhibited the growth of B16F10 melanoma in C57BL/6 mice and CT26 colon adenocarcinoma in BALB/c mice. The bioluminescent signals correlated well with the concentrations of the engineered Antares2-MVs (R2 = 0.999), and the sensitivity for bioluminescence imaging was 4 × 10-3 µg. Antares2-MVs can directly target tumor tissues in vivo, and 20 µg/mL Antares2-MVs considerably reduced the growth of B16F10 and CT26 tumor cells, but not non-carcinomatous bEnd.3 cells. MV treatment substantially increased the level of active caspase-1, which processes GSDMD to trigger pyroptosis in tumor cells. Blocking caspase-1 activation with VX-765 significantly protected tumor cells from MV killing in vitro and in vivo. Conclusion: S. aureus MVs can kill tumor cells by activating the pyroptosis pathway, and the induction of pyroptosis in tumor cells is a promising strategy for cancer treatment.


Subject(s)
Caspase 1 , Pyroptosis , Staphylococcus aureus , Animals , Female , Mice , Antineoplastic Agents , Bacterial Outer Membrane , Caspase 1/metabolism , Cell Line, Tumor , Colonic Neoplasms , Melanoma, Experimental/metabolism , Mice, Inbred BALB C , Mice, Inbred C57BL , Phosphate-Binding Proteins/metabolism , Staphylococcus aureus/metabolism
3.
Int J Mol Sci ; 25(10)2024 May 14.
Article in English | MEDLINE | ID: mdl-38791367

ABSTRACT

The pathogenicity of many bacteria, including Bacillus cereus and Staphylococcus aureus, depends on pore-forming toxins (PFTs), which cause the lysis of host cells by forming pores in the membranes of eukaryotic cells. Bioinformatic analysis revealed a region homologous to the Lys171-Gly250 sequence in hemolysin II (HlyII) from B. cereus in over 600 PFTs, which we designated as a "homologous peptide". Three ß-barrel PFTs were used for a detailed comparative analysis. Two of them-HlyII and cytotoxin K2 (CytK2)-are synthesized in Bacillus cereus sensu lato; the third, S. aureus α-toxin (Hla), is the most investigated representative of the family. Protein modeling showed certain amino acids of the homologous peptide to be located on the surface of the monomeric forms of these ß-barrel PFTs. We obtained monoclonal antibodies against both a cloned homologous peptide and a 14-membered synthetic peptide, DSFNTFYGNQLFMK, as part of the homologous peptide. The HlyII, CytK2, and Hla regions recognized by the obtained antibodies, as well as an antibody capable of suppressing the hemolytic activity of CytK2, were identified in the course of this work. Antibodies capable of recognizing PFTs of various origins can be useful tools for both identification and suppression of the cytolytic activity of PFTs.


Subject(s)
Bacillus cereus , Bacterial Toxins , Hemolysin Proteins , Staphylococcus aureus , Bacterial Toxins/chemistry , Bacterial Toxins/metabolism , Bacillus cereus/metabolism , Hemolysin Proteins/chemistry , Hemolysin Proteins/metabolism , Staphylococcus aureus/metabolism , Amino Acid Sequence , Hemolysis , Pore Forming Cytotoxic Proteins/chemistry , Pore Forming Cytotoxic Proteins/metabolism , Models, Molecular , Animals , Antibodies, Monoclonal/chemistry , Humans , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism
4.
Phys Chem Chem Phys ; 26(21): 15587-15599, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38757742

ABSTRACT

Phenol-soluble modulins (PSMs) are extracellular short amphipathic peptides secreted by the bacteria Staphylococcus aureus (S. aureus). They play an essential role in the bacterial lifecycle, biofilm formation, and stabilisation. From the PSM family, PSMα3 has been of special interest recently due to its cytotoxicity and highly stable α-helical conformation, which also remains in its amyloid fibrils. In particular, PSMα3 fibrils were shown to be composed of self-associating "sheets" of α-helices oriented perpendicular to the fibril axis, mimicking the architecture of canonical cross-ß fibrils. Therefore, they were called cross-α-fibrils. PSMα3 was synthesised and verified for identity with wild-type sequences (S. aureus). Then, using several experimental techniques, we evaluated its propensity for in vitro aggregation. According to our findings, synthetic PSMα3 (which lacks the N-terminal formyl groups found in bacteria) does not form amyloid fibrils and maintains α-helical conformation in a soluble monomeric form for several days of incubation. We also evaluated the influence of PSMα3 on human insulin fibrillation in vitro, using a variety of experimental approaches in combination with computational molecular studies. First, it was shown that PSMα3 drastically inhibits the fibrillation of human insulin. The anti-fibrillation effect of PSMα3 was concentration-dependent and required a concentration ratio of PSMα3: insulin equal to or above 1 : 100. Molecular modelling revealed that PSMα3 most likely inhibits the production of insulin primary nuclei by competing for residues involved in its dimerization.


Subject(s)
Insulin , Protein Aggregates , Staphylococcus aureus , Staphylococcus aureus/drug effects , Staphylococcus aureus/metabolism , Humans , Insulin/metabolism , Insulin/chemistry , Protein Aggregates/drug effects , Bacterial Toxins/chemistry , Bacterial Toxins/metabolism , Amyloid/chemistry , Amyloid/metabolism
5.
J Bacteriol ; 206(5): e0004824, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38712944

ABSTRACT

Whole genome sequencing has revealed that the genome of Staphylococcus aureus possesses an uncharacterized 5-gene operon (SAOUHSC_00088-00092 in strain 8325 genome) that encodes factors with functions related to polysaccharide biosynthesis and export, indicating the existence of a new extracellular polysaccharide species. We designate this locus as ssc for staphylococcal surface carbohydrate. We found that the ssc genes were weakly expressed and highly repressed by the global regulator MgrA. To characterize Ssc, Ssc was heterologously expressed in Escherichia coli and extracted by heat treatment. Ssc was also conjugated to AcrA from Campylobacter jejuni in E. coli using protein glycan coupling technology (PGCT). Analysis of the heat-extracted Ssc and the purified Ssc-AcrA glycoconjugate by tandem mass spectrometry revealed that Ssc is likely a polymer consisting of N-acetylgalactosamine. We further demonstrated that the expression of the ssc genes in S. aureus affected phage adsorption and susceptibility, suggesting that Ssc is surface-exposed. IMPORTANCE: Surface polysaccharides play crucial roles in the biology and virulence of bacterial pathogens. Staphylococcus aureus produces four major types of polysaccharides that have been well-characterized. In this study, we identified a new surface polysaccharide containing N-acetylgalactosamine (GalNAc). This marks the first report of GalNAc-containing polysaccharide in S. aureus. Our discovery lays the groundwork for further investigations into the chemical structure, surface location, and role in pathogenesis of this new polysaccharide.


Subject(s)
Acetylgalactosamine , Polysaccharides, Bacterial , Staphylococcus aureus , Staphylococcus aureus/genetics , Staphylococcus aureus/metabolism , Acetylgalactosamine/metabolism , Polysaccharides, Bacterial/metabolism , Polysaccharides, Bacterial/genetics , Polysaccharides, Bacterial/chemistry , Gene Expression Regulation, Bacterial , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Campylobacter jejuni/genetics , Campylobacter jejuni/metabolism
6.
Nat Commun ; 15(1): 4494, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802368

ABSTRACT

Efflux pump antiporters confer drug resistance to bacteria by coupling proton import with the expulsion of antibiotics from the cytoplasm. Despite efforts there remains a lack of understanding as to how acid/base chemistry drives drug efflux. Here, we uncover the proton-coupling mechanism of the Staphylococcus aureus efflux pump NorA by elucidating structures in various protonation states of two essential acidic residues using cryo-EM. Protonation of Glu222 and Asp307 within the C-terminal domain stabilized the inward-occluded conformation by forming hydrogen bonds between the acidic residues and a single helix within the N-terminal domain responsible for occluding the substrate binding pocket. Remarkably, deprotonation of both Glu222 and Asp307 is needed to release interdomain tethering interactions, leading to opening of the pocket for antibiotic entry. Hence, the two acidic residues serve as a "belt and suspenders" protection mechanism to prevent simultaneous binding of protons and drug that enforce NorA coupling stoichiometry and confer antibiotic resistance.


Subject(s)
Bacterial Proteins , Cryoelectron Microscopy , Multidrug Resistance-Associated Proteins , Protons , Staphylococcus aureus , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Staphylococcus aureus/metabolism , Multidrug Resistance-Associated Proteins/metabolism , Multidrug Resistance-Associated Proteins/chemistry , Multidrug Resistance-Associated Proteins/genetics , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism , Anti-Bacterial Agents/chemistry , Models, Molecular , Biological Transport , Binding Sites , Hydrogen Bonding , Protein Conformation
7.
Microbiologyopen ; 13(2): e1408, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38560776

ABSTRACT

Arginine-ornithine metabolism plays a crucial role in bacterial homeostasis, as evidenced by numerous studies. However, the utilization of arginine and the downstream products of its metabolism remain undefined in various gut bacteria. To bridge this knowledge gap, we employed genomic screening to pinpoint relevant metabolic targets. We also devised a targeted liquid chromatography-tandem mass spectrometry (LC-MS/MS) metabolomics method to measure the levels of arginine, its upstream precursors, and downstream products in cell-free conditioned media from enteric pathobionts, including Escherichia coli, Klebsiella aerogenes, K. pneumoniae, Pseudomonas fluorescens, Acinetobacter baumannii, Streptococcus agalactiae, Staphylococcus epidermidis, S. aureus, and Enterococcus faecalis. Our findings revealed that all selected bacterial strains consumed glutamine, glutamate, and arginine, and produced citrulline, ornithine, and GABA in our chemically defined medium. Additionally, E. coli, K. pneumoniae, K. aerogenes, and P. fluorescens were found to convert arginine to agmatine and produce putrescine. Interestingly, arginine supplementation promoted biofilm formation in K. pneumoniae, while ornithine supplementation enhanced biofilm formation in S. epidermidis. These findings offer a comprehensive insight into arginine-ornithine metabolism in enteric pathobionts.


Subject(s)
Ornithine , Putrescine , Ornithine/metabolism , Putrescine/metabolism , Arginine , Escherichia coli/genetics , Escherichia coli/metabolism , Chromatography, Liquid , Staphylococcus aureus/metabolism , Tandem Mass Spectrometry , Bacteria/metabolism , Klebsiella pneumoniae/metabolism
8.
Sci Rep ; 14(1): 8272, 2024 04 09.
Article in English | MEDLINE | ID: mdl-38594253

ABSTRACT

Human hemoglobin (Hb) is the preferred iron source of Staphylococcus aureus. This pathogenic bacterium exploits a sophisticated protein machinery called Iron-regulated surface determinant (Isd) system to bind Hb, extract and internalize heme, and finally degrade it to complete iron acquisition. IsdB, the surface exposed Hb receptor, is a proven virulence factor of S. aureus and the inhibition of its interaction with Hb can be pursued as a strategy to develop new classes of antimicrobials. To identify small molecules able to disrupt IsdB:Hb protein-protein interactions (PPIs), we carried out a structure-based virtual screening campaign and developed an ad hoc immunoassay to screen the retrieved set of commercially available compounds. Saturation-transfer difference (STD) NMR was applied to verify specific interactions of a sub-set of molecules, chosen based on their efficacy in reducing the amount of Hb bound to IsdB. Among molecules for which direct binding was verified, the best hit was submitted to ITC analysis to measure the binding affinity to Hb, which was found to be in the low micromolar range. The results demonstrate the viability of the proposed in silico/in vitro experimental pipeline to discover and test IsdB:Hb PPI inhibitors. The identified lead compound will be the starting point for future SAR and molecule optimization campaigns.


Subject(s)
Cation Transport Proteins , Staphylococcal Infections , Humans , Staphylococcus aureus/metabolism , Hemoglobins/metabolism , Cation Transport Proteins/metabolism , Heme/metabolism , Staphylococcal Infections/drug therapy , Staphylococcal Infections/microbiology , Iron/metabolism
9.
Elife ; 132024 Apr 19.
Article in English | MEDLINE | ID: mdl-38639993

ABSTRACT

In the Firmicutes phylum, GpsB is a membrane associated protein that coordinates peptidoglycan synthesis with cell growth and division. Although GpsB has been studied in several bacteria, the structure, function, and interactome of Staphylococcus aureus GpsB is largely uncharacterized. To address this knowledge gap, we solved the crystal structure of the N-terminal domain of S. aureus GpsB, which adopts an atypical, asymmetric dimer, and demonstrates major conformational flexibility that can be mapped to a hinge region formed by a three-residue insertion exclusive to Staphylococci. When this three-residue insertion is excised, its thermal stability increases, and the mutant no longer produces a previously reported lethal phenotype when overexpressed in Bacillus subtilis. In S. aureus, we show that these hinge mutants are less functional and speculate that the conformational flexibility imparted by the hinge region may serve as a dynamic switch to fine-tune the function of the GpsB complex and/or to promote interaction with its various partners. Furthermore, we provide the first biochemical, biophysical, and crystallographic evidence that the N-terminal domain of GpsB binds not only PBP4, but also FtsZ, through a conserved recognition motif located on their C-termini, thus coupling peptidoglycan synthesis to cell division. Taken together, the unique structure of S. aureus GpsB and its direct interaction with FtsZ/PBP4 provide deeper insight into the central role of GpsB in S. aureus cell division.


Subject(s)
Bacterial Proteins , Cytoskeletal Proteins , Protein Binding , Protein Conformation , Staphylococcus aureus , Staphylococcus aureus/metabolism , Staphylococcus aureus/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/chemistry , Cytoskeletal Proteins/metabolism , Cytoskeletal Proteins/genetics , Cytoskeletal Proteins/chemistry , Crystallography, X-Ray , Penicillin-Binding Proteins/metabolism , Penicillin-Binding Proteins/genetics , Penicillin-Binding Proteins/chemistry , Models, Molecular
10.
Biochem Biophys Res Commun ; 711: 149912, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38615572

ABSTRACT

An accessory gene regulator (agr) in the quorum sensing (QS) system in Staphylococcus aureus contributes to host infection, virulence factor production, and resistance to oxidative damage. Artificially maintaining the inactive state of agr QS impedes the host infection strategy of S. aureus and inhibits toxin production. The QS system performs intercellular signal transduction, which is activated by the mature autoinducer peptide (AIP). It is released from cells after AgrD peptide processing as an intercellular signal associated with increased bacterial cell density. This study evaluated the effectiveness of inhibiting agr QS wherein AIP trap carriers were made to coexist when culturing Staphylococcus aureus. Immersing a nitrocellulose (NC) membrane in Staphylococcus aureus ATCC 12600 culture inhibited QS-dependent α-hemolysin production, which significantly reduced the hemolysis ratio of sheep red blood cells by the culture supernatant. A quartz crystal microbalance analysis supported AIP adsorption onto the NC membrane. Adding the NC membrane during culture was found to maintain the expression levels of the agr QS gene agrA and α-hemolysin gene hla lower than that when it was not added. Eliminating extracellular AIP signals allowed agr QS to remain inactive and prevented QS-dependent α-hemolysin expression. Isolating intercellular signals secreted outside the cell is an effective strategy to suppress gene expression in bacterial cells that collaborate via intercellular signaling.


Subject(s)
Bacterial Proteins , Hemolysin Proteins , Quorum Sensing , Staphylococcus aureus , Staphylococcus aureus/physiology , Staphylococcus aureus/genetics , Staphylococcus aureus/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Hemolysin Proteins/metabolism , Hemolysin Proteins/genetics , Animals , Trans-Activators/metabolism , Trans-Activators/genetics , Hemolysis , Sheep , Gene Expression Regulation, Bacterial , Bacterial Toxins/metabolism , Bacterial Toxins/genetics , Signal Transduction , Erythrocytes/metabolism , Erythrocytes/drug effects , Peptides/pharmacology , Peptides/metabolism
11.
Elife ; 122024 Apr 30.
Article in English | MEDLINE | ID: mdl-38687677

ABSTRACT

The agr quorum-sensing system links Staphylococcus aureus metabolism to virulence, in part by increasing bacterial survival during exposure to lethal concentrations of H2O2, a crucial host defense against S. aureus. We now report that protection by agr surprisingly extends beyond post-exponential growth to the exit from stationary phase when the agr system is no longer turned on. Thus, agr can be considered a constitutive protective factor. Deletion of agr resulted in decreased ATP levels and growth, despite increased rates of respiration or fermentation at appropriate oxygen tensions, suggesting that Δagr cells undergo a shift towards a hyperactive metabolic state in response to diminished metabolic efficiency. As expected from increased respiratory gene expression, reactive oxygen species (ROS) accumulated more in the agr mutant than in wild-type cells, thereby explaining elevated susceptibility of Δagr strains to lethal H2O2 doses. Increased survival of wild-type agr cells during H2O2 exposure required sodA, which detoxifies superoxide. Additionally, pretreatment of S. aureus with respiration-reducing menadione protected Δagr cells from killing by H2O2. Thus, genetic deletion and pharmacologic experiments indicate that agr helps control endogenous ROS, thereby providing resilience against exogenous ROS. The long-lived 'memory' of agr-mediated protection, which is uncoupled from agr activation kinetics, increased hematogenous dissemination to certain tissues during sepsis in ROS-producing, wild-type mice but not ROS-deficient (Cybb-/-) mice. These results demonstrate the importance of protection that anticipates impending ROS-mediated immune attack. The ubiquity of quorum sensing suggests that it protects many bacterial species from oxidative damage.


Subject(s)
Bacterial Proteins , Gene Expression Regulation, Bacterial , Hydrogen Peroxide , Oxidative Stress , Quorum Sensing , Staphylococcus aureus , Trans-Activators , Staphylococcus aureus/genetics , Staphylococcus aureus/physiology , Staphylococcus aureus/metabolism , Quorum Sensing/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Animals , Trans-Activators/metabolism , Trans-Activators/genetics , Hydrogen Peroxide/metabolism , Hydrogen Peroxide/pharmacology , Mice , Staphylococcal Infections/microbiology , Microbial Viability , Reactive Oxygen Species/metabolism , Gene Deletion
12.
Anal Chem ; 96(19): 7661-7668, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38687969

ABSTRACT

The development of sensitive, selective, and rapid methods to detect bacteria in complex media is essential to ensuring human health. Virulence factors, particularly pore-forming toxins (PFTs) secreted by pathogenic bacteria, play a crucial role in bacterial diseases and serve as indicators of disease severity. In this study, a nanochannel-based label-free electrochemical sensing platform was developed for the detection of specific pathogenic bacteria based on their secreted PFTs. In this design, wood substrate channels were functionalized with a Fe-based metal-organic framework (FeMOF) and then protected with a layer of phosphatidylcholine (PC)-based phospholipid membrane (PM) that serves as a peroxidase mimetic and a channel gatekeeper, respectively. Using Staphylococcus aureus (S. aureus) as the model bacteria, the PC-specific PFTs secreted by S. aureus perforate the PM layer. Now exposed to the FeMOF, uncharged 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonate) (ABTS) molecules in the electrolyte undergo oxidation to cationic products (ABTS•+). The measured transmembrane ionic current indicates the presence of S. aureus and methicillin-resistant S. aureus (MRSA) with a low detection limit of 3 cfu mL-1. Besides excellent specificity, this sensing approach exhibits satisfactory performance for the detection of target bacteria in the complex media of food.


Subject(s)
Electrochemical Techniques , Staphylococcus aureus , Staphylococcus aureus/isolation & purification , Staphylococcus aureus/metabolism , Metal-Organic Frameworks/chemistry , Methicillin-Resistant Staphylococcus aureus/isolation & purification , Peroxidase/metabolism , Peroxidase/chemistry , Bacterial Toxins/metabolism , Bacterial Toxins/analysis , Biosensing Techniques
13.
Cell Rep ; 43(4): 114022, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38568806

ABSTRACT

Staphylococcus aureus causes the majority of skin and soft tissue infections, but this pathogen only transiently colonizes healthy skin. However, this transient skin exposure enables S. aureus to transition to infection. The initial adhesion of S. aureus to skin corneocytes is mediated by surface protein G (SasG). Here, phylogenetic analyses reveal the presence of two major divergent SasG alleles in S. aureus: SasG-I and SasG-II. Structural analyses of SasG-II identify a nonaromatic arginine in the binding pocket of the lectin subdomain that mediates adhesion to corneocytes. Atomic force microscopy and corneocyte adhesion assays indicate that SasG-II can bind to a broader variety of ligands than SasG-I. Glycosidase treatment results in different binding profiles between SasG-I and SasG-II on skin cells. In addition, SasG-mediated adhesion is recapitulated using differentiated N/TERT keratinocytes. Our findings indicate that SasG-II has evolved to adhere to multiple ligands, conferring a distinct advantage to S. aureus during skin colonization.


Subject(s)
Bacterial Adhesion , Keratinocytes , Skin , Staphylococcus aureus , Staphylococcus aureus/metabolism , Humans , Skin/microbiology , Skin/metabolism , Keratinocytes/microbiology , Keratinocytes/metabolism , Lectins/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Phylogeny , Protein Binding
14.
mSystems ; 9(5): e0017924, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38656122

ABSTRACT

The utilization of ATP within cells plays a fundamental role in cellular processes that are essential for the regulation of host-pathogen dynamics and the subsequent immune response. This study focuses on ATP-binding proteins to dissect the complex interplay between Staphylococcus aureus and human cells, particularly macrophages (THP-1) and keratinocytes (HaCaT), during an intracellular infection. A snapshot of the various protein activity and function is provided using a desthiobiotin-ATP probe, which targets ATP-interacting proteins. In S. aureus, we observe enrichment in pathways required for nutrient acquisition, biosynthesis and metabolism of amino acids, and energy metabolism when located inside human cells. Additionally, the direct profiling of the protein activity revealed specific adaptations of S. aureus to the keratinocytes and macrophages. Mapping the differentially activated proteins to biochemical pathways in the human cells with intracellular bacteria revealed cell-type-specific adaptations to bacterial challenges where THP-1 cells prioritized immune defenses, autophagic cell death, and inflammation. In contrast, HaCaT cells emphasized barrier integrity and immune activation. We also observe bacterial modulation of host processes and metabolic shifts. These findings offer valuable insights into the dynamics of S. aureus-host cell interactions, shedding light on modulating host immune responses to S. aureus, which could involve developing immunomodulatory therapies. IMPORTANCE: This study uses a chemoproteomic approach to target active ATP-interacting proteins and examines the dynamic proteomic interactions between Staphylococcus aureus and human cell lines THP-1 and HaCaT. It uncovers the distinct responses of macrophages and keratinocytes during bacterial infection. S. aureus demonstrated a tailored response to the intracellular environment of each cell type and adaptation during exposure to professional and non-professional phagocytes. It also highlights strategies employed by S. aureus to persist within host cells. This study offers significant insights into the human cell response to S. aureus infection, illuminating the complex proteomic shifts that underlie the defense mechanisms of macrophages and keratinocytes. Notably, the study underscores the nuanced interplay between the host's metabolic reprogramming and immune strategy, suggesting potential therapeutic targets for enhancing host defense and inhibiting bacterial survival. The findings enhance our understanding of host-pathogen interactions and can inform the development of targeted therapies against S. aureus infections.


Subject(s)
Adenosine Triphosphate , Host-Pathogen Interactions , Keratinocytes , Macrophages , Staphylococcus aureus , Humans , Staphylococcus aureus/metabolism , Adenosine Triphosphate/metabolism , Host-Pathogen Interactions/immunology , Macrophages/microbiology , Macrophages/metabolism , Macrophages/immunology , Keratinocytes/microbiology , Keratinocytes/metabolism , Keratinocytes/immunology , THP-1 Cells , Staphylococcal Infections/immunology , Staphylococcal Infections/metabolism , Staphylococcal Infections/microbiology , Proteomics/methods , Bacterial Proteins/metabolism , HaCaT Cells
15.
mSphere ; 9(5): e0034823, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38591898

ABSTRACT

Staphylococcus aureus RNAIII is a dual-function regulatory RNA that controls the expression of multiple virulence genes and especially the transition from adhesion to the production of exotoxins. However, its contribution to S. aureus central metabolism remains unclear. Using MS2-affinity purification coupled with RNA sequencing, we uncovered more than 50 novel RNAIII-mRNA interactions. Among them, we demonstrate that RNAIII is a major activator of the rpiRc gene, encoding a regulator of the pentose phosphate pathway (PPP). RNAIII binds the 5' UTR of rpiRc mRNA to favor ribosome loading, leading to an increased expression of RpiRc and, subsequently, of two PPP enzymes. Finally, we show that RNAIII and RpiRc are involved in S. aureus fitness in media supplemented with various carbohydrate sources related to PPP and glycolysis. Collectively, our data depict an unprecedented phenotype associated with the RNAIII regulon, especially the direct implication of RNAIII in central metabolic activity modulation. These findings show that the contribution of RNAIII in Staphylococcus aureus adaptation goes far beyond what was initially reported. IMPORTANCE: Staphylococcus aureus is a major human pathogen involved in acute and chronic infections. Highly recalcitrant to antibiotic treatment, persistent infections are mostly associated with the loss of RNAIII expression, a master RNA regulator responsible for the switch from colonization to infection. Here, we used the MS2 affinity purification coupled with RNA sequencing approach to identify novel mRNA targets of RNAIII and uncover novel functions. We demonstrate that RNAIII is an activator of the expression of genes involved in the pentose phosphate pathway and is implicated in the adjustment of bacterial fitness as a function of carbohydrate sources. Taken together, our results demonstrate an unprecedented role of RNAIII that goes beyond the knowledge gained so far and contributes to a better understanding of the role of RNAIII in bacterial adaptation expression and the coordination of a complex regulatory network.


Subject(s)
Bacterial Proteins , Gene Expression Regulation, Bacterial , Pentose Phosphate Pathway , RNA, Bacterial , Staphylococcus aureus , Pentose Phosphate Pathway/genetics , Staphylococcus aureus/genetics , Staphylococcus aureus/metabolism , RNA, Bacterial/genetics , RNA, Bacterial/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism
16.
Front Cell Infect Microbiol ; 14: 1352810, 2024.
Article in English | MEDLINE | ID: mdl-38601738

ABSTRACT

Commensal gut bacteria use oleate hydratase to release a spectrum of hydroxylated fatty acids using host-derived unsaturated fatty acids. These compounds are thought to attenuate the immune response, but the underlying signaling mechanism(s) remain to be established. The pathogen Staphylococcus aureus also expresses an oleate hydratase and 10-hydroxyoctadecanoic acid (h18:0) is the most abundant oleate hydratase metabolite found at Staphylococcal skin infection sites. Here, we show h18:0 stimulates the transcription of a set of lipid metabolism genes associated with the activation of peroxisome proliferator activated receptor (PPAR) in the RAW 264.7 macrophage cell line and mouse primary bone marrow-derived macrophages. Cell-based transcriptional reporter assays show h18:0 selectively activates PPARα. Radiolabeling experiments with bone marrow-derived macrophages show [1-14C]h18:0 is not incorporated into cellular lipids, but is degraded by ß-oxidation, and mass spectrometry detected shortened fragments of h18:0 released into the media. The catabolism of h18:0 was >10-fold lower in bone marrow-derived macrophages isolated from Ppara -/- knockout mice, and we recover 74-fold fewer S. aureus cells from the skin infection site of Ppara -/- knockout mice compared to wildtype mice. These data identify PPARα as a target for oleate hydratase-derived hydroxy fatty acids and support the existence of an oleate hydratase-PPARα signaling axis that functions to suppress the innate immune response to S. aureus.


Subject(s)
PPAR alpha , Staphylococcus aureus , Mice , Animals , PPAR alpha/metabolism , Staphylococcus aureus/metabolism , Oleic Acid , Fatty Acids/metabolism , Mice, Knockout
17.
Int J Biol Macromol ; 264(Pt 2): 130631, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38453114

ABSTRACT

Gram-negative bacteria binding proteins (GNBPs) have the ability to recognize molecular patterns associated with microbial pathogens (PAMPs), leading to the activation of immune responses downstream. In the genome of Tribolium castaneum, three GNBP genes have been identified; however, their immunological roles remain unexplored. In our study, a GNBP1, designated as TcGNBP1, were identified from the cDNA library of T. castaneum. The coding sequence of TcGNBP1 consisted of 1137 bps and resulted in the synthesis of a protein comprising 378 amino acids. This protein encompasses a signal peptide, a low-complexity region, and a glycoside hydrolase 16 domain. TcGNBP1 was strongly expressed in early adult stages, and mainly distributed in hemolymph and gut. Upon being challenged with Escherichia coli or Staphylococcus aureus, the transcript levels of TcGNBP1 were significantly changed at different time points. Through molecular docking and ELISA analysis, it was observed that TcGNBP1 has the ability to interact with lipopolysaccharides, peptidoglycan, and ß-1, 3-glucan. Based on these findings, it was further discovered that recombinant TcGNBP1 can directly bind to five different bacteria in a Ca2+-dependent manner. After knockdown of TcGNBP1 with RNA interference, expression of antimicrobial peptide genes and prophenoloxidase (proPO) activity were suppressed, the susceptibility of T. castaneum to E. coli or S. aureus infection was enhanced, leading to low survival rate. These results suggest a regulatory mechanism of TcGNBP1 in innate immunity of T. castaneum and provide a potential molecular target for dsRNA-based insect pest management.


Subject(s)
Tribolium , Animals , Tribolium/genetics , Tribolium/metabolism , Carrier Proteins/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Staphylococcus aureus/metabolism , Molecular Docking Simulation , Bacteria/metabolism , Gram-Negative Bacteria/metabolism , Immunity, Innate/genetics , Insect Proteins/genetics , Insect Proteins/metabolism
18.
mBio ; 15(4): e0348323, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38511930

ABSTRACT

Staphylococcus aureus is one of the leading causes of hospital-acquired infections, many of which begin following attachment and accumulation on indwelling medical devices or diseased tissue. These infections are often linked to the establishment of biofilms, but another often overlooked key characteristic allowing S. aureus to establish persistent infection is the formation of planktonic aggregates. Such aggregates are physiologically similar to biofilms and protect pathogens from innate immune clearance and increase antibiotic tolerance. The cell-wall-associated protein SasG has been implicated in biofilm formation via mechanisms of intercellular aggregation but the mechanism in the context of disease is largely unknown. We have previously shown that the expression of cell-wall-anchored proteins involved in biofilm formation is controlled by the ArlRS-MgrA regulatory cascade. In this work, we demonstrate that the ArlRS two-component system controls aggregation, by repressing the expression of sasG by activation of the global regulator MgrA. We also demonstrate that SasG must be proteolytically processed by a non-staphylococcal protease to induce aggregation and that strains expressing functional full-length sasG aggregate significantly upon proteolysis by a mucosal-derived host protease found in human saliva. We used fractionation and N-terminal sequencing to demonstrate that human trypsin within saliva cleaves within the A domain of SasG to expose the B domain and induce aggregation. Finally, we demonstrated that SasG is involved in virulence during mouse lung infection. Together, our data point to SasG, its processing by host proteases, and SasG-driven aggregation as important elements of S. aureus adaptation to the host environment.IMPORTANCEHere, we demonstrate that the Staphylococcus aureus surface protein SasG is important for cell-cell aggregation in the presence of host proteases. We show that the ArlRS two-component regulatory system controls SasG levels through the cytoplasmic regulator MgrA. We identified human trypsin as the dominant protease triggering SasG-dependent aggregation and demonstrated that SasG is important for S. aureus lung infection. The discovery that host proteases can induce S. aureus aggregation contributes to our understanding of how this pathogen establishes persistent infections. The observations in this study demonstrate the need to strengthen our knowledge of S. aureus surface adhesin function and processing, regulation of adhesin expression, and the mechanisms that promote biofilm formation to develop strategies for preventing chronic infections.


Subject(s)
Membrane Proteins , Staphylococcal Infections , Humans , Animals , Mice , Membrane Proteins/metabolism , Staphylococcus aureus/metabolism , Bacterial Proteins/metabolism , Peptide Hydrolases/metabolism , Trypsin/metabolism , Biofilms , Staphylococcal Infections/metabolism
19.
Nat Microbiol ; 9(4): 1049-1063, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38480900

ABSTRACT

Bacterial cell division requires recruitment of peptidoglycan (PG) synthases to the division site by the tubulin homologue, FtsZ. Septal PG synthases promote septum growth. FtsZ treadmilling is proposed to drive the processive movement of septal PG synthases and septal constriction in some bacteria; however, the precise mechanisms spatio-temporally regulating PG synthase movement and activity and FtsZ treadmilling are poorly understood. Here using single-molecule imaging of division proteins in the Gram-positive pathogen Staphylococcus aureus, we showed that the septal PG synthase complex FtsW/PBP1 and its putative activator protein, DivIB, move with similar velocity around the division site. Impairing FtsZ treadmilling did not affect FtsW or DivIB velocities or septum constriction rates. Contrarily, PG synthesis inhibition decelerated or stopped directional movement of FtsW and DivIB, and septum constriction. Our findings suggest that a single population of processively moving FtsW/PBP1 associated with DivIB drives cell constriction independently of FtsZ treadmilling in S. aureus.


Subject(s)
Bacterial Proteins , Staphylococcus aureus , Staphylococcus aureus/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cytoskeletal Proteins/genetics , Cytoskeletal Proteins/metabolism , Peptidoglycan/metabolism , Constriction , Nitric Oxide Synthase/metabolism
20.
Bioorg Med Chem Lett ; 103: 129707, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38492608

ABSTRACT

The design and development of novel antimicrobial agents are highly desired to combat the emergence of medication resistance against microorganisms that cause infections. A series of new pyrimidine-linked thiazolidinedione derivatives (5a-j) were synthesized, characterized, and their antimicrobial properties assessed in the current investigation. Here, novel pyrimidine-linked thiazolidinedione compounds were designed using the molecular hybridization approach. Elemental and spectral techniques were used to determine the structures of the synthesized hybrids. The majority of compounds showed encouraging antibacterial properties. Among the active compounds, 5g, 5i, and 5j showed 1.85, 1.15, and 1.38 times the activity of streptomycin against S. aureus, respectively, with MIC values of 6.4, 10.3, and 8.6 µM. With MIC values of 10.8, 21.9, and 15.4 µM, respectively, the compounds 5g, 5i, and 5j showed 2.14, 1.05, and 1.50 times the activity of linezolid against the methicillin-resistant S. aureus (MRSA) strain. Furthermore, when compared to the reference medications, compounds 5g, 5i, and 5j demonstrated broad-range antimicrobial efficacy against all tested strains of bacteria and fungus. Out of all the compounds that were investigated, compounds 5g, 5i, and 5j showed noteworthy anti-tubercular activity. 5g is the most effective, 1.59 times more effective than reference drug isoniazid. To anticipate the binding manner, the synthesized potent compounds were subjected to molecular docking into the active binding site of MRSA and the mycobacterial membrane protein large 3 (MmpL3) protein. The compounds 5g, 5i, and 5j may eventually serve as lead compounds in the search for antimicrobial and anti-TB therapeutic agents.


Subject(s)
Anti-Infective Agents , Methicillin-Resistant Staphylococcus aureus , Thiazolidinediones , Antitubercular Agents , Molecular Docking Simulation , Staphylococcus aureus/metabolism , Structure-Activity Relationship , Anti-Infective Agents/pharmacology , Anti-Bacterial Agents/chemistry , Thiazolidinediones/pharmacology , Pyrimidines/pharmacology , Microbial Sensitivity Tests , Molecular Structure
SELECTION OF CITATIONS
SEARCH DETAIL
...