Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.380
Filter
1.
Food Chem ; 451: 139506, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38703733

ABSTRACT

This study aimed to characterize and evaluate the in vitro bioactive properties of green banana pulp (GBPF), peel (GBPeF), and mixed pulp/peel flours M1 (90/10) and M2 (80/20). Lipid concentration was higher in GBPeF (7.53%), as were the levels of free and bound phenolics (577 and 653.1 mg GAE/100 g, respectively), whereas the resistant starch content was higher in GBPF (44.11%). Incorporating up to 20% GBPeF into the mixed flour had a minor effect on the starch pasting properties of GBPF. GBPeF featured rutin and trans-ferulic acid as the predominant free and bound phenolic compounds, respectively. GBPF presented different major free phenolics, though it had similar bound phenolics to GBPeF. Both M1 and M2 demonstrated a reduction in intracellular reactive oxygen species (ROS) generation. Consequently, this study validates the potential of green banana mixed flour, containing up to 20% GBPeF, for developing healthy foods and reducing post-harvest losses.


Subject(s)
Flour , Fruit , Musa , Nutritive Value , Phenols , Musa/chemistry , Flour/analysis , Fruit/chemistry , Phenols/analysis , Phenols/chemistry , Plant Extracts/chemistry , Plant Extracts/analysis , Reactive Oxygen Species/metabolism , Starch/chemistry , Starch/analysis
2.
Food Res Int ; 186: 114400, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729703

ABSTRACT

Since hydrothermal treatments can enhance resistant starch (RS) content in rice and provide health benefits when consumed, a less laborious and non-destructive method to determine RS content is needed. Terahertz (THz) spectroscopy is hypothesized as a suitable method to quantify RS content in rice after hydrothermal treatment with its sensitivity for the intermolecular forces increase in the formation of RS. In this study, we first used the traditional in vitro hydrolysis method to determine the content of RS in rice. Then, the potential of starch absorbance peaks to quantify RS content after three commonly used hydrothermal methods, soaking, mild heat-moisture treatment, and parboiling, was investigated. The second derivative intensities of the peak at 9.0, 10.5, 12.1, and 13.1 THz were confirmed as being correlated with RS content and showed the high accuracy to predict RS content in samples (R2 > 0.96). Our results indicate the RS content of hydrothermally treated rice can be accurately quantified using these peaks.


Subject(s)
Hot Temperature , Oryza , Starch , Terahertz Spectroscopy , Oryza/chemistry , Starch/analysis , Terahertz Spectroscopy/methods , Hydrolysis , Resistant Starch/analysis , Food Handling/methods , Water/chemistry
3.
Sensors (Basel) ; 24(10)2024 May 09.
Article in English | MEDLINE | ID: mdl-38793849

ABSTRACT

The origin of agricultural products is crucial to their quality and safety. This study explored the differences in chemical composition and structure of rice from different origins using fluorescence detection technology. These differences are mainly affected by climate, environment, geology and other factors. By identifying the fluorescence characteristic absorption peaks of the same rice seed varieties from different origins, and comparing them with known or standard samples, this study aims to authenticate rice, protect brands, and achieve traceability. The study selected the same variety of rice seed planted in different regions of Jilin Province in the same year as samples. Fluorescence spectroscopy was used to collect spectral data, which was preprocessed by normalization, smoothing, and wavelet transformation to remove noise, scattering, and burrs. The processed spectral data was used as input for the long short-term memory (LSTM) model. The study focused on the processing and analysis of rice spectra based on NZ-WT-processed data. To simplify the model, uninformative variable elimination (UVE) and successive projections algorithm (SPA) were used to screen the best wavelengths. These wavelengths were used as input for the support vector machine (SVM) prediction model to achieve efficient and accurate predictions. Within the fluorescence spectral range of 475-525 nm and 665-690 nm, absorption peaks of nicotinamide adenine dinucleotide (NADPH), riboflavin (B2), starch, and protein were observed. The origin tracing prediction model established using SVM exhibited stable performance with a classification accuracy of up to 99.5%.The experiment demonstrated that fluorescence spectroscopy technology has high discrimination accuracy in tracing the origin of rice, providing a new method for rapid identification of rice origin.


Subject(s)
Algorithms , Oryza , Spectrometry, Fluorescence , Support Vector Machine , Oryza/chemistry , Oryza/classification , Spectrometry, Fluorescence/methods , Riboflavin/analysis , NADP/chemistry , NADP/analysis , NADP/metabolism , Starch/analysis , Starch/chemistry , Seeds/chemistry
4.
Food Chem ; 449: 139222, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38583398

ABSTRACT

Nine varieties of purple sweet potato were steamed and used for the production of shrimp freshness indicators. The impact of purple sweet potato's variety on the structure, physical property and halochromic ability of indicators was determined. Results showed different varieties of purple sweet potato had different starch, crude fiber, pectin, protein, fat and total anthocyanin contents. The microstructure, crystallinity, moisture content, water vapor permeability, tensile strength and elongation at break of indicators were affected by crude fiber content in purple sweet potato. The color, transmission and halochromic ability of indicators was associated with the total anthocyanin content in purple sweet potato. Freshness indicators produced from Fuzi No. 1, Ganzi No. 6, Ningzi No. 2, Ningzi No. 4, Qining No. 2 and Qining No. 18 of purple sweet potato were suitable to indicate shrimp freshness. This study provides useful information on screening suitable varieties of purple sweet potato for intelligent packaging.


Subject(s)
Ipomoea batatas , Ipomoea batatas/chemistry , Animals , Food Packaging , Anthocyanins/analysis , Anthocyanins/chemistry , Starch/chemistry , Starch/analysis , Color
5.
J Food Sci ; 89(5): 2629-2644, 2024 May.
Article in English | MEDLINE | ID: mdl-38578118

ABSTRACT

Taro (Colocasia esculenta) flour is a viable carbohydrate alternative and a functional additive for food formulation; however, different taro varieties may possess distinct characteristics that may influence their suitability for food production. This study evaluated the nutritional, physicochemical, and functional properties of flours from five Hawaiian taro varieties: Bun-Long, Mana Ulu, Moi, Kaua'i Lehua, and Tahitian. Tahitian, Bun-long, and Moi had high total starch contents of 40.8, 38.9, and 34.1 g/100 g, respectively. Additionally, Moi had the highest neutral detergent fiber (25.5 g/100 g), lignin (1.39 g/100 g), and cellulose (5.31 g/100 g). In terms of physicochemical properties, Tahitian showed the highest water solubility index (33.3 g/100 g), while Tahitian and Moi exhibited the two highest water absorption indices (5.81 g/g and 5.68 g/g, respectively). Regarding functional properties, Tahitian had the highest water absorption capacity (3.48 g/g), and Tahitian and Moi had the two highest oil absorption capacities (3.15 g/g and 2.68 g/g, respectively). Therefore, the flours from these Hawaiian taro varieties possess promising characteristics that could enhance food quality when used as alternative additives in food processing.


Subject(s)
Colocasia , Dietary Fiber , Flour , Nutritive Value , Starch , Colocasia/chemistry , Flour/analysis , Hawaii , Starch/analysis , Starch/chemistry , Dietary Fiber/analysis , Solubility , Cellulose/chemistry , Cellulose/analysis , Lignin/chemistry , Lignin/analysis , Water
6.
Carbohydr Polym ; 331: 121861, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38388057

ABSTRACT

Endo-xylanase and endo-glucanase are supplemented to poultry diets in order to improve nutrient digestion and non-starch polysaccharide (NSP) fermentation. Here, the action of these enzymes on alcohol insoluble solids (AIS) from wheat and maize grains as well as its implications for starch digestion in milled grains were evaluated in vitro, under conditions mimicking the poultry digestive tract. For wheat AIS, GH11 endo-xylanase depolymerized soluble arabinoxylan (AX) during the gizzard phase, and proceeded to release insoluble AX under small intestine conditions. At the end of the in vitro digestion (480 min), the endo-xylanase, combined with a GH7 endo-ß-1,4-glucanase, released 30.5 % of total AX and 18.1 % of total glucan in the form of arabinoxylo- and gluco-oligosaccharides, as detected by HPAEC-PAD and MALDI-TOF-MS. For maize AIS, the combined enzyme action released 2.2 % and 7.0 % of total AX and glucan, respectively. Analogous in vitro digestion experiments of whole grains demonstrated that the enzymatic release of oligomers coincided with altered grain microstructure, as examined by SEM. In the present study, cell wall hydrolysis did not affect in vitro starch digestion kinetics for cereal grains. This study contributes to understanding the action of feed enzymes on cereal NSP under conditions mimicking the poultry digestive tract.


Subject(s)
Edible Grain , Starch , Animals , Starch/analysis , Edible Grain/chemistry , Poultry , Polysaccharides/analysis , Diet , Glucans/analysis , Digestion , Cell Wall , Animal Feed/analysis , Endo-1,4-beta Xylanases
7.
J Sci Food Agric ; 104(7): 3842-3852, 2024 May.
Article in English | MEDLINE | ID: mdl-38233738

ABSTRACT

BACKGROUND: Potato is the most important non-grain crop worldwide, whose quality characteristics are always affected by temporal and spatial variability. Knowledge of the performance consistency of quality characteristics over long periods could prove very important to identify which quality traits are less variable over time, and therefore provide greater guarantees of stability. In this research, variations in physicochemical and nutritional traits of tubers over five consecutive growing seasons of two potato genotypes (Arizona and Vogue) were monitored in two locations. RESULTS: Although qualitative performances of genotypes fluctuated across the seasons in both locations, two physicochemical traits (pH and dry matter content) and starch content showed less variability throughout the five seasons compared to total soluble solids and most of the nutritional traits (namely reducing sugars, citric acid, vitamin C, total phenolics and antioxidant capacity), which were considerably influenced by weather conditions. CONCLUSION: The results suggest that pH, dry matter content and starch content traits could be used advantageously in studies of temporal stability in potatoes. This approach could prove useful in providing scientific support for the setup of potato protected geographical identifications. © 2024 Society of Chemical Industry.


Subject(s)
Solanum tuberosum , Solanum tuberosum/chemistry , Starch/analysis , Phenotype , Weather , Seasons , Plant Tubers/chemistry
8.
Int J Biol Macromol ; 254(Pt 1): 127818, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37918602

ABSTRACT

Lotus rhizome residue, a cell wall material produced during the production of lotus rhizome starch, has long been underutilized. This study aims to extract pectin-rich polysaccharides from the cell wall of lotus rhizome and investigate their gelation mechanism in order to improve their industrial applicability. The results indicated that both CP and MP (pectin extracted from crisp and mealy lotus rhizome) exhibited a highly linear low methoxyl pectin structure, with the primary linkage mode being →4)-GalpA-(1→. The pectin chains in MP were found to be more flexible than those in CP. Then the impact of Na+, D-glucono-d-lactone (GDL), urea, sodium dodecyl sulfate (SDS), either individually or in combination, on the rheological characteristics of gels was evaluated. The results indicated that gels induced by GDL exhibited favorable thermoreversible properties, whereas the thermoreversibility of Na+-induced gels is poor. In addition to hydrogen bonding and ionic interactions, hydrophobic interactions also play a significant role in the formation of pectin gels. This study offers theoretical guidance and methodologies to improve the utilization rate of lotus rhizome starch processing by-products, while also provides novel insights into the correlation between LMP structure and gelation mechanism.


Subject(s)
Lotus , Pectins , Pectins/chemistry , Lactones/chemistry , Rhizome/chemistry , Starch/analysis , Gels/chemistry
9.
Talanta ; 270: 125575, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38159353

ABSTRACT

The present work evaluated a microwave-assisted wet digestion method using diluted HNO3 with in situ UV radiation for the digestion of starch and skimmed milk powder for further metals determination by spectrometric plasma-based techniques. The sample digestion was conducted using an in situ UV lamp (electrodeless discharge lamp), and the digestion efficiency was improved by employing O2 (20 bar) and 2 mL 30 % H2O2 as auxiliary reagents. The accuracy of the proposed digestion method was evaluated by metals determination (Ca, Cd, Cu, Fe, K, Mg, Mo, Mn, Na, Pb, and Zn) in certificated reference material, which agreed with certified values (Student t-test <0,05). With the use of a UV lamp an environmentally friendly protocol was developed for starch and skimmed milk powder digestion using 0.1 mol L-1 HNO3 with auxiliary reagents (H2O2 or O2). The RCC value ranged from 0.9 to 1.2 % (starch and skimmed milk powder, respectively). The simultaneous cooling approach further improved the digestion efficiency (RCC <0,3 % for both samples), allowing to use milder digestion conditions, or even just water, being environmentally friendly, reducing the waste generation and reagents consumption, allowing food quality control through a greener approach.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Trace Elements , Humans , Animals , Milk/chemistry , Powders/analysis , Hydrogen Peroxide/analysis , Microwaves , Starch/analysis , Ultraviolet Rays , Metals/analysis , Indicators and Reagents , Digestion , Trace Elements/analysis
10.
Food Res Int ; 174(Pt 1): 113630, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37986480

ABSTRACT

The trend of incorporating faba bean (Vicia faba L.) in breadmaking has been increasing, but its application is still facing technological difficulties. The objective of this study was to understand the influence of substituting the wheat flour (WF) with 10, 20, 30 and 40 % mass of whole bean flour (FBF) or 10 and 20 % mass of faba bean protein-rich fraction (FBPI) on the quality (volume, specific volume, density, colour, and texture), nutritional composition (total starch, free glucose, and protein contents), and kinetics of in vitro starch and protein digestibility (IVSD and IVPD, respectively) of the breads. Automated image analysis algorithm was developed to quantitatively estimate the changes in the crumb (i.e., air pockets) and crust (i.e., thickness) due to the use of FBF or FBPI as part of the partial substitution of wheat flour. Higher levels of both FBF and FBPI substitution were associated with breads having significant (p < 0.05) lower (specific) volume (at least 25 % reduction) and higher density (up to 35 %), increased brownness (up to 49 % and 78 % for crust and crumb respectively), and up to 2.3-fold increase in hardness. Result from the image analysis has provided useful insights on how FBF and FBPI affecting bread characteristics during baking such as loss of crumb expansion, decrease in air pocket expansion and increase in crust thickness. Overall, incorporation of FBF or FBPI in wheat bread were favourable in reducing the starch content and improving the protein content and IVPD of wheat bread. Since bread remains as a staple food due to its convenience, versatility and affordability for individuals and families on a budget, wheat bread enriched with faba bean could be a perfect food matrix to increase daily protein intake.


Subject(s)
Vicia faba , Humans , Flour/analysis , Bread/analysis , Triticum , Digestion , Starch/analysis
11.
Adv Food Nutr Res ; 107: 213-261, 2023.
Article in English | MEDLINE | ID: mdl-37898541

ABSTRACT

Due to the negative impacts of food loss and food waste on the environment, economy, and social contexts, it is a necessity to take action in order to reduce these wastes from post-harvest to distribution. In addition to waste reduction, bioactives obtained from by-products or wastes can be utilized by new end-users by considering the safety aspects. It has been reported that physical, biological, and chemical safety features of raw materials, instruments, environment, and processing methods should be assessed before and during valorization. It has also been indicated that meat by-products/wastes including collagen, gelatin, polysaccharides, proteins, amino acids, lipids, enzymes and chitosan; dairy by-products/wastes including whey products, buttermilk and ghee residue; fruit and vegetable by-products/wastes such as pomace, leaves, skins, seeds, stems, seed oils, gums, fiber, polyphenols, starch, cellulose, galactomannan, pectin; cereal by-products/wastes like vitamins, dietary fibers, fats, proteins, starch, husk, and trub have been utilized as animal feed, food supplements, edible coating, bio-based active packaging systems, emulsifiers, water binders, gelling, stabilizing, foaming or whipping agents. This chapter will explain the safety aspects of bioactives obtained from various by-products/wastes. Additionally, applications of bioactives obtained from by-products/wastes have been included in detail by emphasizing the source, form of bioactive compound as well as the effect of said bioactive compound.


Subject(s)
Refuse Disposal , Animals , Fruit/chemistry , Dietary Supplements/analysis , Polyphenols/analysis , Starch/analysis
12.
J Sci Food Agric ; 103(15): 7829-7835, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37459467

ABSTRACT

BACKGROUND: Chronically elevated blood glucose leads to development of prediabetes and type 2 diabetes, as well as increased risk for heart and kidney disease and vision loss. For many, elevated blood glucose can be managed through diet and exercise. Consequently, the availability of foods that limit blood glucose elevation would aid in addressing this global problem. This paper investigated the effect of adding soy presscake (SP) to corn tortillas on starch hydrolysis in vitro as well as the glycemic responses elicited in vivo upon consumption of these modified tortillas. RESULTS: SP in corn tortillas decreased the rate and extent of starch hydrolysis in vitro. The in vivo glycemic index (GI) values decreased from 43 for corn control tortillas to 31 with 40% SP fortification. A high correlation (r = 0.9781) was found between the GI values from in vivo analysis and the area under the curve of starch hydrolysis in vitro. The best correlations (r > 0.96) between GI and degree of hydrolysis were found at 45-90 min of in vitro starch hydrolysis. CONCLUSIONS: Incorporating SP into corn-based tortillas lowers glycemic responses to them. In addition, in vitro starch hydrolysis could be used to estimate the GI values of food products and, in particular, the comparison of multiple items during food product development. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Subject(s)
Diabetes Mellitus, Type 2 , Starch , Starch/analysis , Blood Glucose , Zea mays , Hydrolysis , Glycemic Index , Bread
13.
Int J Biol Macromol ; 244: 125479, 2023 Jul 31.
Article in English | MEDLINE | ID: mdl-37336374

ABSTRACT

Reduced-fat food has become a popular choice among contemporary consumers. This study aims to develop a starch-based fat substitute and incorporate it into reduced-fat milk gel acidified with glucono-δ-lactone (GDL) to achieve similar rheological properties as a full-fat gel. The gel properties of the fat substitute were assessed. The study examined the rheological properties, syneresis, textural properties and microstructure of acidified milk gels while also monitoring acidification process. Starch hydrolysates with low dextrose equivalent (DE) (<5.1 %) can serve as an effective fat substitute due to their excellent gelling properties The rheological and textural properties of the reduced-fat acidified milk gel with DE at 3.1 % of starch hydrolysate and 30 % fat substitution are similar to those of the full-fat milk gel. The syneresis and confocal laser scanning microscopy (CLSM) results indicated that the microstructure of the reduced-fat acidified milk gel was similar to the full-fat version. Moreover, the sensory properties of the reduced-fat acidified milk gel were acceptable when the DE was 3.1 %, and 30 % fat was replaced. In our study, we utilized hydrolyzed starch to produce reduced-fat acidified milk gels, which could potentially be used in the development of reduced-fat yogurt formulations.


Subject(s)
Fat Substitutes , Milk , Animals , Milk/chemistry , Fat Substitutes/analysis , Zea mays , Hydrogen-Ion Concentration , Gels/chemistry , Rheology , Starch/analysis
14.
Int J Biol Macromol ; 242(Pt 2): 124900, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37201884

ABSTRACT

The bioactive compounds extraction from fruit pomace is an ecological alternative for these abundant and low-added-value by-products. This study aimed to evaluate the antimicrobial potential of pomace extracts from Brazilian native fruits (araçá, uvaia, guabiroba and butiá) and the effect on physicochemical, mechanical properties and the migration of antioxidants and phenolic compounds from starch-based films. The film with butiá extract had the lowest mechanical resistance (1.42 MPa) but the highest elongation (63 %). In comparison, uvaia extract had less impact on film mechanical properties (3.70 MPa and 58 %) compared to the other extracts. The extracts and films showed antimicrobial activity against Listeria monocytogenes, L. inoccua, B. cereus and S. aureu. Approximately 2 cm inhibition halo was noticed for the extracts, while films ranged from 0.33 to 1.46 cm inhibition halo. Films with guabiroba extract had the lowest antimicrobial activity (0.33 to 0.5 cm). The phenolic compounds were released from the film matrix in the first hour at 4 °C with maintenance in the stability. The fatty-food simulator showed a controlled release of antioxidant compounds, which can assist in controlling food oxidation. Brazilian native fruit has shown to be a viable alternative to isolate bioactive compounds and produce film packaging with antimicrobial and antioxidant activities.


Subject(s)
Anti-Infective Agents , Arecaceae , Fruit/chemistry , Antioxidants/chemistry , Starch/analysis , Brazil , Plant Extracts/chemistry , Phenols/chemistry , Anti-Infective Agents/pharmacology , Anti-Infective Agents/analysis
15.
J Plant Physiol ; 285: 153980, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37086697

ABSTRACT

In the past decade, research on resistant starch has evoked interest due to the prevention and inhibition of chronic human diseases, such as diabetes, cancer, and obesity. Increasing the amylose content (AC) and resistant starch (RS) has been pivotal in improving the nutritional benefit of rice. However, the exact mechanism of RS formation is complex due to interconnected genetic factors regulating amylose-amylopectin variation. In this review, we discussed the regulatory factors influencing the RS formation centered on the transcription, post-transcriptional, and post-translational processes. Furthermore, we described the developments in RS and AC levels in rice compared with other high RS cereals. Briefly, we enumerated potential applications of high RS mutants in health, medical, and other industries. We contest that the information captured herein can be deployed for marker-assisted breeding and precision breeding techniques through genome editing to improve rice varieties with enhanced RS content.


Subject(s)
Endosperm , Oryza , Humans , Endosperm/genetics , Endosperm/chemistry , Amylose , Resistant Starch/analysis , Oryza/genetics , Oryza/chemistry , Amylopectin , Starch/analysis
16.
BMC Med ; 21(1): 34, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36782209

ABSTRACT

BACKGROUND: Recent studies have reported that the associations between dietary carbohydrates and cardiovascular disease (CVD) may depend on the quality, rather than the quantity, of carbohydrates consumed. This study aimed to assess the associations between types and sources of dietary carbohydrates and CVD incidence. A secondary aim was to examine the associations of carbohydrate intakes with triglycerides within lipoprotein subclasses. METHODS: A total of 110,497 UK Biobank participants with ≥ two (maximum five) 24-h dietary assessments who were free from CVD and diabetes at baseline were included. Multivariable-adjusted Cox regressions were used to estimate risks of incident total CVD (4188 cases), ischaemic heart disease (IHD; 3138) and stroke (1124) by carbohydrate intakes over a median follow-up time of 9.4 years, and the effect of modelled dietary substitutions. The associations of carbohydrate intakes with plasma triglycerides within lipoprotein subclasses as measured by nuclear magnetic resonance (NMR) spectroscopy were examined in 26,095 participants with baseline NMR spectroscopy measurements. RESULTS: Total carbohydrate intake was not associated with CVD outcomes. Free sugar intake was positively associated with total CVD (HR; 95% CI per 5% of energy, 1.07;1.03-1.10), IHD (1.06;1.02-1.10), and stroke (1.10;1.04-1.17). Fibre intake was inversely associated with total CVD (HR; 95% CI per 5 g/d, 0.96;0.93-0.99). Modelled isoenergetic substitution of 5% of energy from refined grain starch with wholegrain starch was inversely associated with total CVD (0.94;0.91-0.98) and IHD (0.94;0.90-0.98), and substitution of free sugars with non-free sugars was inversely associated with total CVD (0.95;0.92-0.98) and stroke (0.91;0.86-0.97). Free sugar intake was positively associated with triglycerides within all lipoproteins. CONCLUSIONS: Higher free sugar intake was associated with higher CVD incidence and higher triglyceride concentrations within all lipoproteins. Higher fibre intake and replacement of refined grain starch and free sugars with wholegrain starch and non-free sugars, respectively, may be protective for incident CVD.


Subject(s)
Cardiovascular Diseases , Myocardial Ischemia , Stroke , Humans , Dietary Carbohydrates/adverse effects , Dietary Carbohydrates/analysis , Risk Factors , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/complications , Prospective Studies , Biological Specimen Banks , Diet/adverse effects , Triglycerides , Edible Grain/chemistry , Starch/analysis , Stroke/etiology , United Kingdom/epidemiology
17.
Arch Microbiol ; 205(3): 97, 2023 Feb 24.
Article in English | MEDLINE | ID: mdl-36823480

ABSTRACT

For different breeds of dogs with acute diarrhea, the gut microbiota and metabolome profiles are unclear. This prospective observational study analyzed the gut microbiomes of poodles with acute diarrhea and Labrador retrievers with acute diarrhea based on 16S amplicon sequencing, with respective healthy dogs as controls. Fecal non-target metabolomics and metagenomics were performed on poodles with acute diarrhea. This study found that the diversity and structure of the microbial community differed significantly between the two breeds in cohorts of healthy dogs. Two breeds of dogs with acute diarrhea demonstrated different changes in microbial communities and metabolic functions. The metabolism of starch and sucrose was significantly decreased in dogs with acute diarrhea, which may be attributed to the reduced activity of dextran dextrinase. Non-targeted metabolomics identified 21 abnormal metabolic pathways exhibited by dogs with acute diarrhea, including starch, amino acid, bile acid metabolism, etc., and were closely related to specific intestinal flora. This study provided new insights into breed specificity and the development of dietary treatment strategy in canine gastrointestinal disease.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Dogs , Animals , Metabolomics , Metabolome , Starch/analysis , Diarrhea , Feces , RNA, Ribosomal, 16S
18.
J Sci Food Agric ; 103(7): 3437-3446, 2023 May.
Article in English | MEDLINE | ID: mdl-36680508

ABSTRACT

BACKGROUND: Euryale ferox is an important cash crop and valuable tonic in traditional medicine. The seeds of E. ferox are rich in starch, which is hard to digest, and the digestion speed is significantly slower than that of rice starch. The goal of this study was to evaluate the effects of E. ferox seed-coat phenolics (EFCPs) on the digestion of E. ferox seed starch. RESULTS: EFCPs were extracted and identified by ultra-high performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. We optimized the extraction parameters, and the final extraction yield was about 1.49%. We identified seven phenolics from the E. ferox seed-coat extracts: gallic acid, digalloylhexoside, catechin, procyanidin B2, epicatechin, ellagic acid, and epicatechin gallate. Quantitative analysis results showed that the E. ferox seed phenolics mainly distributed in the seed coat and the gallic acid, digalloylhexoside, and epicatechin gallate were three main phenolic compounds. The phenolics displayed strong inhibitory activities on α-glucosidase and α-amylase with an IC50 of 3.25 µg mL-1 and 1.36 mg mL-1 respectively. Furthermore, these phenolics could interact with starch by hydrogen bonds, which might make its starch more difficult to digest. CONCLUSION: Our investigation suggests that the EFCPs can strongly inhibit the digestion of E. ferox seed starch by inhibiting the α-amylase and α-glucosidase activities and interacting with starch by hydrogen bonds; therefore, E. ferox seeds have a promising application prospect in foods for hypoglycemia. © 2023 Society of Chemical Industry.


Subject(s)
Plant Extracts , Starch , Starch/analysis , Plant Extracts/chemistry , alpha-Glucosidases , Phenols/analysis , Seeds/chemistry , Gallic Acid/analysis , alpha-Amylases/analysis , Digestion
19.
Int J Biol Macromol ; 226: 1066-1078, 2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36436606

ABSTRACT

The inhibitory effects of Euryale ferox seed shell extract (EFSSE) on the activity of α-amylase and α-glucosidase were studied. EFSSE (0.25 % to 2 %) was used to fortify bread and analyzed the in vitro starch digestibility (IVSD) digestion kinetics, and the predicted glycemic index (pGI) was estimated. The swarm intelligence supervised neural network (SISNN) technique was applied for the predictive simulation of digestion kinetics and pGI. Principal component analysis (PCA) with proportional odds modeling (POM) was used to find the most sensitive component based on the sensory attributes of bread. The inhibitory effect of EFSSE on α-amylase and α-glucosidase in terms of IC50 was 62.95 and 52.06 µg/mL, respectively. Fortification of bread with EFSSE could affect loaf volume, hardness, and color. Euryale ferox seed shell extract could decreased the rate of hydrolysis of bread. EFSSE (2 %) had a strong inhibitory impact, as evidenced by the drop in glycemic index from 94.61 to 61.66. SISNN-based kinetics was much better as compared to mathematical modeling-based digestion kinetics. Findings of the present study have shown that EFSSE could be employed as an additive to produce lower glycemic index functional bread.


Subject(s)
Glycemic Index , Nymphaeaceae , Triticum , Starch/analysis , Bread/analysis , alpha-Glucosidases , alpha-Amylases , Seeds/chemistry , Plant Extracts/pharmacology , Digestion
20.
J Sci Food Agric ; 103(6): 2745-2751, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36273267

ABSTRACT

Wheat grain quality, an important determinant for human nutrition, is often overlooked when improving crop production for stressed environments. Climate change makes this task more difficult by imposing combined stresses. The scenarios relevant to climate change include elevated CO2 concentrations (eCO2 ) and extreme climatic events such as drought, heat waves, and salinity stresses. However, data on wheat quality in terms of climate change are limited, with no concerted efforts at the global level to provide an equitable and consistent climate risk assessment for wheat grain quality. Climate change induces changes in the quality and composition of wheat grain, a premier staple food crop globally. Climate-change events, such as eCO2 , heat, drought, salinity stress stresses, heat + drought, eCO2 + drought, and eCO2 + heat stresses, alter wheat grain quality in terms of grain weight, nutrient, anti-nutrient, fiber, and protein content and composition, starch granules, and free amino acid composition. Interestingly, in comparison with other stresses, heat stress and drought stress increase phytate content, which restricts the bioavailability of essential mineral elements. All climatic events, except for eCO2 + heat stress, increase grain gliadin content in different wheat varieties. However, grain quality components depend more on inter-varietal difference, stress type, and exposure time and intensity. The climatic events show differential regulation of protein and starch accumulation, and mineral metabolism in wheat grains. Rapid climate shifting impairs wheat productivity and causes grain quality to deteriorate by interrupting the allocation of essential nutrients and photoassimilates. © 2022 Society of Chemical Industry.


Subject(s)
Climate Change , Triticum , Humans , Triticum/chemistry , Edible Grain/chemistry , Heat-Shock Response , Starch/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...