Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22.649
Filter
1.
Arch Dermatol Res ; 316(6): 323, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38822901

ABSTRACT

Refractory diabetic wounds are still a clinical challenge that can cause persistent inflammation and delayed healing. Exosomes of adipose stem cells (ADSC-exos) are the potential strategy for wound repair; however, underlying mechanisms remain mysterious. In this study, we isolated ADSC-exos and identified their characterization. High glucose (HG) stimulated human umbilical vein endothelial cells (HUVECs) to establish in vitro model. The biological behaviors were analyzed by Transwell, wound healing, and tube formation assays. The underlying mechanisms were analyzed using quantitative real-time PCR, co-immunoprecipitation (Co-IP), IP, and western blot. The results showed that ADSC-exos promoted HG-inhibited cell migration and angiogenesis. In addition, ADSC-exos increased the levels of TRIM32 in HG-treated HUVECs, which promoted the ubiquitination of STING and downregulated STING protein levels. Rescue experiments affirmed that ADSC-exos promoted migration and angiogenesis of HG-treated HUVECs by regulating the TRIM32/STING axis. In conclusion, ADSC-exos increased the levels of TRIM32, which interacted with STING and promoted its ubiquitination, downregulating STING levels, thus promoting migration and angiogenesis of HG-treated HUVECs. The findings suggested that ADSC-exos could promote diabetic wound healing and demonstrated a new mechanism of ADSC-exos.


Subject(s)
Cell Movement , Exosomes , Glucose , Human Umbilical Vein Endothelial Cells , Membrane Proteins , Tripartite Motif Proteins , Ubiquitin-Protein Ligases , Wound Healing , Humans , Exosomes/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Tripartite Motif Proteins/metabolism , Tripartite Motif Proteins/genetics , Glucose/metabolism , Membrane Proteins/metabolism , Adipose Tissue/metabolism , Adipose Tissue/cytology , Signal Transduction , Ubiquitination , Neovascularization, Physiologic , Cells, Cultured , Stem Cells/metabolism , Transcription Factors
2.
Mol Biol Rep ; 51(1): 710, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824241

ABSTRACT

BACKGROUND: Circular RNA (circRNA) is a key player in regulating the multidirectional differentiation of stem cells. Previous research by our group found that the blue light-emitting diode (LED) had a promoting effect on the osteogenic/odontogenic differentiation of human stem cells from apical papilla (SCAPs). This research aimed to investigate the differential expression of circRNAs during the osteogenic/odontogenic differentiation of SCAPs regulated by blue LED. MATERIALS AND METHODS: SCAPs were divided into the irradiation group (4 J/cm2) and the control group (0 J/cm2), and cultivated in an osteogenic/odontogenic environment. The differentially expressed circRNAs during osteogenic/odontogenic differentiation of SCAPs promoted by blue LED were detected by high-throughput sequencing, and preliminarily verified by qRT-PCR. Functional prediction of these circRNAs was performed using Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) and the circRNA-miRNA-mRNA networks were also constructed. RESULTS: It showed 301 circRNAs were differentially expressed. GO and KEGG analyses suggested that these circRNAs were associated with some signaling pathways related to osteogenic/odontogenic differentiation. And the circRNA-miRNA-mRNA networks were also successfully constructed. CONCLUSION: CircRNAs were involved in the osteogenic/odontogenic differentiation of SCAPs promoted by blue LED. In this biological process, circRNA-miRNA-mRNA networks served an important purpose, and circRNAs regulated this process through certain signaling pathways.


Subject(s)
Cell Differentiation , Dental Papilla , Light , Odontogenesis , Osteogenesis , RNA, Circular , Stem Cells , RNA, Circular/genetics , RNA, Circular/metabolism , Humans , Osteogenesis/genetics , Cell Differentiation/genetics , Stem Cells/metabolism , Stem Cells/cytology , Odontogenesis/genetics , Dental Papilla/cytology , Dental Papilla/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Gene Ontology , Cells, Cultured , Gene Expression Profiling/methods , RNA, Messenger/genetics , RNA, Messenger/metabolism , Gene Regulatory Networks , High-Throughput Nucleotide Sequencing/methods , Gene Expression Regulation/radiation effects , Blue Light
3.
J Transl Med ; 22(1): 526, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38822352

ABSTRACT

BACKGROUND: Neutrophils are granulocytes with essential antimicrobial effector functions and short lifespans. During infection or sterile inflammation, emergency granulopoiesis leads to release of immature neutrophils from the bone marrow, serving to boost circulating neutrophil counts. Steady state and emergency granulopoiesis are incompletely understood, partly due to a lack of genetically amenable models of neutrophil development. METHODS: We optimised a method for ex vivo production of human neutrophils from CD34+ haematopoietic progenitors. Using flow cytometry, we phenotypically compared cultured neutrophils with native neutrophils from donors experiencing emergency granulopoiesis, and steady state neutrophils from non-challenged donors. We carry out functional and proteomic characterisation of cultured neutrophils and establish genome editing of progenitors. RESULTS: We obtain high yields of ex vivo cultured neutrophils, which phenotypically resemble immature neutrophils released into the circulation during emergency granulopoiesis. Cultured neutrophils have similar rates of ROS production and bacterial killing but altered degranulation, cytokine release and antifungal activity compared to mature neutrophils isolated from peripheral blood. These differences are likely due to incomplete synthesis of granule proteins, as demonstrated by proteomic analysis. CONCLUSION: Ex vivo cultured neutrophils are genetically tractable via genome editing of precursors and provide a powerful model system for investigating the properties and behaviour of immature neutrophils.


Subject(s)
Antigens, CD34 , Neutrophils , Humans , Neutrophils/metabolism , Neutrophils/cytology , Antigens, CD34/metabolism , Cells, Cultured , Reactive Oxygen Species/metabolism , Proteomics , Hematopoietic Stem Cells/metabolism , Hematopoietic Stem Cells/cytology , Gene Editing , Cell Degranulation , Stem Cells/metabolism , Stem Cells/cytology , Cytokines/metabolism , Phenotype
4.
Development ; 151(11)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38832826

ABSTRACT

Germline maintenance relies on adult stem cells to continually replenish lost gametes over a lifetime and respond to external cues altering the demands on the tissue. Mating worsens germline homeostasis over time, yet a negative impact on stem cell behavior has not been explored. Using extended live imaging of the Drosophila testis stem cell niche, we find that short periods of mating in young males disrupts cytokinesis in germline stem cells (GSCs). This defect leads to failure of abscission, preventing release of differentiating cells from the niche. We find that GSC abscission failure is caused by increased Ecdysone hormone signaling induced upon mating, which leads to disrupted somatic encystment of the germline. Abscission failure is rescued by isolating males from females, but recurs with resumption of mating. Importantly, reiterative mating also leads to increased GSC loss, requiring increased restoration of stem cells via symmetric renewal and de-differentiation. Together, these results suggest a model whereby acute mating results in hormonal changes that negatively impact GSC cytokinesis but preserves the stem cell population.


Subject(s)
Cytokinesis , Drosophila melanogaster , Ecdysone , Germ Cells , Testis , Animals , Male , Ecdysone/metabolism , Testis/metabolism , Female , Drosophila melanogaster/metabolism , Germ Cells/metabolism , Germ Cells/cytology , Stem Cell Niche , Stem Cells/metabolism , Stem Cells/cytology , Cell Differentiation , Signal Transduction , Drosophila Proteins/metabolism , Drosophila Proteins/genetics
5.
Cell Stem Cell ; 31(5): 591-592, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38701755

ABSTRACT

Recently in Cell Metabolism, Wei et al.1 unveiled a brain-to-gut pathway that conveys psychological stress to intestinal epithelial cells, leading to their dysfunction. This gut-brain axis involves a microbial metabolite, indole-3-acetate (IAA), as a niche signal that hampers mitochondrial respiration to skew intestinal stem cell (ISC) fate.


Subject(s)
Stem Cells , Stem Cells/metabolism , Stem Cells/cytology , Animals , Humans , Intestines/cytology , Intestines/microbiology , Stress, Physiological , Gastrointestinal Microbiome/physiology , Intestinal Mucosa/metabolism , Intestinal Mucosa/microbiology , Cell Differentiation , Mitochondria/metabolism
6.
J Nanobiotechnology ; 22(1): 219, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38698419

ABSTRACT

BACKGROUND: Adipose-derived stem cells (ASCs) represent the most advantageous choice for soft tissue regeneration. Studies proved the recruitment of ASCs post tissue injury was mediated by chemokine CXCL12, but the mechanism by which CXCL12 is generated after tissue injury remains unclear. Migrasomes are newly discovered membrane-bound organelles that could deliver CXCL12 spatially and temporally in vivo. In this study, we sought to investigate whether migrasomes participate ASC-mediated tissue regeneration. METHODS: Discrepant and asymmetrical soft tissue regeneration mice model were established, in which HE staining, immunofluorescent staining, western blot and qPCR were conducted to confirm the role of CXCL12 and migrasomes in ASC-mediated tissue regeneration. Characterization of ASC-derived migrasomes were carried out by confocal microscopy, scanning electron microscopy, transmission electron microscopy as well as western blot analysis. The function and mechanism of migrasomes were further testified by assisting tissue regeneration with isolated migrasomes in vivo and by in vitro transwell combined with co-culture system. RESULTS: Here, we show for the first time that migrasomes participate in soft tissue regeneration. ASCs generate migrasomes enriched with CXCL12 to mediate tissue regeneration. Migrasomes from ASCs could promote stem cells migration by activating CXCR4/RhoA signaling in vivo and in vitro. Chemoattracted ASCs facilitate regeneration, as demonstrated by the upregulation of an adipogenesis-associated protein. This positive feed-back-loop creates a favorable microenvironment for soft tissue regeneration. Thus, migrasomes represent a new therapeutic target for ASC-mediated tissue regeneration. CONCLUSIONS: Our findings reveal a previously unknown function of ASCs in mediating tissue regeneration by generating migrasomes. The ASC-derived migrasomes can restore tissue regeneration by recruiting stem cells, which highlighting the potential application of ASC-derived migrasomes in regenerative medicine.


Subject(s)
Adipose Tissue , Chemokine CXCL12 , Receptors, CXCR4 , Regeneration , Stem Cells , rhoA GTP-Binding Protein , Chemokine CXCL12/metabolism , Animals , Receptors, CXCR4/metabolism , Mice , Adipose Tissue/cytology , Adipose Tissue/metabolism , rhoA GTP-Binding Protein/metabolism , Stem Cells/metabolism , Stem Cells/cytology , Mice, Inbred C57BL , Feedback, Physiological , Cell Movement , Cells, Cultured , Male , Signal Transduction
7.
Nat Commun ; 15(1): 3873, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38719882

ABSTRACT

Human glial progenitor cells (hGPCs) exhibit diminished expansion competence with age, as well as after recurrent demyelination. Using RNA-sequencing to compare the gene expression of fetal and adult hGPCs, we identify age-related changes in transcription consistent with the repression of genes enabling mitotic expansion, concurrent with the onset of aging-associated transcriptional programs. Adult hGPCs develop a repressive transcription factor network centered on MYC, and regulated by ZNF274, MAX, IKZF3, and E2F6. Individual over-expression of these factors in iPSC-derived hGPCs lead to a loss of proliferative gene expression and an induction of mitotic senescence, replicating the transcriptional changes incurred during glial aging. miRNA profiling identifies the appearance of an adult-selective miRNA signature, imposing further constraints on the expansion competence of aged GPCs. hGPC aging is thus associated with acquisition of a MYC-repressive environment, suggesting that suppression of these repressors of glial expansion may permit the rejuvenation of aged hGPCs.


Subject(s)
Aging , MicroRNAs , Neuroglia , Transcription Factors , Humans , Neuroglia/metabolism , Neuroglia/cytology , Aging/genetics , Aging/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Cellular Senescence/genetics , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/cytology , Stem Cells/metabolism , Stem Cells/cytology , Proto-Oncogene Proteins c-myc/metabolism , Proto-Oncogene Proteins c-myc/genetics , Adult , Gene Regulatory Networks , Cell Proliferation/genetics , Gene Expression Regulation, Developmental , Gene Expression Profiling
8.
FASEB J ; 38(10): e23626, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38739537

ABSTRACT

Transplantation of adipose-derived stem cells (ASCs) is a promising option in the field of chronic wounds treatment. However, the effectiveness of ASCs therapies has been hampered by highly inflammatory environment in chronic wound areas. These problems could be partially circumvented using efficient approaches that boost the survival and anti-inflammatory capacity of transplanted ASCs. Here, by application of mechanical stretch (MS), we show that ASCs exhibits increased survival and immunoregulatory properties in vitro. MS triggers the secretion of macrophage colony stimulating factor (M-CSF) from ASCs, a chemokine that is linked to anti-inflammatory M2-like macrophages polarization. When the MS-ASCs were transplanted to chronic wounds, the wound area yields significantly faster closure rate and lower inflammatory mediators, largely due to macrophages polarization driven by transplanted MS-ASCs. Thus, our work shows that mechanical stretch can be harnessed to enhance ASCs transplantation efficiency in chronic wounds treatment.


Subject(s)
Adipose Tissue , Macrophages , Wound Healing , Wound Healing/physiology , Macrophages/metabolism , Animals , Adipose Tissue/cytology , Humans , Mice , Stress, Mechanical , Stem Cells/cytology , Stem Cells/metabolism , Cells, Cultured , Male , Macrophage Colony-Stimulating Factor/metabolism , Stem Cell Transplantation/methods , Inflammation/therapy , Mice, Inbred C57BL
10.
Stem Cell Res Ther ; 15(1): 137, 2024 May 12.
Article in English | MEDLINE | ID: mdl-38735979

ABSTRACT

Scar tissue is the inevitable result of repairing human skin after it has been subjected to external destructive stimuli. It leads to localized damage to the appearance of the skin, accompanied by symptoms such as itching and pain, which reduces the quality of life of the patient and causes serious medical burdens. With the continuous development of economy and society, there is an increasing demand for beauty. People are looking forward to a safer and more effective method to eliminate pathological scarring. In recent years, adipose-derived stem cells (ADSCs) have received increasing attention from researchers. It can effectively improve pathological scarring by mediating inflammation, regulating fibroblast proliferation and activation, and vascular reconstruction. This review focuses on the pathophysiological mechanisms of hypertrophic scarring, summarizing the therapeutic effects of in vitro, in vivo, and clinical studies on the therapeutic effects of ADSCs in the field of hypertrophic scarring prevention and treatment, the latest application techniques, such as cell-free therapies utilizing ADSCs, and discussing the advantages and limitations of ADSCs. Through this review, we hope to further understand the characterization of ADSC and clarify the effectiveness of its application in hypertrophic scarring treatment, so as to provide clinical guidance.


Subject(s)
Adipose Tissue , Cicatrix, Hypertrophic , Humans , Cicatrix, Hypertrophic/therapy , Cicatrix, Hypertrophic/metabolism , Cicatrix, Hypertrophic/pathology , Adipose Tissue/cytology , Adipose Tissue/metabolism , Stem Cells/metabolism , Stem Cells/cytology , Secretome/metabolism , Animals , Stem Cell Transplantation/methods
11.
PLoS One ; 19(5): e0303154, 2024.
Article in English | MEDLINE | ID: mdl-38739591

ABSTRACT

BACKGROUND: Flowable resin composites (FRC) are tooth-colored restorative materials that contain a lower filler particle content, and lower viscosity than their bulk counterparts, making them useful for specific clinical applications. Yet, their chemical makeup may impact the cellular population of the tooth pulp. This in-vitro study assessed the cytocompatibility and odontogenic differentiation capacity of dental pulp stem cells (DPSCs) in response to two recent FRC material extracts. METHODS: Extracts of the FRC Aura easyflow (AEF) and Polofil NHT Flow (PNF) were applied to DPSCs isolated from extracted human teeth. Cell viability of DPSCs was assessed using MTT assay on days 1, 3 and 7. Cell migration was assessed using the wound healing assay. DPSCs' capacity for osteo/odontogenic differentiation was assessed by measuring the degree of mineralization by Alizarin Red S staining, alkaline phosphatase enzyme (ALP) activity, and monitoring the expression of osteoprotegerin (OPG), RUNX Family Transcription Factor 2 (RUNX2), and the odontogenic marker dentin sialophosphoprotein (DSPP) by RT-PCR. Monomer release from the FRC was also assessed by High-performance liquid chromatography analysis (HPLC). RESULTS: DPSCs exposed to PNF extracts showed significantly higher cell viability, faster wound closure, and superior odontogenic differentiation. This was apparent through Alizarin Red staining of calcified nodules, elevated alkaline phosphatase activity, and increased expression of osteo/odontogenic markers. Moreover, HPLC analysis revealed a higher release of TEDGMA, UDMA, and BISGMA from AEF. CONCLUSIONS: PNF showed better cytocompatibility and enhancement of odontogenic differentiation than AEF.


Subject(s)
Cell Differentiation , Composite Resins , Dental Pulp , Stem Cells , Dental Pulp/cytology , Dental Pulp/metabolism , Humans , Stem Cells/cytology , Stem Cells/drug effects , Stem Cells/metabolism , Cell Differentiation/drug effects , Composite Resins/chemistry , Composite Resins/pharmacology , Cell Survival/drug effects , Odontogenesis/drug effects , Cell Movement/drug effects , Cells, Cultured
12.
J Biomed Mater Res B Appl Biomater ; 112(5): e35414, 2024 May.
Article in English | MEDLINE | ID: mdl-38733611

ABSTRACT

Utilizing natural scaffold production derived from extracellular matrix components presents a promising strategy for advancing in vitro spermatogenesis. In this study, we employed decellularized human placental tissue as a scaffold, upon which neonatal mouse spermatogonial cells (SCs) were cultured three-dimensional (3D) configuration. To assess cellular proliferation, we examined the expression of key markers (Id4 and Gfrα1) at both 1 and 14 days into the culture. Our quantitative reverse transcription-polymerase chain reaction (qRT-PCR) analysis revealed a notable increase in Gfrα1 gene expression, with the 3D culture group exhibiting the highest levels. Furthermore, the relative frequency of Gfrα1-positive cells significantly rose from 38.1% in isolated SCs to 46.13% and 76.93% in the two-dimensional (2D) and 3D culture systems, respectively. Moving forward to days 14 and 35 of the culture period, we evaluated the expression of differentiating markers (Sycp3, acrosin, and Protamine 1). Sycp3 and Prm1 gene expression levels were upregulated in both 2D and 3D cultures, with the 3D group displaying the highest expression. Additionally, acrosin gene expression increased notably within the 3D culture. Notably, at the 35-day mark, the percentage of Prm1-positive cells in the 3D group (36.4%) significantly surpassed that in the 2D group (10.96%). This study suggests that the utilization of placental scaffolds holds significant promise as a bio-scaffold for enhancing mouse in vitro spermatogenesis.


Subject(s)
Cell Differentiation , Cell Proliferation , Placenta , Animals , Female , Mice , Male , Humans , Placenta/cytology , Placenta/metabolism , Pregnancy , Spermatogonia/cytology , Spermatogonia/metabolism , Tissue Scaffolds/chemistry , Decellularized Extracellular Matrix/chemistry , Decellularized Extracellular Matrix/metabolism , Stem Cells/metabolism , Stem Cells/cytology
13.
Nat Commun ; 15(1): 4124, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750026

ABSTRACT

Basal progenitor cells are crucial for maintaining foregut (the esophagus and forestomach) homeostasis. When their function is dysregulated, it can promote inflammation and tumorigenesis. However, the mechanisms underlying these processes remain largely unclear. Here, we employ genetic mouse models to reveal that Jag1/2 regulate esophageal homeostasis and foregut tumorigenesis by modulating the function of basal progenitor cells. Deletion of Jag1/2 in mice disrupts esophageal and forestomach epithelial homeostasis. Mechanistically, Jag1/2 deficiency impairs activation of Notch signaling, leading to reduced squamous epithelial differentiation and expansion of basal progenitor cells. Moreover, Jag1/2 deficiency exacerbates the deoxycholic acid (DCA)-induced squamous epithelial injury and accelerates the initiation of squamous cell carcinoma (SCC) in the forestomach. Importantly, expression levels of JAG1/2 are lower in the early stages of human esophageal squamous cell carcinoma (ESCC) carcinogenesis. Collectively, our study demonstrates that Jag1/2 are important for maintaining esophageal and forestomach homeostasis and the onset of foregut SCC.


Subject(s)
Carcinogenesis , Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Esophagus , Homeostasis , Jagged-1 Protein , Jagged-2 Protein , Stem Cells , Animals , Jagged-1 Protein/metabolism , Jagged-1 Protein/genetics , Esophageal Neoplasms/genetics , Esophageal Neoplasms/pathology , Esophageal Neoplasms/metabolism , Esophagus/pathology , Esophagus/metabolism , Stem Cells/metabolism , Mice , Jagged-2 Protein/metabolism , Jagged-2 Protein/genetics , Humans , Carcinogenesis/genetics , Carcinogenesis/pathology , Esophageal Squamous Cell Carcinoma/pathology , Esophageal Squamous Cell Carcinoma/genetics , Esophageal Squamous Cell Carcinoma/metabolism , Mice, Knockout , Signal Transduction , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/metabolism , Receptors, Notch/metabolism , Receptors, Notch/genetics , Cell Differentiation , Male , Female
14.
Int J Med Sci ; 21(6): 1155-1164, 2024.
Article in English | MEDLINE | ID: mdl-38774749

ABSTRACT

Introduction: Clinical studies have shown that endodontically-treated nonvital teeth exhibit less root resorption during orthodontic tooth movement. The purpose of this study was to explore whether hypoxic dental pulp stem cells (DPSCs) can promote osteoclastogenesis in orthodontically induced inflammatory root resorption (OIIRR). Methods: Succinate in the supernatant of DPSCs under normal and hypoxic conditions was measured by a succinic acid assay kit. The culture supernatant of hypoxia-treated DPSCs was used as conditioned medium (Hypo-CM). Bone marrow-derived macrophages (BMDMs) from succinate receptor 1 (SUCNR1)-knockout or wild-type mice were cultured with conditioned medium (CM), exogenous succinate or a specific inhibitor of SUCNR1 (4c). Tartrate-resistant acid phosphatase (TRAP) staining, Transwell assays, qPCR, Western blotting, and resorption assays were used to evaluate osteoclastogenesis-related changes. Results: The concentration of succinate reached a maximal concentration at 6 h in the supernatant of hypoxia-treated DPSCs. Hypo-CM-treated macrophages were polarized to M1 proinflammatory macrophages. Hypo-CM treatment significantly increased the formation and differentiation of osteoclasts and increased the expression of osteoclastogenesis-related genes, and this effect was inhibited by the specific succinate inhibitor 4c. Succinate promoted chemotaxis and polarization of M1-type macrophages with increased expression of osteoclast generation-related genes. SUCNR1 knockout decreased macrophage migration, M1 macrophage polarization, differentiation and maturation of osteoclasts, as shown by TRAP and NFATc1 expression and cementum resorption. Conclusions: Hypoxic DPSC-derived succinate may promote osteoclast differentiation and root resorption. The regulation of the succinate-SUCNR1 axis may contribute to the reduction in the OIIRR.


Subject(s)
Dental Pulp , Mice, Knockout , Osteoclasts , Osteogenesis , Root Resorption , Stem Cells , Succinic Acid , Animals , Mice , Dental Pulp/cytology , Dental Pulp/drug effects , Dental Pulp/metabolism , Osteoclasts/drug effects , Osteoclasts/metabolism , Root Resorption/pathology , Root Resorption/metabolism , Humans , Succinic Acid/metabolism , Osteogenesis/drug effects , Stem Cells/metabolism , Stem Cells/drug effects , Cell Differentiation/drug effects , Macrophages/metabolism , Macrophages/drug effects , Cell Hypoxia/drug effects , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/genetics , Culture Media, Conditioned/pharmacology , Cells, Cultured
15.
Dev Cell ; 59(10): 1231-1232, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38772342

ABSTRACT

Brown adipocytes are found in several fat depots, however, the origins and contributions of different lineages of adipogenic progenitor cells (APCs) to these depots are unclear. In this issue of Developmental Cell, Shi et al. show that platelet-derived growth factor receptor ß (PDGFRß)-lineage and T-box transcription factor 18 (TBX18)-lineage APCs differentially contribute to brown adipogenesis across these depots.


Subject(s)
Adipogenesis , Receptors, Notch , Stem Cells , Adipogenesis/physiology , Animals , Receptors, Notch/metabolism , Stem Cells/metabolism , Stem Cells/cytology , Adipose Tissue, Brown/metabolism , Adipose Tissue, Brown/cytology , Humans , Adipocytes, Brown/metabolism , Adipocytes, Brown/cytology , Receptor, Platelet-Derived Growth Factor beta/metabolism , Receptor, Platelet-Derived Growth Factor beta/genetics , Cell Differentiation , Cell Lineage , Mice , Signal Transduction
16.
Cell Biochem Funct ; 42(4): e4058, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38783647

ABSTRACT

We aimed to evaluate the materials based on 4-methacryloxyethyl trimellitate anhydride/methyl methacrylate tri-n-butylborane (Super-bond [SB]) and nano hydroxyapatite (naHAp) for the repair of perforation at pulp chamber floor (PPF) in vitro and in vivo models. SB and naHAp were mixed in the mass ratio of 10% or 30% to produce naHAp/SB. Human periodontal ligament stem cells (HPDLSCs) were cultured on resin discs of SB or naHAp/SB to analyze the effects of naHAp/SB on cell adhesion, proliferation, and cementoblastic differentiation. A rat PPF model was treated with SB or naHAp/SB to examine the effects of naHAp/SB on the healing of defected cementum and periodontal ligament (PDL) at the site of PPF. HPDLSCs were spindle-shaped and adhered to all resin discs. Changing the resin from SB to naHAp/SB did not significantly alter cell proliferation. Both 10% and 30% naHAp/SB were more effective than SB in promoting cementoblastic differentiation of HPDLSCs. In the rat PPF model, 30% naHAp/SB was more effective than SB in promoting the formation Sharpey's fiber-like structures with expression of the PDL-related marker and cementum-like structures with expression of cementum-related markers. In conclusion, 30% naHAp/SB can be the new restorative material for PPF because it exhibited the abilities of adhering to dentin and healing of defected periodontal tissue.


Subject(s)
Boron Compounds , Durapatite , Methacrylates , Periodontal Ligament , Animals , Rats , Humans , Durapatite/chemistry , Durapatite/pharmacology , Periodontal Ligament/drug effects , Periodontal Ligament/cytology , Periodontal Ligament/metabolism , Boron Compounds/pharmacology , Boron Compounds/chemistry , Methacrylates/chemistry , Methacrylates/pharmacology , Cell Differentiation/drug effects , Wound Healing/drug effects , Male , Cell Proliferation/drug effects , Dental Pulp Cavity/metabolism , Dental Pulp Cavity/drug effects , Stem Cells/drug effects , Stem Cells/cytology , Stem Cells/metabolism , Cells, Cultured , Rats, Sprague-Dawley , Methylmethacrylates/chemistry , Methylmethacrylates/pharmacology , Cell Adhesion/drug effects
17.
Bone ; 184: 117113, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38703937

ABSTRACT

Ca2+/calmodulin-dependent protein kinase kinase 2 (CaMKK2) is a multi-functional, serine/threonine protein kinase with predominant roles in inflammation, systemic energy metabolism, and bone remodeling. We previously reported that global ablation of CaMKK2 or its systemic pharmacological inhibition led to bone mass accrual in mice by stimulating osteoblasts and inhibiting osteoclasts. However, a direct, cell-intrinsic role for the kinase in the osteoblast lineage has not been established. Here we report that conditional deletion of CaMKK2 from osteoprogenitors, using the Osterix 1 (Osx1) - GFP::Cre (tetracycline-off) mouse line, resulted in increased trabecular bone mass due to an acute stimulation of osteoblast function in male and female mice. The acute simulation of osteoblasts and bone formation following conditional ablation of osteoprogenitor-derived CaMKK2 was sustained only in female mice. Periosteal bone formation at the cortical bone was enhanced only in male conditional knockout mice without altering cortical bone mass or strength. Prolonged deletion of CaMKK2 in early osteoblasts was accompanied by a stimulation of osteoclasts in both sexes, indicating a coupling effect. Notably, alterations in trabecular and cortical bone mass were absent in the doxycycline-removed "Cre-only" Osx1-GFP::Cre mice. Thus, the increase in osteoblast function at the trabecular and cortical bone surfaces following the conditional deletion of CaMKK2 in osteoprogenitors is indicative of a direct but sex-divergent role for the kinase in osteoblasts.


Subject(s)
Calcium-Calmodulin-Dependent Protein Kinase Kinase , Osteoblasts , Sp7 Transcription Factor , Animals , Osteoblasts/metabolism , Female , Calcium-Calmodulin-Dependent Protein Kinase Kinase/metabolism , Male , Sp7 Transcription Factor/metabolism , Sp7 Transcription Factor/genetics , Osteogenesis/physiology , Sex Characteristics , Mice , Mice, Knockout , Osteoclasts/metabolism , Stem Cells/metabolism , Gene Deletion
18.
Clin Transl Med ; 14(5): e1720, 2024 May.
Article in English | MEDLINE | ID: mdl-38778457

ABSTRACT

Melanocyte stem cells (MSCs), melanocyte lineage-specific skin stem cells derived from the neural crest, are observed in the mammalian hair follicle, the epidermis or the sweat gland. MSCs differentiate into mature melanin-producing melanocytes, which confer skin and hair pigmentation and uphold vital skin functions. In controlling and coordinating the homeostasis, repair and regeneration of skin tissue, MSCs play a vital role. Decreased numbers or impaired functions of MSCs are closely associated with the development and therapy of many skin conditions, such as hair graying, vitiligo, wound healing and melanoma. With the advancement of stem cell technology, the relevant features of MSCs have been further elaborated. In this review, we provide an exhaustive overview of cutaneous MSCs and highlight the latest advances in MSC research. A better understanding of the biological characteristics and micro-environmental regulatory mechanisms of MSCs will help to improve clinical applications in regenerative medicine, skin pigmentation disorders and cancer therapy. KEY POINTS: This review provides a concise summary of the origin, biological characteristics, homeostatic maintenance and therapeutic potential of cutaneous MSCs. The role and potential application value of MSCs in skin pigmentation disorders are discussed. The significance of single-cell RNA sequencing, CRISPR-Cas9 technology and practical models in MSCs research is highlighted.


Subject(s)
Melanocytes , Humans , Melanocytes/cytology , Homeostasis , Skin/cytology , Stem Cells/cytology , Stem Cells/metabolism , Animals , Cell Differentiation
19.
Cells ; 13(10)2024 May 14.
Article in English | MEDLINE | ID: mdl-38786058

ABSTRACT

Fibrosis is a pathological condition consisting of a delayed deposition and remodeling of the extracellular matrix (ECM) by fibroblasts. This deregulation is mostly triggered by a chronic stimulus mediated by pro-inflammatory cytokines, such as TNF-α and IL-1, which activate fibroblasts. Due to their anti-inflammatory and immunosuppressive potential, dental pulp stem cells (DPSCs) could affect fibrotic processes. This study aims to clarify if DPSCs can affect fibroblast activation and modulate collagen deposition. We set up a transwell co-culture system, where DPSCs were seeded above the monolayer of fibroblasts and stimulated with LPS or a combination of TNF-α and IL-1ß and quantified a set of genes involved in inflammasome activation or ECM deposition. Cytokines-stimulated co-cultured fibroblasts, compared to unstimulated ones, showed a significant increase in the expression of IL-1ß, IL-6, NAIP, AIM2, CASP1, FN1, and TGF-ß genes. At the protein level, IL-1ß and IL-6 release as well as FN1 were increased in stimulated, co-cultured fibroblasts. Moreover, we found a significant increase of MMP-9 production, suggesting a role of DPSCs in ECM remodeling. Our data seem to suggest a crosstalk between cultured fibroblasts and DPSCs, which seems to modulate genes involved in inflammasome activation, ECM deposition, wound healing, and fibrosis.


Subject(s)
Collagen , Dental Pulp , Fibroblasts , Inflammasomes , Stem Cells , Dental Pulp/cytology , Dental Pulp/metabolism , Fibroblasts/metabolism , Humans , Inflammasomes/metabolism , Stem Cells/metabolism , Stem Cells/cytology , Collagen/metabolism , Coculture Techniques , Extracellular Matrix/metabolism , Cells, Cultured , Cytokines/metabolism , Dermis/cytology , Dermis/metabolism , Interleukin-1beta/metabolism
20.
Cells ; 13(10)2024 May 16.
Article in English | MEDLINE | ID: mdl-38786069

ABSTRACT

In recent years, there has been a surge in demand for and research focus on cell therapy, driven by the tissue-regenerative and disease-treating potentials of stem cells. Among the candidates, dental pulp stem cells (DPSCs) or human exfoliated deciduous teeth (SHED) have garnered significant attention due to their easy accessibility (non-invasive), multi-lineage differentiation capability (especially neurogenesis), and low immunogenicity. Utilizing these stem cells for clinical purposes requires careful culture techniques such as excluding animal-derived supplements. Human platelet lysate (hPL) has emerged as a safer alternative to fetal bovine serum (FBS) for cell culture. In our study, we assessed the impact of hPL as a growth factor supplement for culture medium, also conducting a characterization of SHED cultured in hPL-supplemented medium (hPL-SHED). The results showed that hPL has effects in enhancing cell proliferation and migration and increasing cell survivability in oxidative stress conditions induced by H2O2. The morphology of hPL-SHED exhibited reduced size and elongation, with a differentiation capacity comparable to or even exceeding that of SHED cultured in a medium supplemented with fetal bovine serum (FBS-SHED). Moreover, no evidence of chromosome abnormalities or tumor formation was detected. In conclusion, hPL-SHED emerges as a promising candidate for cell therapy, exhibiting considerable potential for clinical investigation.


Subject(s)
Blood Platelets , Cell Differentiation , Cell Proliferation , Stem Cells , Tooth, Deciduous , Humans , Tooth, Deciduous/cytology , Stem Cells/cytology , Stem Cells/metabolism , Blood Platelets/metabolism , Cattle , Cell Differentiation/drug effects , Animals , Cell Proliferation/drug effects , Dental Pulp/cytology , Cell Movement/drug effects , Culture Media/pharmacology , Cells, Cultured , Cell Extracts/pharmacology , Hydrogen Peroxide/pharmacology , Oxidative Stress/drug effects , Cell Survival/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...