Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.595
Filter
1.
Zool Res ; 45(3): 617-632, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38766745

ABSTRACT

The Chinese tree shrew ( Tupaia belangeri chinensis) has emerged as a promising model for investigating adrenal steroid synthesis, but it is unclear whether the same cells produce steroid hormones and whether their production is regulated in the same way as in humans. Here, we comprehensively mapped the cell types and pathways of steroid metabolism in the adrenal gland of Chinese tree shrews using single-cell RNA sequencing, spatial transcriptome analysis, mass spectrometry, and immunohistochemistry. We compared the transcriptomes of various adrenal cell types across tree shrews, humans, macaques, and mice. Results showed that tree shrew adrenal glands expressed many of the same key enzymes for steroid synthesis as humans, including CYP11B2, CYP11B1, CYB5A, and CHGA. Biochemical analysis confirmed the production of aldosterone, cortisol, and dehydroepiandrosterone but not dehydroepiandrosterone sulfate in the tree shrew adrenal glands. Furthermore, genes in adrenal cell types in tree shrews were correlated with genetic risk factors for polycystic ovary syndrome, primary aldosteronism, hypertension, and related disorders in humans based on genome-wide association studies. Overall, this study suggests that the adrenal glands of Chinese tree shrews may consist of closely related cell populations with functional similarity to those of the human adrenal gland. Our comprehensive results (publicly available at http://gxmujyzmolab.cn:16245/scAGMap/) should facilitate the advancement of this animal model for the investigation of adrenal gland disorders.


Subject(s)
Adrenal Glands , Steroids , Animals , Adrenal Glands/metabolism , Humans , Steroids/biosynthesis , Steroids/metabolism , Transcriptome , Mice , Tupaiidae , Female , Multiomics
2.
PLoS One ; 19(4): e0300563, 2024.
Article in English | MEDLINE | ID: mdl-38626236

ABSTRACT

A Hungarian survey of Tokaj-Mád vineyards was conducted. Shotgun metabarcoding was applied to decipher the microbial-terroir. The results of 60 soil samples showed that there were three dominant fungal phyla, Ascomycota 66.36% ± 15.26%, Basidiomycota 18.78% ± 14.90%, Mucoromycota 11.89% ± 8.99%, representing 97% of operational taxonomic units (OTUs). Mutual interactions between microbiota diversity and soil physicochemical parameters were revealed. Principal component analysis showed descriptive clustering patterns of microbial taxonomy and resistance gene profiles in the case of the four historic vineyards (Szent Tamás, Király, Betsek, Nyúlászó). Linear discriminant analysis effect size was performed, revealing pronounced shifts in community taxonomy based on soil physicochemical properties. Twelve clades exhibited the most significant shifts (LDA > 4.0), including the phyla Verrucomicrobia, Bacteroidetes, Chloroflexi, and Rokubacteria, the classes Acidobacteria, Deltaproteobacteria, Gemmatimonadetes, and Betaproteobacteria, the order Sphingomonadales, Hypomicrobiales, as well as the family Sphingomonadaceae and the genus Sphingomonas. Three out of the four historic vineyards exhibited the highest occurrences of the bacterial genus Bradyrhizobium, known for its positive influence on plant development and physiology through the secretion of steroid phytohormones. During ripening, the taxonomical composition of the soil fungal microbiota clustered into distinct groups depending on altitude, differences that were not reflected in bacteriomes. Network analyses were performed to unravel changes in fungal interactiomes when comparing postveraison and preharvest samples. In addition to the arbuscular mycorrhiza Glomeraceae, the families Mycosphaerellacae and Rhyzopodaceae and the class Agaricomycetes were found to have important roles in maintaining soil microbial community resilience. Functional metagenomics showed that the soil Na content stimulated several of the microbiota-related agrobiogeochemical cycles, such as nitrogen and sulphur metabolism; steroid, bisphenol, toluene, dioxin and atrazine degradation and the synthesis of folate.


Subject(s)
Ascomycota , Microbiota , Wine , Humans , Soil/chemistry , Microbiota/genetics , Bacteria , Steroids/metabolism , Soil Microbiology
3.
Sheng Wu Gong Cheng Xue Bao ; 40(4): 1120-1137, 2024 Apr 25.
Article in Chinese | MEDLINE | ID: mdl-38658153

ABSTRACT

The leaves and roots of Liriope muscari (Decne.) Baily were subjected to high-throughput Illumina transcriptome sequencing. Bioinformatics analysis was used to investigate the enzyme genes and key transcription factors involved in regulating the accumulation of steroidal saponins, which are the main active ingredient in L. muscari. These analyses aimed to reveal the molecular mechanism behind steroidal saponin accumulation. The sequencing results of L. muscari revealed 31 enzymes, including AACT, CAS, DXS and DXR, that are involved in the synthesis of steroidal saponins. Among these enzymes, 16 were in the synthesis of terpenoid skeleton, 3 were involved in the synthesis of sesquiterpene and triterpene, and 12 were involved in the synthesis of steroidal compound. Differential gene expression identified 15 metabolic enzymes coded by 34 differentially expressed genes (DEGs) in the leaves and roots, which were associated with steroidal saponin synthesis. Further analysis using gene co-expression patterns showed that 14 metabolic enzymes coded by 31 DEGs were co-expressed. In addition, analysis using gene co-expression analysis and PlantTFDB's transcription factor analysis tool predicted the involvement of 8 transcription factors, including GAI, PIF4, PIL6, ERF8, SVP, LHCA4, NF-YB3 and DOF2.4, in regulating 6 metabolic enzymes such as DXS, DXR, HMGR, DHCR7, DHCR24, and CAS. These eight transcription factors were predicted to play important roles in regulating steroidal saponin accumulation in L. muscari. Promoter analysis of these transcription factors indicated that their main regulatory mechanisms involve processes such as abscisic acid response, drought-induction stress response and light response, especially abscisic acid responsive elements (ABRE) response and MYB binding site involved in drought-inducibility (MBS) response pathway. Furthermore, qRT-PCR analysis of these eight key transcription factors demonstrated their specific differences in the leaves and roots.


Subject(s)
Computational Biology , Liriope Plant , Plant Leaves , Saponins , Transcription Factors , Transcriptome , Saponins/metabolism , Saponins/biosynthesis , Computational Biology/methods , Transcription Factors/genetics , Transcription Factors/metabolism , Plant Leaves/metabolism , Plant Leaves/genetics , Liriope Plant/genetics , Liriope Plant/metabolism , Steroids/metabolism , Steroids/biosynthesis , Plant Roots/metabolism , Plant Roots/genetics , Gene Expression Regulation, Plant , Gene Expression Profiling , High-Throughput Nucleotide Sequencing
4.
Steroids ; 206: 109420, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38580048

ABSTRACT

The use of steroids in livestock animals is a source of concern for consumers because of the risks associated with the presence of their residues in foodstuffs of animal origin. Technological advances such as mass spectrometry have made it possible to play a fundamental role in controlling such practices, firstly for the discovery of marker metabolites but also for the monitoring of these compounds under the regulatory framework. Current control strategies rely on the monitoring of either the parent drug or its metabolites in various matrices of interest. As some of these steroids also have an endogenous status specific strategies have to be applied for control purposes. This review aims to provide a comprehensive and up-to-date knowledge of analytical strategies, whether targeted or non-targeted, and whether they focus on markers of exposure or effect in the specific context of chemical food safety regarding the use of anabolic steroids in livestock. The role of new approaches in data acquisition (e.g. ion mobility), processing and analysis, (e.g. molecular networking), is also discussed.


Subject(s)
Food Safety , Livestock , Animals , Livestock/metabolism , Anabolic Agents/analysis , Anabolic Agents/metabolism , Humans , Steroids/chemistry , Steroids/analysis , Steroids/metabolism , Testosterone Congeners/analysis , Testosterone Congeners/metabolism , Food Contamination/analysis , Anabolic Androgenic Steroids
5.
Org Biomol Chem ; 22(18): 3559-3583, 2024 05 08.
Article in English | MEDLINE | ID: mdl-38639195

ABSTRACT

Steroids are an important family of bioactive compounds. Steroid drugs are renowned for their multifaceted pharmacological activities and are the second-largest category in the global pharmaceutical market. Recent developments in biocatalysis and biosynthesis have led to the increased use of enzymes to enhance the selectivity, efficiency, and sustainability for diverse modifications of steroids. This review discusses the advancements achieved over the past five years in the enzymatic modifications of steroid scaffolds, focusing on enzymatic hydroxylation, reduction, dehydrogenation, cascade reactions, and other modifications for future research on the synthesis of novel steroid compounds and related drugs, and new therapeutic possibilities.


Subject(s)
Steroids , Steroids/chemistry , Steroids/metabolism , Humans , Biocatalysis , Enzymes/metabolism , Enzymes/chemistry , Hydroxylation , Molecular Structure
6.
EBioMedicine ; 103: 105087, 2024 May.
Article in English | MEDLINE | ID: mdl-38570222

ABSTRACT

BACKGROUND: The human adrenal cortex consists of three functionally and structurally distinct layers; zona glomerulosa, zona fasciculata (zF), and zona reticularis (zR), and produces adrenal steroid hormones in a layer-specific manner; aldosterone, cortisol, and adrenal androgens, respectively. Cortisol-producing adenomas (CPAs) occur mostly as a result of somatic mutations associated with the protein kinase A pathway. However, how CPAs develop after adrenocortical cells acquire genetic mutations, remains poorly understood. METHODS: We conducted integrated approaches combining the detailed histopathologic studies with genetic, RNA-sequencing, and spatially resolved transcriptome (SRT) analyses for the adrenal cortices adjacent to human adrenocortical tumours. FINDINGS: Histopathological analysis revealed an adrenocortical nodular structure that exhibits the two-layered zF- and zR-like structure. The nodular structures harbour GNAS somatic mutations, known as a driver mutation of CPAs, and confer cell proliferative and autonomous steroidogenic capacities, which we termed steroids-producing nodules (SPNs). RNA-sequencing coupled with SRT analysis suggests that the expansion of the zF-like structure contributes to the formation of CPAs, whereas the zR-like structure is characterised by a macrophage-mediated immune response. INTERPRETATION: We postulate that CPAs arise from a precursor lesion, SPNs, where two distinct cell populations might contribute differently to adrenocortical tumorigenesis. Our data also provide clues to the molecular mechanisms underlying the layered structures of human adrenocortical tissues. FUNDING: KAKENHI, The Uehara Memorial Foundation, Daiwa Securities Health Foundation, Kaibara Morikazu Medical Science Promotion Foundation, Secom Science and Technology Foundation, ONO Medical Research Foundation, and Japan Foundation for Applied Enzymology.


Subject(s)
Adrenal Cortex Neoplasms , Hydrocortisone , Humans , Hydrocortisone/metabolism , Adrenal Cortex Neoplasms/genetics , Adrenal Cortex Neoplasms/metabolism , Adrenal Cortex Neoplasms/pathology , Mutation , Adrenocortical Adenoma/genetics , Adrenocortical Adenoma/metabolism , Adrenocortical Adenoma/pathology , Adrenal Cortex/metabolism , Adrenal Cortex/pathology , Gene Expression Profiling , Transcriptome , Steroids/biosynthesis , Steroids/metabolism , Adenoma/pathology , Adenoma/metabolism , Adenoma/genetics , Male , Female , Middle Aged
7.
J Assist Reprod Genet ; 41(5): 1387-1401, 2024 May.
Article in English | MEDLINE | ID: mdl-38656738

ABSTRACT

OBJECTIVE: Women who are of reproductive age can suffer from polycystic ovary syndrome (PCOS), an endocrine disorder. Anovulatory infertility is mostly caused by aberrant follicular development, which is seen in PCOS patients. Due to the dysfunction of reproductive and endocrine function in PCOS patients, assisted reproduction treatment is one of the main means to obtain clinical pregnancy for PCOS patients. Long non-coding RNA (lncRNA) as a group of functional RNA molecules have been found to participate in the regulation of oocyte function, hormone metabolism, and proliferation and apoptosis of granulosa cells. In this study, we investigated the role of lncRNAs in follicular fluid-derived exosomes and the underlying mechanism of lncRNA LIPE-AS1. METHODS: We used RNA sequencing to analyze the lncRNA profiles of follicular fluid-derived exosomes in PCOS patients and controls. RT-qPCR was performed to detect the expression levels of these lncRNAs in control (n = 30) and PCOS (n = 30) FF exosome samples. Furthermore, we validated the performance of lncRNA LIPE-AS1 in oocyte maturation by in vitro maturation (IVM) experiments in mouse and steroid metabolism in granulosa cells. RESULTS: We found 501 lncRNAs were exclusively expressed in the control group and another 273 lncRNAs were found to be specifically expressed in the PCOS group. LncRNA LIPE-AS1, highly expressed in PCOS exosomes, was related to a poor oocyte maturation and embryo development in PCOS patients. Reduced number of MII oocytes were observed in the LIPE-AS1 group by in vitro maturation (IVM) experiments in mouse. LIPE-AS1 was also shown to modulate steroid metabolism and granulosa cell proliferation and apoptosis by LIPE-AS1/miR-4306/LHCGR axis. CONCLUSION: These findings suggested that the increased expression of LIPE-AS1, facilitated by follicular fluid exosomes, had a significant impact on both oocyte maturation and embryo development. We demonstrated the ceRNA mechanism involving LIPE-AS1, miR-4306, and LHCGR as a regulator of hormone production and metabolism. These findings indicate that LIPE-AS1 is essential in PCOS oocyte maturation and revealed a ceRNA network of LIPE-AS1 and provided new information on abnormal steroid metabolism and oocyte development in PCOS.


Subject(s)
Exosomes , Follicular Fluid , Granulosa Cells , Oocytes , Polycystic Ovary Syndrome , RNA, Long Noncoding , Polycystic Ovary Syndrome/genetics , Polycystic Ovary Syndrome/pathology , Polycystic Ovary Syndrome/metabolism , Female , Follicular Fluid/metabolism , RNA, Long Noncoding/genetics , Granulosa Cells/metabolism , Granulosa Cells/pathology , Humans , Exosomes/genetics , Exosomes/metabolism , Oocytes/metabolism , Oocytes/growth & development , Mice , Animals , In Vitro Oocyte Maturation Techniques , Adult , Steroids/metabolism , Oogenesis/genetics , Apoptosis/genetics , Cell Proliferation/genetics
8.
Mol Cell Endocrinol ; 589: 112235, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38621656

ABSTRACT

Luteinizing hormone (LH) is essential for reproduction, controlling ovulation and steroidogenesis. Its receptor (LHR) recruits various transducers leading to the activation of a complex signaling network. We recently identified iPRC1, the first variable fragment from heavy-chain-only antibody (VHH) interacting with intracellular loop 3 (ICL3) of the follicle-stimulating hormone receptor (FSHR). Because of the high sequence similarity of the human FSHR and LHR (LHCGR), here we examined the ability of the iPRC1 intra-VHH to modulate LHCGR activity. In this study, we demonstrated that iPRC1 binds LHCGR, to a greater extent when the receptor was stimulated by the hormone. In addition, it decreased LH-induced cAMP production, cAMP-responsive element-dependent transcription, progesterone and testosterone production. These impairments are not due to Gs nor ß-arrestin recruitment to the LHCGR. Consequently, iPRC1 is the first intra-VHH to bind and modulate LHCGR biological activity, including steroidogenesis. It should help further understand signaling mechanisms elicited at this receptor and their outcomes on reproduction.


Subject(s)
Luteinizing Hormone , Receptors, LH , Signal Transduction , Receptors, LH/metabolism , Receptors, LH/genetics , Humans , Signal Transduction/drug effects , Luteinizing Hormone/metabolism , Animals , Cyclic AMP/metabolism , Protein Binding , Progesterone/metabolism , Receptors, FSH/metabolism , Receptors, FSH/genetics , Testosterone/metabolism , Testosterone/biosynthesis , HEK293 Cells , GTP-Binding Proteins/metabolism , Steroids/biosynthesis , Steroids/metabolism
9.
Steroids ; 204: 109398, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38513983

ABSTRACT

Estrogen and testosterone are typically thought of as gonadal or adrenal derived steroids that cross the blood brain barrier to signal via both rapid nongenomic and slower genomic signalling pathways. Estrogen and testosterone signalling has been shown to drive interlinked behaviours such as social behaviours and cognition by binding to their cognate receptors in hypothalamic and forebrain nuclei. So far, acute brain slices have been used to study short-term actions of 17ß-estradiol, typically using electrophysiological measures. For example, these techniques have been used to investigate, nongenomic signalling by estrogen such as the estrogen modulation of long-term potentiation (LTP) in the hippocampus. Using a modified method that preserves the slice architecture, we show, for the first time, that acute coronal slices from the prefrontal cortex and from the hypothalamus maintained in aCSF over longer periods i.e. 24 h can be steroidogenic, increasing their secretion of testosterone and estrogen. We also show that the hypothalamic nuclei produce more estrogen and testosterone than the prefrontal cortex. Therefore, this extended acute slice system can be used to study the regulation of steroid production and secretion by discrete nuclei in the brain.


Subject(s)
Estradiol , Estrogens , Mice , Animals , Estrogens/metabolism , Estradiol/metabolism , Long-Term Potentiation/physiology , Testosterone/metabolism , Steroids/metabolism , Hippocampus/metabolism
10.
Chem Biodivers ; 21(3): e202301779, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38426669

ABSTRACT

Plant-insect interactions are a driving force into ecosystem evolution and community dynamics. Many insect herbivores enter diapause, a developmental arrest stage in anticipation of adverse conditions, to survive and thrive through seasonal changes. Herein, we investigated the roles of medium- to non-polar metabolites during larval development and diapause in a specialist insect herbivore, Chlosyne lacinia, reared on Aldama robusta leaves. Varying metabolites were determined using gas chromatography-mass spectrometry (GC-MS)-based metabolomics. Sesquiterpenes and steroids were the main metabolites putatively identified in A. robusta leaves, whereas C. lacinia caterpillars were characterized by triterpenes, steroids, fatty acids, and long-chain alkanes. We found out that C. lacinia caterpillars biosynthesized most of the identified steroids and fatty acids from plant-derived ingested metabolites, as well as all triterpenes and long-chain alkanes. Steroids, fatty acids, and long-chain alkanes were detected across all C. lacinia instars and in diapausing caterpillars. Sesquiterpenes and triterpenes were also detected across larval development, yet they were not detected in diapausing caterpillars, which suggested that these metabolites were converted to other molecules prior to the diapause stage. Our findings shed light on the chemical content variation across C. lacinia development and diapause, providing insights into the roles of metabolites in plant-insect interactions.


Subject(s)
Diapause , Lepidoptera , Sesquiterpenes , Triterpenes , Animals , Gas Chromatography-Mass Spectrometry , Ecosystem , Metabolomics/methods , Steroids/metabolism , Sesquiterpenes/metabolism , Fatty Acids/metabolism , Alkanes , Triterpenes/metabolism , Larva
11.
Aquat Toxicol ; 270: 106899, 2024 May.
Article in English | MEDLINE | ID: mdl-38492288

ABSTRACT

Triclosan (TCS) is a wide-spectrum antibacterial agent that is found in various water environments. It has been reported to have estrogenic effects. However, the impact of TCS exposure on the reproductive system of zebrafish (Danio rerio) throughout their life cycle is not well understood. In this study, zebrafish fertilized eggs were exposed to 0, 10, and 50 µg/L TCS for 120 days. The study investigated the effects of TCS exposure on brain and testis coefficients, the expression of genes related to the hypothalamus-pituitary-gonadal (HPG) axis, hormone levels, vitellogenin (VTG) content, histopathological sections, and performed RNA sequencing of male zebrafish. The results revealed that life cycle TCS exposure had significant effects on zebrafish reproductive parameters. It increased the testis coefficient, while decreasing the brain coefficient. TCS exposure also led to a decrease in mature spermatozoa and altered the expression of genes related to the HPG axis. Furthermore, TCS disrupted the balance of sex hormone levels and increased VTG content of male zebrafish. Transcriptome sequencing analysis indicated that TCS affected reproductive endocrine related pathways, including PPAR signaling pathway, cell cycle, GnRH signaling pathway, steroid biosynthesis, cytokine-cytokine receptor interaction, and steroid hormone biosynthesis. Protein-protein interaction (PPI) network analysis confirmed the enrichment of hub genes in these pathways, including bub1bb, ccnb1, cdc20, cdk1, mcm2, mcm5, mcm6, plk1, and ttk in the brain, as well as fabp1b.1, fabp2, fabp6, ccr7, cxcl11.8, hsd11b2, and hsd3b1 in the testis. This study sheds light on the reproductive endocrine-disrupting mechanisms of life cycle exposure to TCS.


Subject(s)
Triclosan , Water Pollutants, Chemical , Animals , Male , Zebrafish/metabolism , Triclosan/toxicity , Triclosan/metabolism , Water Pollutants, Chemical/toxicity , Life Cycle Stages , Gonadal Steroid Hormones/metabolism , Steroids/metabolism
12.
Nat Commun ; 15(1): 1947, 2024 Mar 02.
Article in English | MEDLINE | ID: mdl-38431630

ABSTRACT

Cellular responses to the steroid hormones, estrogen (E2), and progesterone (P4) are governed by their cognate receptor's transcriptional output. However, the feed-forward mechanisms that shape cell-type-specific transcriptional fulcrums for steroid receptors are unidentified. Herein, we found that a common feed-forward mechanism between GREB1 and steroid receptors regulates the differential effect of GREB1 on steroid hormones in a physiological or pathological context. In physiological (receptive) endometrium, GREB1 controls P4-responses in uterine stroma, affecting endometrial receptivity and decidualization, while not affecting E2-mediated epithelial proliferation. Of mechanism, progesterone-induced GREB1 physically interacts with the progesterone receptor, acting as a cofactor in a positive feedback mechanism to regulate P4-responsive genes. Conversely, in endometrial pathology (endometriosis), E2-induced GREB1 modulates E2-dependent gene expression to promote the growth of endometriotic lesions in mice. This differential action of GREB1 exerted by a common feed-forward mechanism with steroid receptors advances our understanding of mechanisms that underlie cell- and tissue-specific steroid hormone actions.


Subject(s)
Endometriosis , Neoplasm Proteins , Receptors, Steroid , Animals , Female , Humans , Mice , Endometriosis/genetics , Endometriosis/metabolism , Endometrium/metabolism , Estrogens/metabolism , Neoplasm Proteins/metabolism , Progesterone/metabolism , Receptors, Progesterone/genetics , Receptors, Progesterone/metabolism , Receptors, Steroid/genetics , Receptors, Steroid/metabolism , Steroids/metabolism
13.
Geroscience ; 46(3): 3405-3417, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38311700

ABSTRACT

Debate exists on life-course adrenocortical zonal function trajectories. Rapid, phasic blood steroid concentration changes, such as circadian rhythms and acute stress responses, complicate quantification. To avoid pitfalls and account for life-stage changes in adrenocortical activity indices, we quantified zonae fasciculata (ZF) and reticularis (ZR) across the life-course, by immunohistochemistry of key regulatory and functional proteins. In 28 female baboon adrenals (7.5-22.1 years), we quantified 12 key proteins involved in cell metabolism, division, proliferation, steroidogenesis (including steroid acute regulatory protein, StAR), oxidative stress, and glucocorticoid and mitochondrial function. Life-course abundance of ten ZF proteins decreased with age. Cell cycle inhibitor and oxidative stress markers increased. Seven of the 12 proteins changed in the same direction for ZR and ZF. Importantly, ZF StAR decreased, while ZR StAR was unchanged. Findings indicate ZF function decreased, and less markedly ZR function, with age. Causes and aging consequences of these changes remain to be determined.


Subject(s)
Zona Fasciculata , Zona Reticularis , Female , Humans , Zona Reticularis/metabolism , Zona Fasciculata/metabolism , Life Change Events , Steroids/metabolism
14.
Front Immunol ; 15: 1330094, 2024.
Article in English | MEDLINE | ID: mdl-38361932

ABSTRACT

Microbiota plays a role in shaping the HPA-axis response to psychological stressors. To examine the role of microbiota in response to acute immune stressor, we stimulated the adaptive immune system by anti-CD3 antibody injection and investigated the expression of adrenal steroidogenic enzymes and profiling of plasma corticosteroids and their metabolites in specific pathogen-free (SPF) and germ-free (GF) mice. Using UHPLC-MS/MS, we showed that 4 hours after immune challenge the plasma levels of pregnenolone, progesterone, 11-deoxycorticosterone, corticosterone (CORT), 11-dehydroCORT and their 3α/ß-, 5α-, and 20α-reduced metabolites were increased in SPF mice, but in their GF counterparts, only CORT was increased. Neither immune stress nor microbiota changed the mRNA and protein levels of enzymes of adrenal steroidogenesis. In contrast, immune stress resulted in downregulated expression of steroidogenic genes (Star, Cyp11a1, Hsd3b1, Hsd3b6) and upregulated expression of genes of the 3α-hydroxysteroid oxidoreductase pathway (Akr1c21, Dhrs9) in the testes of SPF mice. In the liver, immune stress downregulated the expression of genes encoding enzymes with 3ß-hydroxysteroid dehydrogenase (HSD) (Hsd3b2, Hsd3b3, Hsd3b4, Hsd3b5), 3α-HSD (Akr1c14), 20α-HSD (Akr1c6, Hsd17b1, Hsd17b2) and 5α-reductase (Srd5a1) activities, except for Dhrs9, which was upregulated. In the colon, microbiota downregulated Cyp11a1 and modulated the response of Hsd11b1 and Hsd11b2 expression to immune stress. These data underline the role of microbiota in shaping the response to immune stressor. Microbiota modulates the stress-induced increase in C21 steroids, including those that are neuroactive that could play a role in alteration of HPA axis response to stress in GF animals.


Subject(s)
Hypothalamo-Hypophyseal System , Microbiota , Male , Mice , Animals , Hypothalamo-Hypophyseal System/metabolism , Cholesterol Side-Chain Cleavage Enzyme/genetics , Cholesterol Side-Chain Cleavage Enzyme/metabolism , Tandem Mass Spectrometry , Pituitary-Adrenal System/metabolism , Steroids/metabolism , Corticosterone/metabolism
15.
Theriogenology ; 219: 103-115, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38422566

ABSTRACT

Ovarian follicle development is an important physiological activity for females and makes great significance in maintaining female health and reproduction performance. The development of ovarian follicle is mainly affected by the granulosa cells (GCs), whose growth is regulated by a variety of factors. Here, we identified a novel circular RNA (circRNA) derived from the Ribosomal protein S19 (RPS19) gene, named circRPS19, which is differentially expressed during chicken ovarian follicle development. Further explorations identified that circRPS19 promotes GCs proliferation and steroid hormone synthesis. Furthermore, circRPS19 was found to target and regulate miR-218-5p through a competitive manner with endogenous RNA (ceRNA). Functionals investigation revealed that miR-218-5p attenuates GCs proliferation and steroidogenesis, which is opposite to that of circRPS19. In addition, we also confirmed that circRPS19 upregulates the expression of Inhibin beta B subunit (INHBB) by binding with miR-218-5p to facilitate GCs proliferation and steroidogenesis. Overall, this study revealed that circRPS19 regulates GCs development by releasing the repression of miR-218-5p on INHBB, which suggests a novel mechanism in respect to circRNA and miRNA regulation in ovarian follicle development.


Subject(s)
MicroRNAs , RNA, Circular , Female , Animals , RNA, Circular/genetics , RNA, Circular/metabolism , Chickens/genetics , Chickens/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Granulosa Cells/metabolism , Cell Proliferation , Steroids/metabolism
16.
Nat Commun ; 15(1): 1153, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38326294

ABSTRACT

Transcriptional regulator MtrR inhibits the expression of the multidrug efflux pump operon mtrCDE in the pathogenic bacterium Neisseria gonorrhoeae. Here, we show that MtrR binds the hormonal steroids progesterone, ß-estradiol, and testosterone, which are present at urogenital infection sites, as well as ethinyl estrogen, a component of some hormonal contraceptives. Steroid binding leads to the decreased affinity of MtrR for cognate DNA, increased mtrCDE expression, and enhanced antimicrobial resistance. Furthermore, we solve crystal structures of MtrR bound to each steroid, thus revealing their binding mechanisms and the conformational changes that induce MtrR.


Subject(s)
Neisseria gonorrhoeae , Repressor Proteins , Neisseria gonorrhoeae/genetics , Neisseria gonorrhoeae/metabolism , Repressor Proteins/genetics , Repressor Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Drug Resistance, Multiple , Steroids/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism
17.
J Clin Invest ; 134(7)2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38349762

ABSTRACT

Corticosteroid treatment (CST) failure is associated with poor outcomes for patients with gastrointestinal (GI) graft-versus-host disease (GVHD). CST is intended to target the immune system, but the glucocorticoid receptor (GR) is widely expressed, including within the intestines, where its effects are poorly understood. Here, we report that corticosteroids (CS) directly targeted intestinal epithelium, potentially worsening immune-mediated GI damage. CS administered to mice in vivo and intestinal organoid cultures ex vivo reduced epithelial proliferation. Following irradiation, immediate CST mitigated GI damage but delayed treatment attenuated regeneration and exacerbated damage. In a murine steroid-refractory (SR) GVHD model, CST impaired epithelial regeneration, worsened crypt loss, and reduced intestinal stem cell (ISC) frequencies. CST also exacerbated immune-mediated damage in organoid cultures with SR, GR-deficient T cells or IFN-γ. These findings correlated with CS-dependent changes in apoptosis-related gene expression and STAT3-related epithelial proliferation. Conversely, IL-22 administration enhanced STAT3 activity and overcame CS-mediated attenuation of regeneration, reducing crypt loss and promoting ISC expansion in steroid-treated mice with GVHD. Therefore, CST has the potential to exacerbate GI damage if it fails to control the damage-inducing immune response, but this risk may be countered by strategies augmenting epithelial regeneration, thus providing a rationale for clinical approaches combining such tissue-targeted therapies with immunosuppression.


Subject(s)
Graft vs Host Disease , Intestines , Humans , Mice , Animals , Intestinal Mucosa/metabolism , Adrenal Cortex Hormones , Graft vs Host Disease/drug therapy , Graft vs Host Disease/metabolism , Steroids/metabolism , Regeneration/radiation effects
18.
Vitam Horm ; 124: 1-37, 2024.
Article in English | MEDLINE | ID: mdl-38408797

ABSTRACT

Steroid hormones are derived from a common precursor molecule, cholesterol, and regulate a wide range of physiologic function including reproduction, salt balance, maintenance of secondary sexual characteristics, response to stress, neuronal function, and various metabolic processes. Among the steroids synthesized by the adrenal and gonadal tissues, adrenal mineralocorticoids, and glucocorticoids are essential for life. The process of steroidogenesis is regulated at multiple levels largely by transcriptional, posttranscriptional, translational, and posttranslational regulation of the steroidogenic enzymes (i.e., cytochrome P450s and hydroxysteroid dehydrogenases), cellular compartmentalization of the steroidogenic enzymes, and cholesterol processing and transport proteins. In recent years, small noncoding RNAs, termed microRNAs (miRNAs) have been recognized as major post-transcriptional regulators of gene expression with essential roles in numerous biological processes and disease pathologies. Although their role in the regulation of steroidogenesis is still emerging, several recent studies have contributed significantly to our understanding of the role miRNAs play in the regulation of the steroidogenic process. This chapter focuses on the recent developments in miRNA regulation of adrenal glucocorticoid and androgen production in humans and rodents.


Subject(s)
MicroRNAs , Humans , MicroRNAs/genetics , Glucocorticoids , Androgens , Steroids/metabolism , Cholesterol/metabolism
19.
Vitam Horm ; 124: 405-428, 2024.
Article in English | MEDLINE | ID: mdl-38408806

ABSTRACT

Cholesterol, an essential and versatile lipid, is the precursor substrate for the biosynthesis of steroid hormones, and a key structural and functional component of organelle membranes in eukaryotic cells. Consequently, the framework of steroidogenesis across main steroidogenic cell types is built around cholesterol, including its cellular uptake, mobilization from intracellular storage, and finally, its transport to the mitochondria where steroidogenesis begins. This setup, which is controlled by different trophic hormones in their respective target tissues, allows steroidogenic cells to meet their steroidogenic need of cholesterol effectively without impinging on the basic need for organelle membranes and their functions. However, our understanding of the basal steroidogenesis (i.e., independent of trophic hormone stimulation), which is a cell-intrinsic trait, remains poor. Particularly, the role that cholesterol itself plays in the regulation of steroidogenic factors and events in steroid hormone-producing cells remains largely unexplored. This is likely because of challenges in selectively targeting the steroidogenic intracellular cholesterol pool in studies. New evidence suggests that cholesterol plays a role in steroidogenesis. These new findings have created new opportunities to advance our understanding in this field. In this book chapter, we will provide a cholesterol-centric view on steroidogenesis and emphasize the importance of the interplay between cholesterol and the mitochondria in steroidogenic cells. Moreover, we will discuss a novel mitochondrial player, prohibitin-1, in this context. The overall goal is to provide a stimulating perspective on cholesterol as an important regulator of steroidogenesis (i.e., more than just a substrate for steroid hormones) and present the mitochondria as a potential cell-intrinsic factor in regulating steroidogenic cholesterol homeostasis.


Subject(s)
Cholesterol , Steroids , Humans , Cholesterol/metabolism , Steroids/metabolism , Hormones/metabolism , Mitochondria/metabolism , Lipid Metabolism
20.
Vitam Horm ; 124: 79-136, 2024.
Article in English | MEDLINE | ID: mdl-38408810

ABSTRACT

The adrenal gland is composed of two distinctly different endocrine moieties. The interior medulla consists of neuroendocrine chromaffin cells that secrete catecholamines like adrenaline and noradrenaline, while the exterior cortex consists of steroidogenic cortical cells that produce steroid hormones, such as mineralocorticoids (aldosterone), glucocorticoids (cortisone and cortisol) and androgens. Synthesis of steroid hormones in cortical cells requires substantial amounts of cholesterol, which is the common precursor for steroidogenesis. Cortical cells may acquire cholesterol from de novo synthesis and uptake from circulating low- and high-density lipoprotein particles (LDL and HDL). As cholesterol is part of the plasma membrane in all mammalian cells and an important regulator of membrane fluidity, cellular levels of free cholesterol are tightly regulated. To ensure a robust supply of cholesterol for steroidogenesis and to avoid cholesterol toxicity, cortical cells store large amounts of cholesterol as cholesteryl esters in intracellular lipid droplets. Cortical steroidogenesis relies on both mobilization of cholesterol from lipid droplets and constant uptake of circulating cholesterol to replenish lipid droplet stores. This chapter will describe mechanisms involved in cholesterol uptake, cholesteryl ester synthesis, lipid droplet formation, hydrolysis of stored cholesteryl esters, as well as their impact on steroidogenesis. Additionally, animal models and human diseases characterized by altered cortical cholesteryl ester storage, with or without abnormal steroidogenesis, will be discussed.


Subject(s)
Cholesterol Esters , Lipid Droplets , Animals , Humans , Cholesterol Esters/metabolism , Lipid Droplets/metabolism , Cholesterol/metabolism , Steroids/metabolism , Hydrocortisone , Mammals
SELECTION OF CITATIONS
SEARCH DETAIL
...