Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 9.517
Filter
3.
Sci Rep ; 14(1): 11285, 2024 05 17.
Article in English | MEDLINE | ID: mdl-38760389

ABSTRACT

Feeding behaviors are determined by two main factors. One is the internal state, such as hunger or previous experiences; the other is external factors, such as sensory stimulation. During starvation, animals must balance food-seeking behavior with energy conservation. The fruit fly, Drosophila melanogaster, serves as a useful model for studying food selectivity and various behaviors related to food intake. However, few studies have directly connected food selectivity with other behaviors, such as locomotor activity and sleep. In this study, we report that flies exhibited a preference for specific positions and spent more time in the proximity of sweet sugars, such as sucrose and sucralose, but not non-sweet and nutritious sugars like xylitol and sorbitol. On the other hand, prolonged exposure to sorbitol increased the staying time of flies in the proximity of sorbitol. Additionally, after starvation, flies immediately exhibited a position preference in the proximity of sorbitol. These findings suggest that flies prefer the proximity of sweet food, and starvation alters their preference for nutritious food, which may be beneficial for their survival.


Subject(s)
Drosophila melanogaster , Feeding Behavior , Sugars , Animals , Drosophila melanogaster/physiology , Feeding Behavior/physiology , Starvation , Food Preferences/physiology , Sorbitol/pharmacology , Sucrose/metabolism
4.
Pestic Biochem Physiol ; 201: 105902, 2024 May.
Article in English | MEDLINE | ID: mdl-38685224

ABSTRACT

CRF-like diuretic hormone receptor (CRF/DHR), also known as DH44R in insects, are G-protein coupled receptors (GPCRs) that play a role in regulating osmotic balance in various insect species. These receptors have the potential to be targeted for the development of insecticides. However, our understanding of the role of DHR genes in aphids, including Rhopalosiphum padi, a major wheat pest, is currently limited. In this study, we isolated and characterized two R. padi DHRs (RpDHR1 and RpDHR2). The expression levels of RpDHR1 increased after starvation and were restored after re-feeding. The expression levels of RpDHR1 gene decreased significantly 24 h after injection of dsRNA targeting the gene. Knockdown of RpDHR1 increased aphid mortality under starvation conditions (24, 36, 48 and 60 h). Under starvation and desiccation condition, the aphid mortality decreased after knockdown of RpDHR1. This is the first study to report the role of DHR genes in the starvation and desiccation response of aphids. The results suggest that RpDHR1 is involved in the resistance of R. padi to starvation and dehydration, making it a potential target for insecticide development. Novel insecticides could be created by utilizing DHR agonists to disrupt the physiological processes of insect pests.


Subject(s)
Aphids , Insect Proteins , Animals , Aphids/genetics , Aphids/physiology , Insect Proteins/genetics , Insect Proteins/metabolism , Starvation/genetics , Desiccation , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Phylogeny
5.
Nutrients ; 16(8)2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38674881

ABSTRACT

Anorexia nervosa (AN) induces organ dysfunction caused by malnutrition, including liver damage leading to a rise in transaminases due to hepatocyte damage. The underlying pathophysiology of starvation-induced liver damage is poorly understood. We investigate the effect of a 25% body weight reduction on murine livers in a mouse model and examine possible underlying mechanisms of starvation-induced liver damage. Female mice received a restricted amount of food with access to running wheels until a 25% weight reduction was achieved. This weight reduction was maintained for two weeks to mimic chronic starvation. Alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels were measured spectrophotometrically. Liver fat content was analyzed using an Oil Red O stain, and liver glycogen was determined using a Periodic acid-Schiff (PAS) stain. Immunohistochemical stains were used to investigate macrophages, proliferation, apoptosis, and autophagy. Starvation led to an elevation of AST and ALT values, a decreased amount of liver fat, and reduced glycogen deposits. The density of F4/80+ macrophage numbers as well as proliferating KI67+ cells were decreased by starvation, while apoptosis was not altered. This was paralleled by an increase in autophagy-related protein staining. Increased transaminase values suggest the presence of liver damage in the examined livers of starved mice. The observed starvation-induced liver damage may be attributed to increased autophagy. Whether other mechanisms play an additional role in starvation-induced liver damage remains to be investigated.


Subject(s)
Alanine Transaminase , Aspartate Aminotransferases , Autophagy , Liver , Starvation , Animals , Female , Liver/metabolism , Liver/pathology , Mice , Alanine Transaminase/blood , Aspartate Aminotransferases/blood , Liver Diseases/etiology , Liver Diseases/pathology , Disease Models, Animal , Apoptosis , Macrophages/metabolism , Mice, Inbred C57BL , Liver Glycogen/metabolism
6.
Int. microbiol ; 27(2): 571-580, Abr. 2024. graf
Article in English | IBECS | ID: ibc-232302

ABSTRACT

Host gut microbiomes play an important role in animal health and resilience to conditions, such as malnutrition and starvation. These host-microbiome relationships are poorly understood in the marine mussel Perna canaliculus, which experiences significant variations in food quantity and quality in coastal areas. Prolonged starvation may be a contributory factor towards incidences of mass mortalities in farmed mussel populations, resulting in highly variable production costs and unreliable market supplies. Here, we examine the gut microbiota of P. canaliculus in response to starvation and subsequent re-feeding using high-throughput amplicon sequencing of the 16S rRNA gene. Mussels showed no change in bacterial species richness when subjected to a 14-day starvation, followed by re-feeding/recovery. However, beta bacteria diversity revealed significant shifts (PERMANOVA p-value < 0.001) in community structure in the starvation group and no differences in the subsequent recovery group (compared to the control group) once they were re-fed, highlighting their recovery capability and resilience. Phylum-level community profiles revealed an elevation in dominance of Proteobacteria (ANCOM-BC p-value <0.001) and Bacteroidota (ANCOM-BC p-value = 0.04) and lower relative abundance of Cyanobacteria (ANCOM-BC p-value = 0.01) in the starvation group compared to control and recovery groups. The most abundant genus-level shifts revealed relative increases of the heterotroph Halioglobus (p-value < 0.05) and lowered abundances of the autotroph Synechococcus CC9902 in the starvation group. Furthermore, a SparCC correlation network identified co-occurrence of a cluster of genera with elevated relative abundance in the starved mussels that were positively correlated with Synechococcus CC9902... (AU)


Subject(s)
Animals , Gastrointestinal Microbiome , Veterinary Medicine , Malnutrition , Hunger , Food/classification , Starvation
7.
Lancet ; 403(10434): 1309, 2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38582552
8.
Elife ; 122024 Apr 24.
Article in English | MEDLINE | ID: mdl-38655926

ABSTRACT

The brain regulates food intake in response to internal energy demands and food availability. However, can internal energy storage influence the type of memory that is formed? We show that the duration of starvation determines whether Drosophila melanogaster forms appetitive short-term or longer-lasting intermediate memories. The internal glycogen storage in the muscles and adipose tissue influences how intensely sucrose-associated information is stored. Insulin-like signaling in octopaminergic reward neurons integrates internal energy storage into memory formation. Octopamine, in turn, suppresses the formation of long-term memory. Octopamine is not required for short-term memory because octopamine-deficient mutants can form appetitive short-term memory for sucrose and to other nutrients depending on the internal energy status. The reduced positive reinforcing effect of sucrose at high internal glycogen levels, combined with the increased stability of food-related memories due to prolonged periods of starvation, could lead to increased food intake.


Deciding what and how much to eat is a complex biological process which involves balancing many types of information such as the levels of internal energy storage, the amount of food previously available in the environment, the perceived value of certain food items, and how these are remembered. At the molecular level, food contains carbohydrates that are broken down to produce glucose, which is then delivered to cells under the control of a hormone called insulin. There, glucose molecules are either immediately used or stored as glycogen until needed. Insulin signalling is also known to interact with the brain's decision-making systems that control eating behaviors; however, how our brains balance food intake with energy storage is poorly understood. Berger et al. set out to investigate this question using fruit flies as an experimental model. These insects also produce insulin-like molecules which help to relay information about glycogen levels to the brain's decision-making system. In particular, these signals reach a population of neurons that produce a messenger known as octopamine similar to the human noradrenaline, which helps regulate how much the flies find consuming certain types of foods rewarding. Berger et al. were able to investigate the role of octopamine in helping to integrate information about internal and external resource levels, memory formation and the evaluation of different food types. When the insects were fed normally, increased glycogen levels led to foods rich in carbohydrates being rated as less rewarding by the decision-making cells, and therefore being consumed less. Memories related to food intake were also short-lived ­ in other words, long-term 'food memory' was suppressed, re-setting the whole system after every meal. In contrast, long periods of starvation in insects with high carbohydrates resources produced a stable, long-term memory of food and hunger which persisted even after the flies had fed again. This experience also changed their food rating system, with highly nutritious foods no longer being perceived as sufficiently rewarding. As a result, the flies overate. This study sheds new light on the mechanisms our bodies may use to maintain energy reserves when food is limited. The persistence of 'food memory' after long periods of starvation may also explain why losing weight is difficult, especially during restrictive diets. In the future, Berger et al. hope that this knowledge will contribute to better strategies for weight management.


Subject(s)
Drosophila melanogaster , Energy Metabolism , Octopamine , Animals , Drosophila melanogaster/physiology , Octopamine/metabolism , Memory/physiology , Glycogen/metabolism , Starvation , Sucrose/metabolism , Memory, Long-Term/physiology , Eating/physiology
9.
Econ Hum Biol ; 53: 101372, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38564976

ABSTRACT

This paper investigates health impacts at the end of adolescence of prenatal exposure to multiple shocks, by exploiting the unique natural experiment of the Dutch Hunger Winter. At the end of World War II, a famine occurred abruptly in the Western Netherlands (November 1944-May 1945), pushing the previously and subsequently well-nourished Dutch population to the brink of starvation. We link high-quality military recruits data with objective health measurements for the cohorts born in the years surrounding WWII with newly digitised historical records on calories and nutrient composition of the war rations, daily temperature, and warfare deaths. Using difference-in-differences and triple differences research designs, we first show that the cohorts exposed to the Dutch Hunger Winter since early gestation have a higher Body Mass Index and an increased probability of being obese at age 18. We then find that this effect is partly moderated by warfare exposure and a reduction in energy-adjusted protein intake. Lastly, we account for selective mortality using a copula-based approach and newly-digitised data on survival rates, and find evidence of both selection and scarring effects. These results emphasise the complexity of the mechanisms at play in studying the consequences of early conditions.


Subject(s)
Body Mass Index , Prenatal Exposure Delayed Effects , World War II , Humans , Netherlands , Female , Adolescent , Pregnancy , Male , History, 20th Century , Famine/statistics & numerical data , Adolescent Health , Starvation , Obesity/epidemiology , Military Personnel/statistics & numerical data
10.
Endocr J ; 71(3): 207-208, 2024.
Article in English | MEDLINE | ID: mdl-38538332

Subject(s)
Glucagon , Starvation , Humans , Insulin
12.
Article in English | MEDLINE | ID: mdl-38531153

ABSTRACT

Environmental stresses play critical roles in the physiology of crustaceans. Food deprivation is an important environmental factor and a regular occurrence in both natural aquatic habitats and artificial ponds. However, the underlying physiological response mechanisms to starvation-caused stress in crustaceans are yet to be established. In the present study, the hepatopancreas tissue of Macrobrachium nipponense was transcriptome analyzed and examined for starvation effects on oxidative stress, DNA damage, autophagy, and apoptosis across four fasting stages (0 (control group), 7, 14, and 21 days). These results indicated that a ROS-mediated regulatory mechanism is critical to the entire fasting process. At the initial stage of starvation (fasting 0 d ~ 7 d), ROS concentration increased gradually, activating antioxidant enzymes to protect the cellular machinery from the detrimental effects of oxidative stress triggered by starvation-induced stress. ROS content production (hydrogen peroxide and superoxide anion) then rose continuously with prolonged starvation (fasting 7 d ~ 14 d), reaching peak levels and resulting in autophagy in hepatopancreas cells. During the final stages of starvation (fasting 14 d ~ 21 d), excessive ROS induced DNA damage and cell apoptosis. Furthermore, autophagolysosomes and apoptosis body were further identified with transmission electron microscopy. These findings lay a foundation for further scrutiny of the molecular mechanisms combating starvation-generated stress in M. nipponense and provide fishermen with the theoretical guidance for adopting fasting strategies in M. nipponense aquaculture.


Subject(s)
Autophagy , Hepatopancreas , Oxidative Stress , Palaemonidae , Animals , Palaemonidae/physiology , Palaemonidae/genetics , Palaemonidae/metabolism , Hepatopancreas/metabolism , DNA Damage , Apoptosis , Reactive Oxygen Species/metabolism , Stress, Physiological , Starvation , Food Deprivation , Transcriptome
14.
Life Sci Alliance ; 7(5)2024 May.
Article in English | MEDLINE | ID: mdl-38467419

ABSTRACT

Starvation causes the accumulation of lipid droplets in the liver, a somewhat counterintuitive phenomenon that is nevertheless conserved from flies to humans. Much like fatty liver resulting from overfeeding, hepatic lipid accumulation (steatosis) during undernourishment can lead to lipotoxicity and atrophy of the liver. Here, we found that although surface populations of Astyanax mexicanus undergo this evolutionarily conserved response to starvation, the starvation-resistant cavefish larvae of the same species do not display an accumulation of lipid droplets upon starvation. Moreover, cavefish are resistant to liver atrophy during starvation, providing a unique system to explore strategies for liver protection. Using comparative transcriptomics between zebrafish, surface fish, and cavefish, we identified the fatty acid transporter slc27a2a/fatp2 to be correlated with the development of fatty liver. Pharmacological inhibition of slc27a2a in zebrafish rescues steatosis and atrophy of the liver upon starvation. Furthermore, down-regulation of FATP2 in Drosophila larvae inhibits the development of starvation-induced steatosis, suggesting the evolutionarily conserved importance of the gene in regulating fatty liver upon nutrition deprivation. Overall, our study identifies a conserved, druggable target to protect the liver from atrophy during starvation.


Subject(s)
Fatty Liver , Starvation , Animals , Humans , Zebrafish , Fatty Liver/genetics , Starvation/complications , Larva , Atrophy
16.
Life Sci Alliance ; 7(5)2024 May.
Article in English | MEDLINE | ID: mdl-38408795

ABSTRACT

Starvation and refeeding are mostly unanticipated in the wild in terms of duration, frequency, and nutritional value of the refed state. Notwithstanding this, organisms mount efficient and reproducible responses to restore metabolic homeostasis. Hence, it is intuitive to invoke expectant molecular mechanisms that build anticipatory responses to enable physiological toggling during fed-fast cycles. In this regard, we report anticipatory biogenesis of oscillatory hepatic microRNAs that peak during a fed state and inhibit starvation-responsive genes. Our results clearly demonstrate that the levels of primary and precursor microRNA transcripts increase during a fasting state, in anticipation of a fed response. We delineate the importance of both metabolic and circadian cues in orchestrating hepatic fed microRNA homeostasis in a physiological setting. Besides illustrating metabo-endocrine control, our findings provide a mechanistic basis for the overarching influence of starvation on anticipatory biogenesis. Importantly, by using pharmacological agents that are widely used in clinics, we point out the high potential of interventions to restore homeostasis of hepatic microRNAs, whose deregulated expression is otherwise well established to cause metabolic diseases.


Subject(s)
MicroRNAs , Starvation , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Liver/metabolism , Starvation/metabolism , Homeostasis/genetics
17.
Elife ; 132024 Feb 28.
Article in English | MEDLINE | ID: mdl-38416131

ABSTRACT

Experiments involving periodic stimuli shed light on the interplay between hyper-osmotic stress and glucose starvation in yeast cells.


Subject(s)
Glucose , Starvation , Humans , Osmotic Pressure , Saccharomyces cerevisiae
18.
Nat Commun ; 15(1): 947, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38351211

ABSTRACT

Declining Arctic sea ice is increasing polar bear land use. Polar bears on land are thought to minimize activity to conserve energy. Here, we measure the daily energy expenditure (DEE), diet, behavior, movement, and body composition changes of 20 different polar bears on land over 19-23 days from August to September (2019-2022) in Manitoba, Canada. Polar bears on land exhibited a 5.2-fold range in DEE and 19-fold range in activity, from hibernation-like DEEs to levels approaching active bears on the sea ice, including three individuals that made energetically demanding swims totaling 54-175 km. Bears consumed berries, vegetation, birds, bones, antlers, seal, and beluga. Beyond compensating for elevated DEE, there was little benefit from terrestrial foraging toward prolonging the predicted time to starvation, as 19 of 20 bears lost mass (0.4-1.7 kg•day-1). Although polar bears on land exhibit remarkable behavioral plasticity, our findings reinforce the risk of starvation, particularly in subadults, with forecasted increases in the onshore period.


Subject(s)
Starvation , Ursidae , Humans , Animals , Climate Change , Canada , Diet , Ice Cover , Arctic Regions , Ecosystem
19.
Am J Clin Nutr ; 119(2): 433-443, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38309830

ABSTRACT

BACKGROUND: Poor nutrition early in life is associated with short stature, which is associated with increased risk of cardiovascular disease and mortality in later life. Less evidence is available about the impact of early-life nutrition on height growth in the subsequent generation. OBJECTIVES: This study investigated the associations of famine exposure in utero and early childhood with height across 2 generations. METHODS: We used longitudinal data from the China Health and Nutrition Survey. We included 5401 participants (F1) born in 1955-1966 (calendar year around the Chinese famine in 1959-1961) and their 3930 biological offspring (F2). We classified F1 participants into subgroups by famine exposure status (unexposed/exposed) and timing (fetal-/childhood-exposed) according to their birth year and grouped F2 by their parents' exposure. Linear regression models were applied to examine the associations of famine exposure with adult height of F1 and F2. Linear mixed effect models with fractional polynomial functions were performed to estimate the difference in height between exposure groups of F2 during childhood. RESULTS: Participants (F1) exposed to famine in utero or in childhood were shorter than those unexposed by 0.41 cm (95% CI: 0.03, 0.80) and 1.12 cm (95% CI: 0.75, 1.48), respectively. Offspring (F2) of exposed fathers were also shorter than those of unexposed parents by 1.07 cm (95% CI: 0.28, 1.86) during childhood (<18 y) and by 1.25 cm (95% CI: 0.07, 2.43) in adulthood (≥18 y), and those with exposed parents had a reduced height during childhood by 1.29 cm (95% CI: 0.68, 1.89) (all P values < 0.05). The associations were more pronounced among child offspring of highly-educated F1, particularly for paternal exposure and among female offspring (all P for interaction < 0.05). CONCLUSIONS: The findings support the intergenerational associations of famine exposure in early life with height in Chinese populations, indicating the public health significance of improving the nutritional status of mothers and children in the long run.


Subject(s)
Prenatal Exposure Delayed Effects , Starvation , Adult , Male , Child , Humans , Child, Preschool , Female , Aged , Longitudinal Studies , Famine , Starvation/complications , Nutrition Surveys , China/epidemiology
20.
Eur Eat Disord Rev ; 32(3): 557-574, 2024 May.
Article in English | MEDLINE | ID: mdl-38303556

ABSTRACT

Based on the recent observation that human recombinant leptin (r-Met-hu-leptin; metreleptin) may induce a profound alleviation of the complex symptomatology of patients with anorexia nervosa (AN), we examine the implications for our conceptualisation of this eating disorder. Hypoleptinemia as a core endocrine feature of AN serves as a central and peripheral trigger of tissue-specific adaptations to starvation. In this narrative review, we argue that leptin deficiency may explain many of the puzzling features of this eating disorder. Weight loss can be viewed as a two-step process, with only the second step entailing hypoleptinemia and thereby the entrapment characteristic of AN. We discuss the central and peripheral distribution of leptin receptors and consider possible functional implications of hypoleptinemia. We contrast the slow psychological recovery of patients with AN and of people who experienced starvation upon weight recovery with the rapid onset of improvements upon off-label metreleptin treatment. Characteristics of the sex and age dependent secretion of leptin may contribute to the elevated vulnerability of young females to develop AN.


Subject(s)
Anorexia Nervosa , Feeding and Eating Disorders , Starvation , Female , Humans , Leptin , Weight Loss/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...