Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 225
Filter
Add more filters










Publication year range
1.
PLoS Biol ; 22(5): e3002620, 2024 May.
Article in English | MEDLINE | ID: mdl-38743647

ABSTRACT

Animals are influenced by the season, yet we know little about the changes that occur in most species throughout the year. This is particularly true in tropical marine animals that experience relatively small annual temperature and daylight changes. Like many coral reef inhabitants, the crown-of-thorns starfish (COTS), well known as a notorious consumer of corals and destroyer of coral reefs, reproduces exclusively in the summer. By comparing gene expression in 7 somatic tissues procured from wild COTS sampled on the Great Barrier Reef, we identified more than 2,000 protein-coding genes that change significantly between summer and winter. COTS genes that appear to mediate conspecific communication, including both signalling factors released into the surrounding sea water and cell surface receptors, are up-regulated in external secretory and sensory tissues in the summer, often in a sex-specific manner. Sexually dimorphic gene expression appears to be underpinned by sex- and season-specific transcription factors (TFs) and gene regulatory programs. There are over 100 TFs that are seasonally expressed, 87% of which are significantly up-regulated in the summer. Six nuclear receptors are up-regulated in all tissues in the summer, suggesting that systemic seasonal changes are hormonally controlled, as in vertebrates. Unexpectedly, there is a suite of stress-related chaperone proteins and TFs, including HIFa, ATF3, C/EBP, CREB, and NF-κB, that are uniquely and widely co-expressed in gravid females. The up-regulation of these stress proteins in the summer suggests the demands of oogenesis in this highly fecund starfish affects protein stability and turnover in somatic cells. Together, these circannual changes in gene expression provide novel insights into seasonal changes in this coral reef pest and have the potential to identify vulnerabilities for targeted biocontrol.


Subject(s)
Reproduction , Seasons , Starfish , Animals , Starfish/genetics , Starfish/metabolism , Starfish/physiology , Reproduction/genetics , Female , Male , Stress, Physiological/genetics , Gene Expression Regulation , Transcription Factors/metabolism , Transcription Factors/genetics , Organ Specificity/genetics , Coral Reefs
2.
J Comp Neurol ; 531(13): 1299-1316, 2023 09.
Article in English | MEDLINE | ID: mdl-37212624

ABSTRACT

Oocyte maturation and gamete release (spawning) in starfish are triggered by relaxin-like gonad-stimulating peptide (RGP), a neuropeptide that was first isolated from the radial nerve cords of these animals. Hitherto, it has generally been assumed that the radial nerve cords are the source of RGP that triggers spawning physiologically. To investigate other sources of RGP, here we report the first comprehensive anatomical analysis of its expression, using both in situ hybridization and immunohistochemistry to map RGP precursor transcripts and RGP, respectively, in the starfish Asterias rubens. Cells expressing RGP precursor transcripts were revealed in the ectoneural epithelium of the radial nerve cords and circumoral nerve ring, arm tips, tube feet, cardiac stomach, pyloric stomach, and, most notably, gonoducts. Using specific antibodies to A. rubens RGP, immunostaining was revealed in cells and/or fibers in the ectoneural region of the radial nerve cords and circumoral nerve ring, tube feet, terminal tentacle and other arm tip-associated structures, body wall, peristomial membrane, esophagus, cardiac stomach, pyloric stomach, pyloric caeca, and gonoducts. Our discovery that RGP is expressed in the gonoducts of A. rubens proximal to its gonadotropic site of action in the gonads is important because it provides a new perspective on how RGP may act as a gonadotropin in starfish. Thus, we hypothesize that it is the release of RGP from the gonoducts that triggers gamete maturation and spawning in starfish, while RGP produced in other parts of the body may regulate other physiological/behavioral processes.


Subject(s)
Asterias , Neuropeptides , Relaxin , Animals , Starfish/metabolism , Relaxin/chemistry , Relaxin/metabolism , Gonads/metabolism , Asterias/metabolism , Neuropeptides/metabolism
3.
Zoolog Sci ; 40(1): 7-12, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36744704

ABSTRACT

Relaxin-like gonad-stimulating peptide (RGP) is a hormone with gonadotropin-like activity in starfish. This study revealed that spawning inducing activity was detected in an extract of brachiolaria larvae of Patiria pectinifera. Spawning inducing activity in the extract was due to P. pectinifera RGP (PpeRGP), not 1-methyladenine. The expression of PpeRGP mRNA was also found in brachiolaria. Immunohistochemical observation with specific antibodies for PpeRGP showed that PpeRGP was distributed in the peripheral adhesive papilla of the brachiolaria arms. In contrast, PpeRGP was not detected in the adult rudiment or ciliary band regions, which are present in the neural system. These findings strongly suggest that RGP exists in the larvae before metamorphosis. Because gonads are not developed in starfish larvae, it seems likely that RGP plays another role other than gonadotropic action in the early development of starfish.


Subject(s)
Asterina , Relaxin , Animals , Starfish/metabolism , Relaxin/metabolism , Gonads , Asterina/metabolism , Metamorphosis, Biological , Larva/metabolism
4.
Neuroendocrinology ; 113(2): 231-250, 2023.
Article in English | MEDLINE | ID: mdl-33965952

ABSTRACT

BACKGROUND: Corticotropin-releasing hormone (CRH) mediates physiological responses to stressors in mammals by triggering pituitary secretion of adrenocorticotropic hormone, which stimulates adrenal release of cortisol. CRH belongs to a family of related neuropeptides that include sauvagine, urotensin-I, and urocortins in vertebrates and the diuretic hormone DH44 in insects, indicating that the evolutionary origin of this neuropeptide family can be traced to the common ancestor of the Bilateria. However, little is known about CRH-type neuropeptides in deuterostome invertebrates. METHODS: Here, we used mass spectrometry, mRNA in situ hybridization, and immunohistochemistry to investigate the structure and expression of a CRH-type neuropeptide (ArCRH) in the starfish Asterias rubens (phylum Echinodermata). RESULTS: ArCRH is a 40-residue peptide with N-terminal pyroglutamylation and C-terminal amidation, and it has a widespread pattern of expression in A. rubens. In the central nervous system comprising the circumoral nerve ring and 5 radial nerve cords, ArCRH-expressing cells and fibres were revealed in both the ectoneural region and the hyponeural region, which contains the cell bodies of motoneurons. Accordingly, ArCRH immunoreactivity was detected in innervation of the ampulla and podium of locomotory organs (tube feet), and ArCRH is the first neuropeptide to be identified as a marker for nerve fibres located in the muscle layer of these organs. ArCRH immunoreactivity was also revealed in protractile organs that mediate gas exchange (papulae), the apical muscle, and the digestive system. CONCLUSIONS: Our findings provide the first insights into CRH-type neuropeptide expression and function in the unique context of the pentaradially symmetrical body plan of an echinoderm.


Subject(s)
Corticotropin-Releasing Hormone , Neuropeptides , Animals , Amino Acid Sequence , Neuropeptides/metabolism , Echinodermata/metabolism , Starfish/chemistry , Starfish/metabolism , Mammals/metabolism
5.
Bioorg Med Chem ; 78: 117144, 2023 01 15.
Article in English | MEDLINE | ID: mdl-36577328

ABSTRACT

Novel steroid glycosides, acanthasterosides A1, B1, and B3, have been isolated from the crown-of-thorns starfish Acanthaster planci. Acanthasterosides B1 and B3 having two separated xyloses induced neurite outgrowth as like as nerve growth factor (NGF) in the rat pheochromocytoma cell line PC12, whereas acanthasteroside A1, having one xylose, did not induce neurite outgrowth. The acanthasteroside B3 induced neuritogenesis via the significant activation of p38 mitogen-activated protein kinase after the activation of the small G-protein Cdc42 rather than via Ras-MEK-ERK pathway that is predominantly activated by NGF. Following subcutaneous administration, acanthasteroside B3 attenuated cognitive impairment of senescence-accelerated mice (SAMP8) in two different cognitive tests. Liquid chromatography-mass spectrometry-assisted quantitative analysis demonstrated that acanthasteroside B3 could be transported into the brain via the circulatory system in mice. Thus, acanthasteroside B3 (and possibly B1) are a novel class of potential drug candidates for neurodegenerative diseases.


Subject(s)
Cognitive Dysfunction , Mitogen-Activated Protein Kinase 14 , Mice , Rats , Animals , p38 Mitogen-Activated Protein Kinases/metabolism , Neurites/metabolism , Nerve Growth Factor/metabolism , Nerve Growth Factor/pharmacology , PC12 Cells , Mitogen-Activated Protein Kinase 14/metabolism , Cognitive Dysfunction/metabolism , Starfish/metabolism , Steroids
6.
Open Biol ; 12(8): 220103, 2022 08.
Article in English | MEDLINE | ID: mdl-35975651

ABSTRACT

Sea stars adhere strongly but temporarily to underwater substrata via the secretion of a blend of proteins, forming an adhesive footprint that they leave on the surface after detachment. Their tube feet enclose a duo-gland adhesive system comprising two types of adhesive cells, contributing different layers of the footprint and de-adhesive cells. In this study, we characterized the catalogue of sea star footprint proteins (Sfps) in the species Asterias rubens to gain insights in their potential function. We identified 16 Sfps and mapped their expression to type 1 and/or type 2 adhesive cells or to de-adhesive cells by double fluorescent in situ hybridization. Based on their cellular expression pattern and their conserved functional domains, we propose that the identified Sfps serve different functions during attachment, with two Sfps coupling to the surface, six providing cohesive strength and the rest forming a binding matrix. Immunolabelling of footprints with antibodies directed against one protein of each category confirmed these roles. A de-adhesive gland cell-specific astacin-like proteinase presumably weakens the bond between the adhesive material and the tube foot surface during detachment. Overall, we provide a model for temporary adhesion in sea stars, including a comprehensive list of the proteins involved.


Subject(s)
Proteins , Starfish , Adhesives/metabolism , Animals , In Situ Hybridization, Fluorescence , Proteins/chemistry , Starfish/metabolism
7.
Mar Drugs ; 20(8)2022 Aug 03.
Article in English | MEDLINE | ID: mdl-36005506

ABSTRACT

Three-finger proteins (TFPs) are small proteins with characteristic three-finger ß-structural fold stabilized by the system of conserved disulfide bonds. These proteins have been found in organisms from different taxonomic groups and perform various important regulatory functions or act as components of snake venoms. Recently, four TFPs (Lystars 1-4) with unknown function were identified in the coelomic fluid proteome of starfish A. rubens. Here we analyzed the genomes of A. rubens and A. planci starfishes and predicted additional five and six proteins containing three-finger domains, respectively. One of them, named Lystar5, is expressed in A. rubens coelomocytes and has sequence homology to the human brain neuromodulator Lynx2. The three-finger structure of Lystar5 close to the structure of Lynx2 was confirmed by NMR. Similar to Lynx2, Lystar5 negatively modulated α4ß2 nicotinic acetylcholine receptors (nAChRs) expressed in X. laevis oocytes. Incubation with Lystar5 decreased the expression of acetylcholine esterase and α4 and α7 nAChR subunits in the hippocampal neurons. In summary, for the first time we reported modulator of the cholinergic system in starfish.


Subject(s)
Asterias , Receptors, Nicotinic , Animals , Asterias/metabolism , Brain/metabolism , Humans , Neurotransmitter Agents , Receptors, Nicotinic/metabolism , Starfish/metabolism , Xenopus laevis/metabolism
8.
Gen Comp Endocrinol ; 328: 114107, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-35973586

ABSTRACT

In starfish, a relaxin-like gonad-stimulating peptide (RGP) is the gonadotropin responsible for final gamete maturation. RGP comprises two different peptides, A- and B-chains with two interchain and one intrachain disulfide bonds. The existence of two isomers of RGP in the crown-of-thorns starfish, Acanthaster planci, has been reported previously, but it was recently shown that A. planci represents a species complex with four different species. Here we elucidated the authentic sequence of the Pacific species, Acanthaster cf. solaris, RGP (Aso-RGP). The Aso-RGP precursor encoded by a 354 base pair open reading frame was composed of 117 amino acids (aa). The amino acid identity of Aso-RGP to Patiria pectinifera RGP (Ppe-RGP) and Asterias amurensis RGP (Aam-RGP) was 74% and 60%, respectively. Synthetic Aso-RGP induced spawning of ovarian fragments from A. cf. solaris. Ppe-RGP and Aam-RGP also induced spawning by A. cf. solaris ovaries. In contrast, Ppe-RGP and Aso-RGP induced spawning by P. pectinifera ovaries, but Aam-RGP was inactive. Notably, anti-Ppe-RGP antibodies recognized Aso-RGP as well as Ppe-RGP. Localization of Aso-RGP was observed immunohistochemically using anti-Ppe-RGP antibodies, showing that Aso-RGP was mainly present in the radial nerve cords of A. cf. solaris. Aso-RGP was distributed not only in the epithelium of the ectoneural region but also in the neuropile of the ectoneural region. These results suggest that Aso-RGP is synthesized in the epithelium of the ectoneural region, then transferred to fibers in the neuropile of the ectoneural region in radial nerve cords.


Subject(s)
Relaxin , Amino Acids , Animals , Disulfides/metabolism , Gonadotropins/metabolism , Gonads/metabolism , Relaxin/metabolism , Starfish/metabolism
9.
J Chem Phys ; 156(8): 084117, 2022 Feb 28.
Article in English | MEDLINE | ID: mdl-35232201

ABSTRACT

Dynamic pattern formations are commonly observed in multicellular systems, such as cardiac tissue and slime molds, and modeled using reaction-diffusion systems. Recent experiments have revealed dynamic patterns in the concentration profile of various cortical proteins at a much smaller scale, namely, embryos at their single-cell stage. Spiral waves of Rho and F-actin proteins have been reported in Xenopus frog and starfish oocytes [Bement et al., Nat. Cell Biol. 17, 1471 (2015)], while a pulsatile pattern of Rho and myosin proteins has been found in C. elegans embryo [Nishikawa et al., eLife 6, e30537 (2017)]. Here, we propose that these two seemingly distinct dynamic patterns are signatures of a single reaction-diffusion network involving active-Rho, inactive-Rho, actin, and myosin. We show that a small variation in the concentration of other ancillary proteins can give rise to different dynamical states from the same chemical network.


Subject(s)
Caenorhabditis elegans , rho GTP-Binding Proteins , Actins/metabolism , Animals , Myosins , Starfish/metabolism , rho GTP-Binding Proteins/metabolism
10.
Proc Natl Acad Sci U S A ; 119(7)2022 02 15.
Article in English | MEDLINE | ID: mdl-35145030

ABSTRACT

Somatostatin (SS) and allatostatin-C (ASTC) are inhibitory neuropeptides in chordates and protostomes, respectively, which hitherto were identified as orthologs. However, echinoderms have two SS/ASTC-type neuropeptides (SS1 and SS2), and here, our analysis of sequence data indicates that SS1 is an ortholog of ASTC and SS2 is an ortholog of SS. The occurrence of both SS-type and ASTC-type neuropeptides in echinoderms provides a unique context to compare their physiological roles. Investigation of the expression and actions of the ASTC-type neuropeptide ArSS1 in the starfish Asterias rubens revealed that it causes muscle contraction (myoexcitation), contrasting with myoinhibitory effects of the SS-type neuropeptide ArSS2. Our findings suggest that SS-type and ASTC-type neuropeptides are paralogous and originated by gene duplication in a common ancestor of the Bilateria, with only one type being retained in chordates (SS) and protostomes (ASTC) but with both types being retained in echinoderms. Loss of ASTC-type and SS-type neuropeptides in chordates and protostomes, respectively, may have been due to their functional redundancy as inhibitory regulators of physiological processes. Conversely, the retention of both neuropeptide types in echinoderms may be a consequence of the evolution of a myoexcitatory role for ASTC-type neuropeptides mediated by as yet unknown signaling mechanisms.


Subject(s)
Muscles/metabolism , Neuropeptides/metabolism , Starfish/metabolism , Amino Acid Sequence , Animals , Gene Expression Regulation , Starfish/genetics
11.
Development ; 148(10)2021 05 15.
Article in English | MEDLINE | ID: mdl-34042967

ABSTRACT

Regeneration as an adult developmental process is in many aspects similar to embryonic development. Although many studies point out similarities and differences, no large-scale, direct and functional comparative analyses between development and regeneration of a specific cell type or structure in one animal exist. Here, we use the brittle star Amphiura filiformis to characterise the role of the FGF signalling pathway during skeletal development in embryos and arm regeneration. In both processes, we find ligands expressed in ectodermal cells that flank underlying skeletal mesenchymal cells, which express the receptors. Perturbation of FGF signalling showed inhibited skeleton formation in both embryogenesis and regeneration, without affecting other key developmental processes. Differential transcriptome analysis finds mostly differentiation genes rather than transcription factors to be downregulated in both contexts. Moreover, comparative gene analysis allowed us to discover brittle star-specific differentiation genes. In conclusion, our results show that the FGF pathway is crucial for skeletogenesis in the brittle star, as in other deuterostomes, and provide evidence for the re-deployment of a developmental gene regulatory module during regeneration.


Subject(s)
Bone Development/physiology , Bone Regeneration/physiology , Bone and Bones/embryology , Fibroblast Growth Factors/metabolism , Starfish/embryology , Animals , Bone and Bones/metabolism , Ectoderm/cytology , Ectoderm/metabolism , Embryonic Development/genetics , Extremities/growth & development , Mesoderm/cytology , Mesoderm/metabolism , Pyrroles/pharmacology , Receptor, Fibroblast Growth Factor, Type 1/antagonists & inhibitors , Signal Transduction/physiology , Starfish/genetics , Starfish/metabolism , Vascular Endothelial Growth Factor A/metabolism
12.
Mol Reprod Dev ; 88(1): 34-42, 2021 01.
Article in English | MEDLINE | ID: mdl-33244845

ABSTRACT

A relaxin-like gonad-stimulating peptide (RGP) in starfish was the first identified invertebrate gonadotropin responsible for final gamete maturation. An RGP ortholog was newly identified from Astropecten scoparius of the order Paxillosida. The A. scoparius RGP (AscRGP) precursor is encoded by a 354 base pair open reading frame and is a 118 amino acid (aa) protein consisting of a signal peptide (26 aa), B-chain (21 aa), C-peptide (47 aa), and A-chain (24 aa). There are three putative processing sites (Lys-Arg) between the B-chain and C-peptide, between the C-peptide and A-chain, and within the C-peptide. This structural organization revealed that the mature AscRGP is composed of A- and B-chains with two interchain disulfide bonds and one intrachain disulfide bond. The C-terminal residues of the B-chain are Gln-Gly-Arg, which is a potential substrate for formation of an amidated C-terminal Gln residue. Non-amidated (AscRGP-GR) and amidated (AscRGP-NH2 ) peptides were chemically synthesized and their effect on gamete shedding activity was examined using A. scoparius ovaries. Both AscRGP-GR and AscRGP-NH2 induced oocyte maturation and ovulation in similar dose-dependent manners. This is the first report on a C-terminally amidated functional RGP. Collectively, these results suggest that AscRGP-GR and AscRGP-NH2 act as a natural gonadotropic hormone in A. scoparius.


Subject(s)
Gonadotropins/chemistry , Gonadotropins/metabolism , Invertebrate Hormones/chemistry , Invertebrate Hormones/metabolism , Neuropeptides/chemistry , Neuropeptides/metabolism , Oocytes/metabolism , Ovary/metabolism , Starfish/metabolism , Amino Acid Sequence , Animals , Base Sequence , Cells, Cultured , Female , Gonadotropins/chemical synthesis , Gonadotropins/pharmacology , Invertebrate Hormones/chemical synthesis , Invertebrate Hormones/pharmacology , Neuropeptides/chemical synthesis , Neuropeptides/pharmacology , Oocytes/drug effects , Oogenesis/drug effects , Ovary/drug effects , Ovulation/drug effects , Phylogeny , RNA, Messenger/genetics , RNA, Messenger/metabolism , Radial Nerve/metabolism , Starfish/drug effects , Starfish/genetics
13.
Methods Mol Biol ; 2219: 119-135, 2021.
Article in English | MEDLINE | ID: mdl-33074537

ABSTRACT

The signaling mechanisms controlling internal calcium release at fertilization in animals are still largely unknown. Echinoderms, such as the sea star Patiria miniata, produce abundant and easily accessible sperm and eggs. In addition, eggs are naturally synchronized at the same cell cycle stage, collectively making these animals an attractive model to study the signaling proteins controlling fertilization. However, the lack of antibodies to identify proteins in this model system has slowed progress in identifying key signaling molecules. With the advances in mass spectrometry, we present a method for identifying tyrosine phosphorylated proteins binding to GST-tagged SH2 domains in sea star cell lysates for downstream mass spectrometry analysis.


Subject(s)
Protein Interaction Mapping/methods , Protein Interaction Maps , Starfish/physiology , Animals , Blotting, Western/methods , Electrophoresis, Polyacrylamide Gel/methods , Female , Fertilization , Male , Oocytes/cytology , Oocytes/metabolism , Spermatozoa/cytology , Spermatozoa/metabolism , Starfish/metabolism , src Homology Domains
14.
Open Biol ; 10(9): 200172, 2020 09.
Article in English | MEDLINE | ID: mdl-32898470

ABSTRACT

Somatostatin (SS) and allatostatin-C (ASTC) are structurally and evolutionarily related neuropeptides that act as inhibitory regulators of physiological processes in mammals and insects, respectively. Here, we report the first molecular and functional characterization of SS/ASTC-type signalling in a deuterostome invertebrate-the starfish Asterias rubens (phylum Echinodermata). Two SS/ASTC-type precursors were identified in A. rubens (ArSSP1 and ArSSP2) and the structures of neuropeptides derived from these proteins (ArSS1 and ArSS2) were analysed using mass spectrometry. Pharmacological characterization of three cloned A. rubens SS/ASTC-type receptors (ArSSR1-3) revealed that ArSS2, but not ArSS1, acts as a ligand for all three receptors. Analysis of ArSS2 expression in A. rubens using mRNA in situ hybridization and immunohistochemistry revealed stained cells/fibres in the central nervous system, the digestive system (e.g. cardiac stomach) and the body wall and its appendages (e.g. tube feet). Furthermore, in vitro pharmacological tests revealed that ArSS2 causes dose-dependent relaxation of tube foot and cardiac stomach preparations, while injection of ArSS2 in vivo causes partial eversion of the cardiac stomach. Our findings provide new insights into the molecular evolution of SS/ASTC-type signalling in the animal kingdom and reveal an ancient role of SS-type neuropeptides as inhibitory regulators of muscle contractility.


Subject(s)
Echinodermata/metabolism , Signal Transduction , Somatostatin/metabolism , Amino Acid Sequence , Animals , Cloning, Molecular , Echinodermata/classification , Echinodermata/genetics , Evolution, Molecular , Gene Expression , Gene Order , Immunohistochemistry , In Situ Hybridization , Muscle Relaxation/drug effects , Neuropeptides/chemistry , Neuropeptides/genetics , Neuropeptides/metabolism , Neuropeptides/pharmacology , Peptides/chemistry , Peptides/genetics , Peptides/metabolism , Peptides/pharmacology , Phylogeny , Protein Transport , RNA, Messenger/genetics , RNA, Messenger/metabolism , Sequence Alignment , Somatostatin/chemistry , Somatostatin/genetics , Starfish/classification , Starfish/genetics , Starfish/metabolism
15.
Mol Biol Cell ; 31(9): 873-880, 2020 04 15.
Article in English | MEDLINE | ID: mdl-32073992

ABSTRACT

Centrioles must be eliminated or inactivated from the oocyte to ensure that only the two functional centrioles contributed by the sperm are present in the zygote. Such removal can occur during oogenesis, as in Drosophila, where departure of Polo kinase from centrosomes leads to loss of microtubule nucleating activity and centriole removal. In other species, oocyte-derived centrioles are removed around the time of fertilization through incompletely understood mechanisms. Here, we use confocal imaging of live starfish oocytes and zygotes expressing markers of microtubule nucleating activity and centrioles to investigate this question. We first assay the role of Polo-like kinase 1 (Plk1) in centriole elimination. We find that although Plk1 localizes around oocyte-derived centrioles, kinase impairment with BI-2536 does not protect centrioles from removal in the bat star Patiria miniata. Moreover, we uncover that all four oocyte-derived centrioles lose microtubule nucleating activity when retained experimentally in the zygote of the radiate star Asterias forbesi. Interestingly, two such centrioles nevertheless retain the centriolar markers mEGFP::PACT and pmPoc1::mEGFP. Together, these findings indicate that centrioles can persist when Plk1 activity is impaired, as well as when microtubule nucleating activity is lacking, uncovering further diversity in the mechanisms governing centriole removal.


Subject(s)
Cell Cycle Proteins/metabolism , Centrioles/metabolism , Oocytes/metabolism , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins/metabolism , Animals , Centrioles/physiology , Female , Microtubules/metabolism , Oocytes/physiology , Oogenesis , Starfish/metabolism , Starfish/physiology , Polo-Like Kinase 1
16.
J Biol Chem ; 295(10): 3173-3188, 2020 03 06.
Article in English | MEDLINE | ID: mdl-32001617

ABSTRACT

Echinoderms are among the most primitive deuterostomes and have been used as model organisms to understand chordate biology because of their close evolutionary relationship to this phylogenetic group. However, there are almost no data available regarding the N-glycomic capacity of echinoderms, which are otherwise known to produce a diverse set of species-specific glycoconjugates, including ones heavily modified by fucose, sulfate, and sialic acid residues. To increase the knowledge of diversity of carbohydrate structures within this phylum, here we conducted an in-depth analysis of N-glycans from a brittle star (Ophiactis savignyi) as an example member of the class Ophiuroidea. To this end, we performed a multi-step N-glycan analysis by HPLC and various exoglyosidase and chemical treatments in combination with MALDI-TOF MS and MS/MS. Using this approach, we found a wealth of hybrid and complex oligosaccharide structures reminiscent of those in higher vertebrates as well as some classical invertebrate glycan structures. 70% of these N-glycans were anionic, carrying either sialic acid, sulfate, or phosphate residues. In terms of glycophylogeny, our data position the brittle star between invertebrates and vertebrates and confirm the high diversity of N-glycosylation in lower organisms.


Subject(s)
Glycomics/methods , Polysaccharides/chemistry , Starfish/metabolism , Animals , Carbohydrate Sequence , Chromatography, High Pressure Liquid , Glycoside Hydrolases/metabolism , Glycosylation , Oligosaccharides/chemistry , Phylogeny , Polysaccharides/classification , Polysaccharides/metabolism , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Starfish/classification
17.
PLoS One ; 14(11): e0224887, 2019.
Article in English | MEDLINE | ID: mdl-31730649

ABSTRACT

Coral reefs are essential to millions of island inhabitants. Yet, coral reefs are threatened by thermal anomalies associated with climate change and by local disturbances that include land-use change, pollution, and the coral-eating sea star Acanthaster solaris. In combination, these disturbances cause coral mortality that reduce the capacity of reefs to produce enough carbonate to keep up with sea-level rise. This study compared the reef-building capacity of shallow-water inner, patch, and outer reefs in the two islands of Pohnpei and Kosrae, Federated States of Micronesia. We identified which reefs were likely to keep up with sea-level rise under different climate-change scenarios, and estimated whether there were differences across habitats in the threshold of percentage coral cover at which net carbonate production becomes negative. We also quantified the influence of A. solaris on carbonate production. Whereas the northwestern outer reefs of Pohnpei and Kosrae had the highest net rates of carbonate production (18.5 and 16.4 kg CaCO3 m-2 yr-1, respectively), the southeastern outer reefs had the lowest rates of carbonate production (1.2-1.3 and 0.7 kg CaCO3 m-2 yr-1, respectively). The patch reefs of Pohnpei had on average higher net carbonate production rates (9.5 kg CaCO3 m-2 yr-1) than the inner reefs of both Pohnpei and Kosrae (7.0 and 7.8 kg CaCO3 m-2 yr-1, respectively). A. solaris were common on Kosrae and caused an average reduction in carbonate production of 0.6 kg CaCO3 m-2 yr-1 on Kosraean reefs. Northern outer reefs are the most likely habitats to keep up with sea-level rise in both Pohnpei and Kosrae. Overall, the inner reefs of Pohnpei and Kosrae need ~ 5.5% more coral cover to generate the same amount of carbonate as outer reefs. Therefore, inner reefs need special protection from land-use change and local pollution to keep pace with sea-level rise under all climate-change scenarios.


Subject(s)
Carbonates/metabolism , Coral Reefs , Sea Level Rise , Starfish/metabolism , Temperature , Animals , Micronesia , Seawater
18.
Curr Biol ; 29(22): 3909-3912.e3, 2019 11 18.
Article in English | MEDLINE | ID: mdl-31630951

ABSTRACT

The seafloor contains valuable mineral resources, including polymetallic (or manganese) nodules that form on offshore abyssal plains. The largest and most commercially attractive deposits are located in the Clarion Clipperton Fracture Zone (CCZ), in the eastern Pacific Ocean (EP) between Hawaii and Mexico, where testing of a mineral collection system is set to start soon [1]. The requirement to establish pre-mining environmental management plans has prompted numerous recent biodiversity and DNA barcoding surveys across these remote regions. Here we map DNA sequences from sampled ophiuroids (brittle stars, including post-larvae) of the CCZ and Peru Basin onto a substantial tree of life to show unprecedented levels of abyssal ophiuroid phylogenetic diversity including at least three ancient (>70 Ma), previously unknown clades. While substantial dark (unobserved) biodiversity has been reported from various microbial meta-barcoding projects [2, 3], our data show that we have considerably under-estimated the biodiversity of even the most conspicuous mega-faunal invertebrates [4] of the EP abyssal plain.


Subject(s)
Biodiversity , Hydrothermal Vents/analysis , Starfish/metabolism , Animals , Echinodermata/metabolism , Invertebrates , Pacific Ocean , Phylogeny , Prospective Studies
19.
J Cell Biol ; 218(11): 3612-3629, 2019 11 04.
Article in English | MEDLINE | ID: mdl-31537709

ABSTRACT

Tight regulation of intracellular pH (pHi) is essential for biological processes. Fully grown oocytes, having a large nucleus called the germinal vesicle, arrest at meiotic prophase I. Upon hormonal stimulus, oocytes resume meiosis to become fertilizable. At this time, the pHi increases via Na+/H+ exchanger activity, although the regulation and function of this change remain obscure. Here, we show that in starfish oocytes, serum- and glucocorticoid-regulated kinase (SGK) is activated via PI3K/TORC2/PDK1 signaling after hormonal stimulus and that SGK is required for this pHi increase and cyclin B-Cdk1 activation. When we clamped the pHi at 6.7, corresponding to the pHi of unstimulated ovarian oocytes, hormonal stimulation induced cyclin B-Cdk1 activation; thereafter, oocytes failed in actin-dependent chromosome transport and spindle assembly after germinal vesicle breakdown. Thus, this SGK-dependent pHi increase is likely a prerequisite for these events in ovarian oocytes. We propose a model that SGK drives meiotic resumption via concomitant regulation of the pHi and cell cycle machinery.


Subject(s)
CDC2 Protein Kinase/metabolism , Cyclin B/metabolism , Immediate-Early Proteins/metabolism , Meiosis , Oocytes/cytology , Oocytes/metabolism , Ovary/cytology , Protein Serine-Threonine Kinases/metabolism , Starfish , Animals , Female , Hydrogen-Ion Concentration , Starfish/cytology , Starfish/enzymology , Starfish/metabolism
20.
Mar Drugs ; 17(9)2019 Sep 06.
Article in English | MEDLINE | ID: mdl-31500092

ABSTRACT

Glycoconjugated and other polar steroids of starfish have unique chemical structures and show a broad spectrum of biological activities. However, their biological functions remain not well established. Possible biological roles of these metabolites might be indicated by the studies on their distribution in the organism-producer. In order to investigate the localization of polar steroids in body components of the Far Eastern starfish Lethasterias fusca, chemical constituents of body walls, gonads, stomach, pyloric caeca, and coelomic fluid were studied by nanoflow liquid chromatography/mass spectrometry with captive spray ionization (nLC/CSI-QTOF-MS). It has been shown that the levels of polar steroids in the studied body components are qualitatively and quantitatively different. Generally, the obtained data confirmed earlier made assumptions about the digestive function of polyhydroxysteroids and protective role of asterosaponins. The highest level of polar steroids was found in the stomach. Asterosaponins were found in all body components, the main portion of free polyhydroxysteroids and related glycosides were located in the pyloric caeca. In addition, a great inter-individual variability was found in the content of most polar steroids, which may be associated with the peculiarities in their individual physiologic status.


Subject(s)
Glycosides/metabolism , Hydroxysteroids/metabolism , Saponins/metabolism , Starfish/metabolism , Animals , Chromatography, Liquid/methods , Steroids/metabolism , Stomach/physiology , Tandem Mass Spectrometry/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...