Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
PLoS One ; 16(12): e0260737, 2021.
Article in English | MEDLINE | ID: mdl-34882719

ABSTRACT

Modern ultrasound (US) imaging is increasing its clinical impact, particularly with the introduction of US-based quantitative imaging biomarkers. Continued development and validation of such novel imaging approaches requires imaging phantoms that recapitulate the underlying anatomy and pathology of interest. However, current US phantom designs are generally too simplistic to emulate the structure and variability of the human body. Therefore, there is a need to create a platform that is capable of generating well-characterized phantoms that can mimic the basic anatomical, functional, and mechanical properties of native tissues and pathologies. Using a 3D-printing technique based on stereolithography, we fabricated US phantoms using soft materials in a single fabrication session, without the need for material casting or back-filling. With this technique, we induced variable levels of stable US backscatter in our printed materials in anatomically relevant 3D patterns. Additionally, we controlled phantom stiffness from 7 to >120 kPa at the voxel level to generate isotropic and anisotropic phantoms for elasticity imaging. Lastly, we demonstrated the fabrication of channels with diameters as small as 60 micrometers and with complex geometry (e.g., tortuosity) capable of supporting blood-mimicking fluid flow. Collectively, these results show that projection-based stereolithography allows for customizable fabrication of complex US phantoms.


Subject(s)
Phantoms, Imaging , Printing, Three-Dimensional/instrumentation , Stereolithography/instrumentation , Ultrasonography/methods , Hemodynamics , Humans
2.
Odovtos (En línea) ; 23(2)ago. 2021.
Article in Spanish | LILACS, SaludCR | ID: biblio-1386529

ABSTRACT

RESUMEN: Se realizó un estudio descriptivo y exploratorio con el objetivo de proponer y validar un protocolo abierto para hacer impresiones 3D de modelos estereolitográficos, que esté a disposición de profesionales en el área de la Odontología. Se capacitó mediante sesiones teórico prácticas, a nueve personas operadoras (estudiantes de último año de la carrera de Odontología), sin previa experiencia en el uso de software y hardware para impresión 3D, divididos en dos grupos; el A trabajó con tres tomografías helicoidales (TAC) y el B con tres Tomografías Computarizadas de Haz Cónico (CBCT), todas en formato DICOM, convertidas en archivos STL. En total se aplicó el protocolo en 99 estructuras óseas correspondientes a 33 mandíbulas, 33 axis y 33 macizos faciales-bases de cráneo, y se imprimieron un total de 33 mandíbulas en filamento PLA (ácido poliláctico). Al finalizar el estudio, no se encontró diferencia estadísticamente significativa en la implementación del protocolo propuesto entre los operadores, las mediciones de las piezas impresas por cada uno de ellos, el patrón de oro, la TAC y el CBCT, con lo cual no solo se validó el protocolo, sino que se logró determinar los recursos necesarios para realizar este tipo de impresiones 3D.


ABSTRACT: A descriptive and exploratory study was carried out with the aim of proposing and validating an open protocol for making 3D impressions of stereolithographic models, which is available to professionals in the area of Dentistry. Nine operators (senior students of the Dentistry degree), without previous experience in the use of software and hardware for 3D printing, divided into two groups were trained through theoretical and practical sessions. The A worked with three helical tomographies (TAC) and the B with three cone beam computed tomography (CBCT), all in DICOM format, converted to STL files. In total, 99 bone structures corresponding to 33 jaws, 33 axis and 33 facial masses-skull bases were analyzed, and a total of 33 jaws were printed in PLA (polylactic acid filament). At the end of the study, no statistically significant difference was found in the implementation of the proposed protocol between the operators, the measurements of the pieces printed by each of them, the gold standard, the TAC and the CBCT, with which not only validated the protocol, but it was possible to determine the resources necessary to carry out this type of 3D printing.


Subject(s)
Printing, Three-Dimensional/instrumentation , Stereolithography/instrumentation , Biomedical and Dental Materials , Tomography/methods , Dentistry
3.
PLoS One ; 16(6): e0245634, 2021.
Article in English | MEDLINE | ID: mdl-34077425

ABSTRACT

Self-organized patterning of mammalian embryonic stem cells on micropatterned surfaces has previously been established as an in vitro platform for early mammalian developmental studies, complimentary to in vivo studies. Traditional micropatterning methods, such as micro-contact printing (µCP), involve relatively complicated fabrication procedures, which restricts widespread adoption by biologists. Here, we demonstrate a rapid method of micropatterning by printing hydrogel micro-features onto a glass-bottomed culture vessel. The micro-features are printed using a projection stereolithography bioprinter yielding hydrogel structures that geometrically restrict the attachment of cells or proteins. Compared to traditional and physical photomasks, a digitally tunable virtual photomask is used in the projector to generate blue light patterns that enable rapid iteration with minimal cost and effort. We show that a protocol that makes use of this method together with LN521 coating, an extracellular matrix coating, creates a surface suitable for human embryonic stem cell (hESC) attachment and growth with minimal non-specific adhesion. We further demonstrate that self-patterning of hESCs following previously published gastrulation and ectodermal induction protocols achieves results comparable with those obtained with commercially available plates.


Subject(s)
Human Embryonic Stem Cells/cytology , Hydrogels/chemistry , Microtechnology/methods , Stereolithography/instrumentation , Human Embryonic Stem Cells/physiology , Humans , Surface Properties
4.
Bioinspir Biomim ; 15(3): 036006, 2020 03 05.
Article in English | MEDLINE | ID: mdl-31945752

ABSTRACT

The glass sponge is a porous lightweight structure in the deep sea. It has high toughness, high strength, and high stability. In this work, a super-depth-of-field microscope was employed to observe the microstructure of the glass sponge. Based on its morphological characteristics, two novel bio-inspired lightweight structures were proposed, and the finite-element analyses (FEA) of the structures were carried out under compression, torsion, and bending loads, respectively. The structure samples were fabricated using stereolithography 3D-printing technology, and the dimension sizes of the samples were equal to those of the corresponding FEA models. Mechanical tests were performed on an electronic universal testing machine, and the results were used to demonstrate the reliability of the FEA. Additionally, lightweight numbers (LWN) were proposed to evaluate the lightweight efficiency, and a honeycomb structure was selected as the reference structure. The results indicate that the lightweight numbers of the novel bio-inspired structures are higher than those of the honeycomb structure, respectively. Finally, the proposed structures were optimized by the response surface, BP (Back Propagation) and GA-BP (Genetic Algorithm optimized Back Propagation) method. The results show that the GA-BP model after training has a high accuracy. These results can provide significant guidance for the design of tube-shaped, thin-walled structures in the engineering.


Subject(s)
Porifera/physiology , Porifera/ultrastructure , Stereolithography/instrumentation , Animals , Equipment Design/methods , Finite Element Analysis , Models, Biological , Porosity , Stress, Mechanical
5.
Biomacromolecules ; 21(2): 484-492, 2020 02 10.
Article in English | MEDLINE | ID: mdl-31714754

ABSTRACT

Biosourced and biodegradable polymers for additive manufacturing could enable the rapid fabrication of parts for a broad spectrum of applications ranging from healthcare to aerospace. However, a limited number of these materials are suitable for vat photopolymerization processes. Herein, we report a two-step additive manufacturing process to fabricate robust protein-based constructs using a commercially available laser-based stereolithography printer. Methacrylated bovine serum albumin (MA-BSA) was synthesized and formulated into aqueous resins that were used to print complex three-dimensional (3D) objects with a resolution comparable to a commercially available resin. The MA-BSA resins were characterized by rheometry to determine the viscosity and the cure rate, as both parameters can ultimately be used to predict the printability of the resin. In the first step of patterning these materials, the MA-BSA resin was 3D printed, and in the second step, the printed construct was thermally cured to denature the globular protein and increase the intermolecular noncovalent interactions. Thus, the final 3D printed part was comprised of both chemical and physical cross-links. Compression studies of hydrated and dehydrated constructs demonstrated a broad range of compressive strengths and Young's moduli that could be further modulated by adjusting the type and amount of co-monomer. The printed hydrogel constructs demonstrated good cell viability (>95%) after a 21 day culture period. These MA-BSA resins are expected to be compatible with other vat photopolymerization techniques including digital light projection and continuous liquid interface production.


Subject(s)
Hydrogels/chemistry , Plastics/chemistry , Printing, Three-Dimensional , Serum Albumin, Bovine/chemistry , Animals , Cell Survival , Circular Dichroism , Cross-Linking Reagents/chemistry , Materials Testing , Methacrylates , Mice , NIH 3T3 Cells , Organometallic Compounds/chemistry , Polyethylene Glycols/chemistry , Polymerization , Resins, Synthetic/chemistry , Stereolithography/instrumentation , Viscosity
6.
Theranostics ; 9(9): 2439-2459, 2019.
Article in English | MEDLINE | ID: mdl-31131046

ABSTRACT

Mitochondrial dysfunction and oxidative stress damage are hallmarks of osteoarthritis (OA). Mesenchymal stem cell (MSC)-derived exosomes are important in intercellular mitochondria communication. However, the use of MSC exosomes for regulating mitochondrial function in OA has not been reported. This study aimed to explore the therapeutic effect of MSC exosomes in a three dimensional (3D) printed scaffold for early OA therapeutics. Methods: We first examined the mitochondria-related proteins in normal and OA human cartilage samples and investigated whether MSC exosomes could enhance mitochondrial biogenesis in vitro. We subsequently designed a bio-scaffold for MSC exosomes delivery and fabricated a 3D printed cartilage extracellular matrix (ECM)/gelatin methacrylate (GelMA)/exosome scaffold with radially oriented channels using desktop-stereolithography technology. Finally, the osteochondral defect repair capacity of the 3D printed scaffold was assessed using a rabbit model. Results: The ECM/GelMA/exosome scaffold effectively restored chondrocyte mitochondrial dysfunction, enhanced chondrocyte migration, and polarized the synovial macrophage response toward an M2 phenotype. The 3D printed scaffold significantly facilitated the cartilage regeneration in the animal model. Conclusion: This study demonstrated that the 3D printed, radially oriented ECM/GelMA/exosome scaffold could be a promising strategy for early OA treatment.


Subject(s)
Biocompatible Materials/pharmacology , Chondrocytes/drug effects , Mesenchymal Stem Cells/chemistry , Osteochondritis/therapy , Regeneration/drug effects , Tissue Scaffolds , Animals , Biocompatible Materials/chemistry , Cartilage/drug effects , Cartilage/metabolism , Cartilage/pathology , Cell Movement/drug effects , Chondrocytes/metabolism , Chondrocytes/pathology , Disease Models, Animal , Exosomes/chemistry , Exosomes/metabolism , Extracellular Matrix/chemistry , Female , Gelatin/chemistry , Humans , Ink , Macrophages/cytology , Macrophages/drug effects , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/drug effects , Methacrylates/chemistry , Mitochondria/drug effects , Mitochondria/metabolism , Osteochondritis/metabolism , Osteochondritis/pathology , Printing, Three-Dimensional/instrumentation , Rabbits , Regeneration/physiology , Stereolithography/instrumentation
7.
J Mater Sci Mater Med ; 30(3): 36, 2019 Mar 06.
Article in English | MEDLINE | ID: mdl-30840155

ABSTRACT

It has been widely recognized that one of the critical limitations in biofabrication of functional tissues/organs is lack of vascular networks which provide tissues and organs with oxygen and nutrients. Biofabrication of 3D vascular-like constructs is a reasonable first step towards successful printing of functional tissues and organs. In this paper, a dynamic optical projection stereolithography system has been implemented to successfully fabricate 3D Y-shaped tubular constructs with living cells encapsulated. The effects of operating conditions on the cure depth of a single layer have been investigated, such as UV intensity, exposure time, and cell density. A phase diagram has been constructed to identify optimal operating conditions. Cell viability immediately after printing has been measured to be around 75%. Post-printing mechanical properties, swelling properties, and microstructures of the gelatin methacrylate hydrogels have been characterized. The resulting fabrication knowledge helps to effectively and efficiently print tissue-engineered vascular networks with complex geometries.


Subject(s)
Printing, Three-Dimensional/instrumentation , Regenerative Medicine/methods , Stereolithography/instrumentation , Tissue Engineering/methods , Animals , Cell Survival , Cells, Cultured , Equipment Design , Extracellular Matrix/metabolism , Fibroblasts/metabolism , Gelatin/chemistry , Humans , Hydrogels/chemistry , Methacrylates/chemistry , Mice , NIH 3T3 Cells , Stress, Mechanical , Tissue Scaffolds/chemistry
8.
J Vis Exp ; (143)2019 01 25.
Article in English | MEDLINE | ID: mdl-30735164

ABSTRACT

An additive manufacturing technology is applied to obtain functionally graded ceramic parts. This technology, based on digital light processing/stereolithography, is developed within the scope of the CerAMfacturing European research project. A three-dimensional (3-D) hemi-maxillary bone-like structure is 3-D printed using custom aluminum oxide polymeric mixtures. The powders and mixtures are fully analyzed in terms of rheological behavior in order to ensure proper material handling during the printing process. The possibility to print functionally graded materials using the Admaflex technology is explained in this document. Field-emission scanning electron microscopy (FESEM) show that the sintered aluminum oxide ceramic part has a porosity lower than 1% and no remainder of the original layered structure is found after analysis.


Subject(s)
Ceramics/chemistry , Polymers/chemistry , Printing, Three-Dimensional/instrumentation , Stereolithography/instrumentation , Aluminum Oxide/chemistry , Ceramics/analysis , Porosity
9.
Hum Biol ; 90(1): 63-76, 2018 Jan.
Article in English | MEDLINE | ID: mdl-30387384

ABSTRACT

Computed tomography (CT) scans provide anthropologists with a resource to generate three-dimensional (3D) digital skeletal material to expand quantification methods and build more standardized reference collections. The ability to visualize and manipulate the bone and skin of the face simultaneously in a 3D digital environment introduces a new way for forensic facial approximation practitioners to access and study the face. Craniofacial relationships can be quantified with landmarks or with surface-processing software that can quantify the geometric properties of the entire 3D facial surface. This article describes tools for the generation of dense facial tissue depth maps (FTDMs) using deidentified head CT scans of modern Americans from the Cancer Imaging Archive public repository and the open-source program Meshlab. CT scans of 43 females and 63 males from the archive were segmented and converted to 3D skull and face models using Mimics and exported as stereolithography files. All subsequent processing steps were performed in Meshlab. Heads were transformed to a common orientation and coordinate system using the coordinates of nasion, left orbitale, and left and right porion. Dense FTDMs were generated on hollowed, cropped face shells using the Hausdorff sampling filter. Two new point clouds consisting of the 3D coordinates for both skull and face were colorized on an RGB (red-green-blue) scale from 0.0 (red) to 40.0-mm (blue) depth values and exported as polygon (PLY) file format models with tissue depth values saved in the "vertex quality" field. FTDMs were also split into 1.0-mm increments to facilitate viewing of common depths across all faces. In total, 112 FTDMs were generated for 106 individuals. Minimum depth values ranged from 1.2 mm to 3.4 mm, indicating a common range of starting depths for most faces regardless of weight, as well as common locations for these values over the nasal bones, lateral orbital margins, and forehead superior to the supraorbital border. Maximum depths were found in the buccal region and neck, excluding the nose. Individuals with multiple scans at visibly different weights presented the greatest differences within larger depth areas such as the cheeks and neck, with little to no difference in the thinnest areas. A few individuals with minimum tissue depths at the lateral orbital margins and thicker tissues over the nasal bones (>3.0 mm) suggested the potential influence of nasal bone morphology on tissue depths. This study produced visual quantitative representations of the face and skull for forensic facial approximation research and practice that can be further analyzed or interacted with using free software. The presented tools can be applied to preexisting CT scans, traditional or cone beam, adult or subadult individuals, with or without landmarks, and regardless of head orientation, for forensic applications as well as for studies of facial variation and facial growth. In contrast with other facial mapping studies, this method produced both skull and face points based on replicable geometric relationships, producing multiple data outputs that are easily readable with software that is openly accessible.


Subject(s)
Forensic Anthropology/instrumentation , Imaging, Three-Dimensional/instrumentation , Skull/diagnostic imaging , Tomography, X-Ray Computed/methods , Adult , Aged , Aged, 80 and over , Face/anatomy & histology , Face/diagnostic imaging , Female , Humans , Male , Middle Aged , Skull/anatomy & histology , Software , Stereolithography/instrumentation
10.
Biomed Res Int ; 2017: 4057612, 2017.
Article in English | MEDLINE | ID: mdl-29201905

ABSTRACT

Additive manufacturing is becoming increasingly important in dentistry for the production of surgical guides. The development of cost-effective desktop stereolithography (SLA) printing systems and the corresponding resins makes this novel technique accessible to dental offices and dental laboratories. The aim of the study was to reveal the response of soft tissue cells to Clear and Dental SG resins used in desktop SLA printing systems at different stages of processing. Cell activity of L929 cells and gingival fibroblasts (GF) in response to the materials was examined in indirect and direct monolayer culture models and a direct spheroid culture model based on MTT, resazurin-based toxicity assays, and live-dead staining. Overall we found that the impact of Clear and Dental SG resins on L929 and GF depends on the processing stage of the materials. Liquid Clear resin induced a stronger reduction of cell activity compared to Dental SG resin. Printing and postcuring reduced the impact on cell activity and viability. As in-house 3D printing for surgical guides is getting integrated in the digital workflow, our data suggest that careful adherence to processing guidelines-especially postcuring-is of clinical relevance.


Subject(s)
Dental Materials/pharmacology , Gingiva/drug effects , Printing, Three-Dimensional , Resins, Synthetic/pharmacology , Fibroblasts/drug effects , Gingiva/growth & development , Gingiva/surgery , Humans , Oxazines/chemistry , Stereolithography/instrumentation , Xanthenes/chemistry
11.
Otolaryngol Clin North Am ; 50(4): 733-746, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28601195

ABSTRACT

It is an exciting time for head and neck surgical innovation with numerous advances in the perioperative planning and intraoperative management of patients with cancer, trauma patients, and individuals with congenital defects. The broad and rapidly changing realm of head and neck surgical innovation precludes a comprehensive summary. This article highlights some of the most important innovations from surgical planning with sentinel node biopsy and three-dimensional, stereolithic modeling to intraoperative innovations, such as transoral robotic surgery and intraoperative navigation. Future surgical innovations, such as intraoperative optical imaging of surgical margins, are also highlighted.


Subject(s)
Head and Neck Neoplasms/surgery , Robotic Surgical Procedures/instrumentation , Sentinel Lymph Node Biopsy/methods , Stereolithography/instrumentation , Case Management , Humans , Intraoperative Period , Microsurgery/methods , Robotic Surgical Procedures/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...