Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 933
Filter
1.
BMC Biotechnol ; 24(1): 39, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849803

ABSTRACT

BACKGROUND: Melia azedarach is known as a medicinal plant that has wide biological activities such as analgesic, antibacterial, and antifungal effects and is used to treat a wide range of diseases such as diarrhea, malaria, and various skin diseases. However, optimizing the extraction of valuable secondary metabolites of M. azedarach using alternative extraction methods has not been investigated. This research aims to develop an effective, fast, and environmentally friendly extraction method using Ultrasound-assisted extraction, methanol and temperature to optimize the extraction of two secondary metabolites, lupeol and stigmasterol, from young roots of M. azedarach using the response surface methodology. METHODS: Box-behnken design was applied to optimize different factors (solvent, temperature, and ultrasonication time). The amounts of lupeol and stigmasterol in the root of M. azedarach were detected by the HPLC-DAD. The required time for the analysis of each sample by the HPLC-DAD system was considered to be 8 min. RESULTS: The results indicated that the highest amount of lupeol (7.82 mg/g DW) and stigmasterol (6.76 mg/g DW) was obtained using 50% methanol at 45 °C and ultrasonication for 30 min, and 50% methanol in 35 °C, and ultrasonication for 30 min, respectively. Using the response surface methodology, the predicted conditions for lupeol and stigmasterol from root of M. azedarach were as follows; lupeol: 100% methanol, temperature 45 °C and ultrasonication time 40 min (14.540 mg/g DW) and stigmasterol 43.75% methanol, temperature 34.4 °C and ultrasonication time 25.3 min (5.832 mg/g DW). CONCLUSIONS: The results showed that the amount of secondary metabolites lupeol and stigmasterol in the root of M. azedarach could be improved by optimizing the extraction process utilizing response surface methodology.


Subject(s)
Melia azedarach , Pentacyclic Triterpenes , Stigmasterol , Pentacyclic Triterpenes/metabolism , Stigmasterol/metabolism , Stigmasterol/isolation & purification , Stigmasterol/chemistry , Melia azedarach/chemistry , Chromatography, High Pressure Liquid , Plant Roots/chemistry , Plant Roots/metabolism , Plant Extracts/chemistry , Temperature , Solvents/chemistry , Lupanes
2.
Med Oncol ; 41(6): 130, 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38676780

ABSTRACT

The Fucaceae family of marine brown algae includes Ascophyllum nodosum. Fucosterol (FSL) is a unique bioactive component that was identified through GC-MS analysis of the hydroalcoholic extract of A. nodosum. Fucosterol's mechanism of action towards hepatocellular cancer was clarified using network pharmacology and docking study techniques. The probable target gene of FSL has been predicted using the TargetNet and SwissTargetPred databases. GeneCards and the DisGNet database were used to check the targeted genes of FSL. By using the web programme Venny 2.1, the overlaps of FSL and HCC disease demonstrated that 18 genes (1.3%) were obtained as targeted genes Via the STRING database, a protein-protein interaction (PPI) network with 18 common target genes was constructed. With the aid of CytoNCA, hub genes were screened using the Cytoscape software, and the targets' hub genes were exported into the ShinyGo online tool for study of KEGG and gene ontology enrichment. Using the software AutoDock, a hub gene molecular docking study was performed. Ten genes, including AR, CYP19A1, ESR1, ESR2, TNF, PPARA, PPARG, HMGCR, SRC, and IGF1R, were obtained. The 10 targeted hubs docked with FSL successfully. The active components FSL of ASD, the FSL, are engaged in fatty liver disease, cancer pathways, and other signalling pathways, which could prove beneficial for the management of HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Molecular Docking Simulation , Network Pharmacology , Stigmasterol , Stigmasterol/analogs & derivatives , Humans , Stigmasterol/pharmacology , Stigmasterol/chemistry , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/drug therapy , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Protein Interaction Maps/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Computer Simulation
3.
Phytomedicine ; 129: 155225, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38678948

ABSTRACT

BACKGROUND: Hepatocellular carcinoma (HCC), the most primary malignant liver tumor and is ranked as the fifth most common malignancy worldwide. Despite various therapeutic approaches being used in clinical practice, the overall effectiveness remains insufficient. Stigmasterol, a compound known for its anti-tumor properties and ability to induce apoptosis in tumor cells, has been found to influenced the composition of the intestinal microbiota. However, the mechanism through which stigmasterol influences the intestinal microbial-host crosstalk in HCC remains elusive. PURPOSE: This study was to investigate whether stigmasterol can remodel gut microbiota, and suppress tumor volume by regulating Treg and IFN-γ+ CD8+ cell in the host with HCC. METHOD: Stigmasterol (at dosages of 0, 50, 100, or 200 mg/kg) was orally administered to Balb/c mice with subcutaneous tumor once every 2 days for 3 weeks. RESULTS: We first found that tumors volume in the group treated with 100 mg/kg stigmasterol were significantly decreased compared with those in the control group (P < 0.05), which exhibited a similar effect as the sorafenib treatment in mice with HCC. This resulted in a significant upregulation of Caspase3, Bax, and P53 expressions, as well as a decrease in Cyclin D1 expression, ultimately leading to a reduction in tumor volume. Additionally, stigmasterol can alter the α and ß diversity of the intestinal flora and significantly increase the abundance of Lactobacillus_johnsonii, Lactobacillus_murinus, and Lactobacillus_reuteri (P<0.05), which can lead to a decrease in the ratio of regulatory T cells (Tregs) to CD8+ T cells in the intestinal tract and tumor tissue, and consequently enhance immune response in the tumor microenvironment (TME) in the host with HCC. CONCLUSION: In this study, we initially utilized different dosages of stigmasterol to intervene in mice with HCC and confirmed its inhibitory effects on tumor growth in vivo, and discovered that stigmasterol affected Lactobacillus johnsonii, Lactobacillus murinus, and Lactobacillus reuteri, resulting in an increased proportion of IFN-γ+ CD8+ T cells and Treg cells in both the intestinal mucosa and tumor tissues, and ultimately leading to increased levels of apoptotic proteins and the subsequent death of tumor cells, which shed light on the effect of stigmasterol on host intestinal tissue and intratumoral immune cells by reshaping the intestinal microbiota, and provide a theoretical foundation for the potential clinical application of stigmasterol in the treatment of HCC.


Subject(s)
CD8-Positive T-Lymphocytes , Carcinoma, Hepatocellular , Gastrointestinal Microbiome , Liver Neoplasms , Mice, Inbred BALB C , Stigmasterol , T-Lymphocytes, Regulatory , Animals , Gastrointestinal Microbiome/drug effects , Stigmasterol/pharmacology , T-Lymphocytes, Regulatory/drug effects , Carcinoma, Hepatocellular/drug therapy , CD8-Positive T-Lymphocytes/drug effects , Liver Neoplasms/drug therapy , Mice , Male , Interferon-gamma/metabolism , Apoptosis/drug effects , Caspase 3/metabolism , Cell Line, Tumor , Cyclin D1/metabolism , Tumor Suppressor Protein p53
4.
Nutrients ; 16(7)2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38613098

ABSTRACT

The main objective of this study was to determine plasma levels of PS and to study SNVs rs41360247, rs4245791, rs4148217, and rs11887534 of ABCG8 and the r657152 SNV at the ABO blood group locus in a sample of a population treated at our hospital, and to determine whether these SNVs are related to plasma PS concentrations. The secondary objective was to establish the variables associated with plasma PS concentrations in adults. Participants completed a dietary habit questionnaire and a blood sample was collected to obtain the following variables: campesterol, sitosterol, sitostanol, lanosterol, stigmasterol, biochemical parameters, and the SNVs. In addition, biometric and demographic variables were also recorded. In the generalized linear model, cholesterol and age were positively associated with total PS levels, while BMI was negatively related. For rs4245791, homozygous T allele individuals showed a significantly lower campesterol concentration compared with C homozygotes, and the GG alleles of rs657152 had the lowest levels of campesterol compared with the other alleles of the SNV. Conclusions: The screening of certain SNVs could help prevent the increase in plasma PS and maybe PNALD in some patients. However, further studies on the determinants of plasma phytosterol concentrations are needed.


Subject(s)
Phytosterols , Adult , Humans , Lanosterol , Stigmasterol , ABO Blood-Group System , Alleles
5.
Aging (Albany NY) ; 16(7): 6478-6487, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38579176

ABSTRACT

Stigmasterol is a common dietary phytosterol with high nutritional value and physiological activity. In this study, we evaluated the effects of stigmasterol on inflammatory cytokines and the TGF-ß1/Smad2 and IL-17A signaling pathway in an ovalbumin (OVA)-induced asthma mouse model. Stigmasterol treatment improved airway remodeling. In addition, it significantly attenuated the symptoms of asthma attacks, reduced the number of macrophages, lymphocytes, neutrophils, and eosinophils in BALF and inflammatory cytokines, including IL-1ß, IL-5, IL-6, and IL-13. It further decreased the level of IL-17A in BALF, serum and spleen. Spleen single-cell suspension analysis via flow cytometry showed that IL-17A level was consistent with the results obtained in BALF, serum and spleen. Stigmasterol decreased the protein expression levels of TGF-ß, p-Smad2 and IL-17A in the spleen, by increasing the protein expression level of IL-10. After 24 h of co-culture of TGF-ß, IL-6 and stigmasterol, the level of IL-17 in CD4+ T cell supernatant was lower relative to levels in the group without stigmasterol. Meanwhile, stigmasterol treatment attenuated the expression level of TGF- ß, p-Smad2 and IL-17A proteins in CD4+ T cells and enhanced the expression levels of IL-10 protein. These data suggested that stigmasterol inhibited the TGF-ß1/Smad2 and IL-17A signaling pathway to achieve anti-asthmatic effects in the OVA-induced asthma mouse model. Collectively, the results of this study are that stigmasterol has achieved preliminary efficacy in the non-clinical laboratory, further studies are needed to consider the clinical application of stigmasterol.


Subject(s)
Asthma , Interleukin-17 , Ovalbumin , Signal Transduction , Smad2 Protein , Stigmasterol , Transforming Growth Factor beta1 , Animals , Asthma/drug therapy , Asthma/metabolism , Asthma/chemically induced , Asthma/immunology , Smad2 Protein/metabolism , Mice , Transforming Growth Factor beta1/metabolism , Signal Transduction/drug effects , Interleukin-17/metabolism , Stigmasterol/pharmacology , Disease Models, Animal , Mice, Inbred BALB C , Female , Airway Remodeling/drug effects , Inflammation/metabolism , Inflammation/drug therapy
6.
CNS Neurosci Ther ; 30(4): e14657, 2024 04.
Article in English | MEDLINE | ID: mdl-38572785

ABSTRACT

AIMS: This study aimed to investigate the potential therapeutic applications of stigmasterol for treating neuropathic pain. METHODS: Related mechanisms were investigated by DRG single-cell sequencing analysis and the use of specific inhibitors in cellular experiments. In animal experiments, 32 male Sprague-Dawley rats were randomly divided into the sham operation group, CCI group, ibuprofen group, and stigmasterol group. We performed behavioral tests, ELISA, H&E staining and immunohistochemistry, and western blotting. RESULTS: Cell communication analysis by single-cell sequencing reveals that after peripheral nerve injury, Schwann cells secrete IL-34 to act on CSF1R in macrophages. After peripheral nerve injury, the mRNA expression levels of CSF1R pathway and NLRP3 inflammasome in macrophages were increased in DRG. In vitro studies demonstrated that stigmasterol can reduce the secretion of IL-34 in LPS-induced RSC96 Schwann cells; stigmasterol treatment of LPS-induced Schwann cell-conditioned medium (L-S-CM) does not induce the proliferation and migration of RAW264.7 macrophages; L-S-CM reduces CSF1R signaling pathway (CSF1R, P38MAPK, and NFκB) activation, NLRP3 inflammasome activation, and ROS production. In vivo experiments have verified that stigmasterol can reduce thermal and cold hyperalgesia in rat chronic compressive nerve injury (CCI) model; stigmasterol can reduce IL-1ß, IL-6, TNF-α, CCL2, SP, and PGE2 in serum of CCI rats; immunohistochemistry and western blot confirmed that stigmasterol can reduce the levels of IL-34/CSF1R signaling pathway and NLRP3 inflammasome in DRG of CCI rats. CONCLUSION: Stigmasterol alleviates neuropathic pain by reducing Schwann cell-macrophage cascade in DRG by modulating IL-34/CSF1R axis.


Subject(s)
Neuralgia , Peripheral Nerve Injuries , Rats , Male , Animals , Rats, Sprague-Dawley , NLR Family, Pyrin Domain-Containing 3 Protein , Stigmasterol/pharmacology , Stigmasterol/therapeutic use , Inflammasomes , Lipopolysaccharides , Neuralgia/metabolism , Hyperalgesia/drug therapy , Hyperalgesia/metabolism , Interleukins , Macrophages/metabolism , Schwann Cells/metabolism
7.
Comput Biol Chem ; 110: 108037, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38460436

ABSTRACT

Cancer is the most prevalent disease globally, which presents a significant challenge to the healthcare industry, with breast and lung cancer being predominant malignancies. This study used RNA-seq data from the TCGA database to identify potential biomarkers for lung and breast cancer. Tumor Necrosis Factor (TNFAIP8) and Sulfite Oxidase (SUOX) showed significant expression variation and were selected for further study using structure-based drug discovery (SBDD). Compounds derived from the Euphorbia ammak plant were selected for in-silico study with both TNFAIP8 and SUOX. Stigmasterol had the greatest binding scores (normalized scores of -8.53 kcal/mol and -9.69 kcal/mol) with both proteins, indicating strong stability in their binding pockets throughout the molecular dynamics' simulation. Although Stigmasterol first changed its initial conformation (RMSD = 0.5 nm with the starting conformation) in SUOX, it eventually reached a stable conformation (RMSD of 1.5 nm). The compound on TNFAIP8 showed a persistent shape (RMSD of 0.35 nm), indicating strong protein stability. The binding free energy of the complex was calculated using the MM/GBSA technique; TNFAIP8 had a ΔGTOTAL of -24.98 kcal/mol, with TYR160 being the most significant residue, contributing -2.52 kcal/mol. On the other hand, the SUOX complex had a binding free energy of -16.87 kcal/mol, with LEU151 being the primary contributor (-1.17 kcal/mol). Analysis of the complexes' free energy landscape unveiled several states with minimum free energy, indicating robust interactions between the protein and ligand. In its conclusion, this work emphasises the favourable ability of Stigmasterol to bind with prospective targets for lung and breast cancer, indicating the need for more experimental study.


Subject(s)
Breast Neoplasms , Euphorbia , Lung Neoplasms , Stigmasterol , Euphorbia/chemistry , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Stigmasterol/chemistry , Stigmasterol/pharmacology , Stigmasterol/analogs & derivatives , Stigmasterol/isolation & purification , Female , Molecular Dynamics Simulation , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/isolation & purification , Molecular Structure , Thermodynamics , Molecular Docking Simulation
8.
J Biol Chem ; 300(5): 107243, 2024 May.
Article in English | MEDLINE | ID: mdl-38556086

ABSTRACT

Sterols are ubiquitous membrane constituents that persist to a large extent in the environment due to their water insolubility and chemical inertness. Recently, an oxygenase-independent sterol degradation pathway was discovered in a cholesterol-grown denitrifying bacterium Sterolibacterium (S.) denitrificans. It achieves hydroxylation of the unactivated primary C26 of the isoprenoid side chain to an allylic alcohol via a phosphorylated intermediate in a four-step ATP-dependent enzyme cascade. However, this pathway is incompatible with the degradation of widely distributed steroids containing a double bond at C22 in the isoprenoid side chain such as the plant sterol stigmasterol. Here, we have enriched a prototypical delta-24 desaturase from S. denitrificans, which catalyzes the electron acceptor-dependent oxidation of the intermediate stigmast-1,4-diene-3-one to a conjugated (22,24)-diene. We suggest an α4ß4 architecture of the 440 kDa enzyme, with each subunit covalently binding an flavin mononucleotide cofactor to a histidyl residue. As isolated, both flavins are present as red semiquinone radicals, which can be reduced by stigmast-1,4-diene-3-one but cannot be oxidized even with strong oxidizing agents. We propose a mechanism involving an allylic radical intermediate in which two flavin semiquinones each abstract one hydrogen atom from the substrate. The conjugated delta-22,24 moiety formed allows for the subsequent hydroxylation of the terminal C26 with water by a heterologously produced molybdenum-dependent steroid C26 dehydrogenase 2. In conclusion, the pathway elucidated for delta-22 steroids achieves oxygen-independent hydroxylation of the isoprenoid side chain by bypassing the ATP-dependent formation of a phosphorylated intermediate.


Subject(s)
Bacterial Proteins , Betaproteobacteria , Fatty Acid Desaturases , Stigmasterol , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Molybdenum/chemistry , Stigmasterol/metabolism , Betaproteobacteria/enzymology , Fatty Acid Desaturases/genetics , Fatty Acid Desaturases/metabolism , Hydroxylation/genetics , Flavins/metabolism
9.
Nutrients ; 16(6)2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38542686

ABSTRACT

The association between phytosterols and lipid levels remains poorly assessed at a population level. We assessed the associations between serum levels of six phytosterols (campesterol, campestanol, stigmasterol, sitosterol, sitostanol and brassicasterol) and of lipids [total, low-density lipoprotein (LDL)- and high-density lipoprotein (HDL)-cholesterol, triglycerides, apolipopoprotein A-IV and lipoprotein Lp(a)] in two cross-sectional surveys of a population-based, prospective study. Data from 910 participants (59.1% women, 70.4 ± 4.7 years) for the first survey (2009-2012) and from 721 participants (60.2% women, 75.1 ± 4.7 years) for the second survey (2014-2017) were used. After multivariable adjustment, all phytosterols were positively associated with total cholesterol: slope and (95% confidence interval) 1.594 (1.273-1.915); 0.073 (0.058-0.088); 0.060 (0.044-0.076); 2.333 (1.836-2.830); 0.049 (0.033-0.064) and 0.022 (0.017-0.028) for campesterol, campestanol, stigmasterol, sitosterol, sitostanol and brassicasterol, respectively, in the first survey, and 1.257 (0.965-1.548); 0.066 (0.052-0.079); 0.049 (0.034-0.063); 1.834 (1.382-2.285); 0.043 (0.029-0.057) and 0.018 (0.012-0.023) in the second survey, all p < 0.05. Similar positive associations were found between all phytosterols and LDL cholesterol. Positive associations were found between campesterol and sitosterol and HDL-cholesterol: slope and (95% CI) 0.269 (0.134-0.405) and 0.393 (0.184-0.602) for campesterol and sitosterol, respectively, in the first survey, and 1.301 (0.999-1.604) and 0.588 (0.327-0.849) in the second survey, all p < 0.05. No associations were found between phytosterols and triglyceride or lipoprotein Lp(a) levels, while a positive association between campesterol and apolipoprotein A-IV levels was found: 2.138 (0.454-3.822). Upon normal dietary intakes, serum phytosterol levels were positively associated with total and LDL cholesterol levels, while no consistent association with other lipid markers was found.


Subject(s)
Phytosterols , Sitosterols , Humans , Female , Male , Cholesterol, LDL , Stigmasterol , Cross-Sectional Studies , Prospective Studies , Cholesterol , Cholesterol, HDL , Triglycerides , Lipoprotein(a)
10.
Alzheimers Res Ther ; 16(1): 53, 2024 Mar 09.
Article in English | MEDLINE | ID: mdl-38461353

ABSTRACT

BACKGROUND: Studies have suggested that blood circulating phytosterols, plant-derived sterols analogous to cholesterol, were associated with blood lipid levels and the risk of Alzheimer's disease (AD) and Parkinson's disease (PD). This Mendelian randomization (MR) study is performed to determine the causal effect of circulating phytosterols on AD and PD and evaluate the mediation effect of blood lipids. METHODS: Leveraging genome-wide association studies summary-level data for phytosterols, blood lipids, AD, and PD, univariable and multivariable MR (MVMR) analyses were conducted. Four types of phytosterols (brassicasterol, campesterol, sitosterol, and stigmasterol), three blood lipids parameters (high-density lipoprotein cholesterol [HDL-C], non-HDL-C, and triglyceride), two datasets for AD and PD were used. Inverse-variance weighted method was applied as the primary analysis, and false discovery rate method was used for adjustment of multiple comparisons. RESULTS: Using the largest AD dataset, genetically proxied higher levels of stigmasterol (OR = 0.593, 95%CI = 0.431-0.817, P = 0.004) and sitosterol (OR = 0.864, 95%CI = 0.791-0.943, P = 0.004) significantly correlated with a lower risk of AD. No significant associations were observed between all four types of phytosterols levels and PD. MVMR estimates showed that the above causal associations were missing after integrating the blood lipids as exposures. Sensitivity analyses confirmed the robustness of these associations, with no evidence of pleiotropy and heterogeneity. CONCLUSION: The study supports a potential beneficial role of blood stigmasterol and sitosterol in reducing the risk of AD, but not PD, which is dependent on modulating blood lipids. These insights highlight circulating stigmasterol and sitosterol as possible biomarkers and therapeutic targets for AD.


Subject(s)
Alzheimer Disease , Parkinson Disease , Phytosterols , Humans , Sitosterols , Stigmasterol , Alzheimer Disease/genetics , Genome-Wide Association Study , Parkinson Disease/drug therapy , Parkinson Disease/genetics , Phytosterols/analysis , Cholesterol/analysis , Lipids
11.
Int Immunopharmacol ; 131: 111851, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38492337

ABSTRACT

Allergic diseases have become a serious problem worldwide and occur when the immune system overreacts to stimuli. Sargassum horneri is an edible marine brown alga with pharmacological relevance in treating various allergy-related conditions. Therefore, this study aimed to investigate the effect of fucosterol (FST) isolated from S. horneri on immunoglobulin E(IgE)/bovine serum albumin (BSA)-stimulated allergic reactions in mouse bone marrow-derived cultured mast cells (BMCMCs) and passive cutaneous anaphylaxis (PCA) in BALB/c mice. The in silico analysis results revealed the binding site modulatory potential of FST on the IgE and IgE-FcεRI complex. The findings of the study revealed that FST significantly suppressed the degranulation of IgE/BSA-stimulated BMCMCs by inhibiting the release of ß-hexosaminidase and histamine in a dose-dependent manner. In addition, FST effectively decreased the expression of FcεRI on the surface of BMCMCs and its IgE binding. FST dose-dependently downregulated the expression of allergy-related cytokines (interleukin (IL)-4, -5, -6, -13, tumor necrosis factor (TNF)-α, and a chemokine (thymus and activation-regulated chemokine (TARC)) by suppressing the activation of nuclear factor-κB (NF-κB) and Syk-LAT-ERK-Gab2 signaling in IgE/BSA-stimulated BMCMCs. As per the histological analysis results of the in vivo studies with IgE-mediated PCA in BALB/c mice, FST treatment effectively attenuated the PCA reactions. These findings suggest that FST has an immunopharmacological potential as a naturally available bioactive compound for treating allergic reactions.


Subject(s)
Anaphylaxis , Anti-Allergic Agents , Hypersensitivity , Sargassum , Stigmasterol/analogs & derivatives , Mice , Animals , Immunoglobulin E/metabolism , Serum Albumin, Bovine , Sargassum/metabolism , Mast Cells , Passive Cutaneous Anaphylaxis , Hypersensitivity/drug therapy , Tumor Necrosis Factor-alpha/metabolism , Cell Degranulation , Mice, Inbred BALB C , Anti-Allergic Agents/pharmacology , Anti-Allergic Agents/therapeutic use
12.
Drug Deliv Transl Res ; 14(7): 1969-1981, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38200400

ABSTRACT

Stigmasterol, a plant-derived sterol, sharing structural similarity with cholesterol, has demonstrated anti-osteoarthritis (OA) properties, attributed to its antioxidant and anti-inflammatory capabilities. Given that OA often arises in weight bearing or overused joints, prolonged localized treatment effectively targets inflammatory aspects of the disease. This research explored the impact of stigmasterol-loaded nanoparticles delivered via intra-articular injections in an OA rat model. Employing mesoporous silica nanomaterials (MSNs) combined with ß-cyclodextrin (ß-CD) as a vehicle, stigmasterol was loaded in conjunction with tannic acid, forming stigmasterol/ß-CD-MSNs to facilitate a sustained stigmasterol release. The study employed RAW 264.7 cells to examine the in vitro cytotoxicity and anti-inflammatory effect of stigmasterol/ß-CD-MSNs. For in vivo experimentation, we used healthy control rats and monosodium iodoacetate (MIA)-induced OA rats, separated into five groups, varying the injection substances. In vitro findings indicated that stigmasterol/ß-CD-MSNs suppressed the mRNA expression of key pro-inflammatory mediators such as interleukin-6, tumor necrosis factor-α, and matrix metalloproteinase-3 in a dose-dependent manner. In vivo experiments revealed a substantial decrease in the mRNA levels of pro-inflammatory factors in the stigmasterol(50 µg)/ß-CD-MSN group compared to the others. Macroscopic, radiographic, and histological evaluations established that intra-articular injections of stigmasterol/ß-CD-MSNs inhibited cartilage degeneration and subchondral bone deterioration. Therefore, in a chemically induced OA rat model, intra-articular stigmasterol delivery was associated with reduction in both local and systemic inflammatory responses, alongside a slowdown in joint degradation and arthritic progression.


Subject(s)
Anti-Inflammatory Agents , Nanoparticles , Osteoarthritis , Stigmasterol , Animals , Stigmasterol/administration & dosage , Stigmasterol/pharmacology , Osteoarthritis/drug therapy , Osteoarthritis/chemically induced , Injections, Intra-Articular , Nanoparticles/administration & dosage , Pilot Projects , RAW 264.7 Cells , Mice , Male , Anti-Inflammatory Agents/administration & dosage , Inflammation/drug therapy , Inflammation/chemically induced , Rats , Pain/drug therapy , Pain/chemically induced , Disease Models, Animal , beta-Cyclodextrins/administration & dosage , beta-Cyclodextrins/chemistry , Rats, Sprague-Dawley , Silicon Dioxide/administration & dosage , Silicon Dioxide/chemistry , Iodoacetic Acid , Joints/drug effects , Joints/pathology
13.
J Biomol Struct Dyn ; 42(4): 1952-1955, 2024.
Article in English | MEDLINE | ID: mdl-37539686

ABSTRACT

Previous in vivo studies of Morinda citrifolia (Rubiaceae) reported that the extract inhibited α-amylase and reduced blood glucose levels in streptozotocin-induced diabetes mice. Moreover, molecular docking studies confirmed that ursolic acid and sterol compounds contained in the fruit interacted with important residues in the binding site of α-amylase and α-glucosidase. Our work aimed to study the complex stability of stigmasterol (which has been isolated from the M. citrifolia fruit for the first time) and beta-sitosterol towards α-amylase and α-glucosidase by employing molecular dynamics simulation on GROMACS 2016.3 embedded with the AMBER99SB-ILDN force field. The simulation was carried out for 100 ns at 310 oK. Based on the RMSD and RMSF graphs, the complexes of stigmasterol/α-amylase and stigmasterol/α-glucosidase are more stable compared to acarbose, the known inhibitor of both enzymes. Moreover, beta-sitosterol indicates a better stability complex with α-glucosidase compared to that of acarbose. Interestingly, the affinity of stigmasterol and beta-sitosterol to both enzymes, in terms of the total binding energy, is stronger than that of acarbose. Taken together, stigmasterol and beta-sitosterol in M. citrifolia fruit may have the potency to be developed as α-amylase and α-glucosidase inhibitors.Communicated by Ramaswamy H. Sarma.


Subject(s)
Acarbose , Morinda , Sitosterols , Mice , Animals , Morinda/metabolism , Molecular Docking Simulation , Molecular Dynamics Simulation , alpha-Glucosidases/chemistry , Stigmasterol/pharmacology , alpha-Amylases
14.
J Biomol Struct Dyn ; 42(3): 1110-1125, 2024.
Article in English | MEDLINE | ID: mdl-37029762

ABSTRACT

The rationale at the basis of targeted approach in oncology is radically shifting-from development of highly specific agents aiming at a single target towards molecules interfering with multiple targets. This study was performed to isolate and characterize bioactive molecules from Olax subscorpioidea stem and investigate their potentials as multi-targeted inhibitors against selected non-small cell lung cancer, breast cancer and chronic myelogenous leukemia oncogenic targets. Three compounds: ß-sitosterol (1), α-amyrin (2) and stigmasterol (3) were isolated. The structures of 1 - 3 were elucidated by analysis of their spectroscopic data (NMR, MS and IR). To the best of our knowledge, this is the first time these compounds were isolated from O. subscorpioidea stems. Furthermore, integrated analysis of MS/MS data using the Global Natural Products Social Molecular Networking (GNPS) workflow enabled dereplication and identification of 26 compounds, including alkaloids (remerine, boldine), terpenoids (3-hydroxy-11-ursen-28,13-olide, oleanolic acid), flavonoids (kaempferitrin, olax chalcone A) and saponins in O. subscorpioidea stem. Molecular docking studies revealed that some of the compounds, including olax chalcone A (-9.2 to -10.9 kcal/mol), 3-Hydroxy-11-ursen-28,13-olide (-6.6 to -10.2 kcal/mol), α-amyrin (-6.6 to -10.2 kcal/mol), stigmasterol (-7.7 to -10.1 kcal/mol), ß-Sitosterol (-7 to -9.9 kcal/mol) and kaempferitrin (-7.7 to -9 kcal/mol) possessed good inhibitory potentials against selected cancer targets, when compared with reference inhibitors (-8.4 to -13.7 kcal/mol). A few of these compounds were shown to have considerable to favorable pharmacokinetic and drug-likeness properties. This study provides some rationale for the use of O. subscorpioidea in ethnomedicinal management of cancer and identifies some potential anticancer agents.Communicated by Ramaswamy H. Sarma.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Chalcone , Chalcones , Lung Neoplasms , Pentacyclic Triterpenes , Humans , Molecular Docking Simulation , Stigmasterol , Tandem Mass Spectrometry , Molecular Dynamics Simulation
15.
Phytother Res ; 38(1): 265-279, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37871970

ABSTRACT

(Switching from the microglial M1 phenotype to the M2 phenotype is a promising therapeutic strategy for neuropathic pain (NP). This study aimed to investigate the potential use of stigmasterol for treating NP. In animal experiments, 32 male Sprague-Dawley rats were randomly divided into the sham operation group, chronic constriction injury (CCI) group, CCI + ibuprofen group, and CCI + stigmasterol group. We performed behavioral tests, enzyme-linked immunosorbent assay, hematoxylin-esoin staining (H&E) staining and immunohistochemistry, immunofluorescence, and Western blotting. In cell experiments, we performed flow cytometry, immunofluorescence, Western blotting, and qRT-PCR. Stigmasterol reduced thermal and mechanical hyperalgesia and serum IL-1ß and IL-8 levels and increased serum IL-4 and TGF-ß levels in CCI rats. Stigmasterol reduced IL-1ß, COX-2, and TLR4 expression in the right sciatic nerve and IL-1ß expression in the spinal cord. Stigmasterol reduced the expression of Iba-1, TLR4, MyD88, pNF-κB, pP38 MAPK, pJNK, pERK, COX-2, IL-1ß, and CD32 in the spinal cord of CCI rats while increasing the expression of IL-10 and CD206. Stigmasterol decreased M1 polarization markers and increased M2 polarization markers in lipopolysaccharide (LPS)-induced microglia and decreased the expression of Iba-1, TLR4, MyD88, pNF-κB, pP38 MAPK, pJNK, pERK, iNOS, COX-2, and IL-1ß in LPS-treated microglia while increasing the expression of Arg-1 and IL-10. Stigmasterol regulates microglial M1/M2 polarization via the TLR4/NF-κB pathway to alleviate NP.


Subject(s)
NF-kappa B , Neuralgia , Rats , Male , Animals , NF-kappa B/metabolism , Interleukin-10/metabolism , Interleukin-10/therapeutic use , Microglia/metabolism , Toll-Like Receptor 4/metabolism , Stigmasterol/pharmacology , Rats, Sprague-Dawley , Lipopolysaccharides/metabolism , Cyclooxygenase 2/metabolism , Myeloid Differentiation Factor 88/metabolism , Neuralgia/drug therapy , Neuralgia/metabolism
16.
Sci Rep ; 13(1): 21375, 2023 12 04.
Article in English | MEDLINE | ID: mdl-38049600

ABSTRACT

Four structured acylglycerols with stigmasterol bonded by a succinyl linker were investigated and their stability were analyzed. Samples were heated to 60 °C and kept at that temperature to simulate storage, and to 180 °C to simulate frying conditions. The degradation of the synthesized compounds and formed derivatives was determined, and their cytotoxicity and genotoxicity on normal human cells from the digestive system was determined. Holding at 180 °C resulted in greater degradation of the compounds than holding at 60 °C. The most stable compound in each sample proved to be one with oleic acid in its structure-1,3-dioleoyl-2-stigmasterylsuccinoyl-sn-glycerol (DO2SSt) at 60 °C and 1,2-dioleoyl-3-stigmasterylsuccinoyl-sn-glycerol (DO3SSt) at 180 °C. These results indicate that the type of fatty acid in the molecule is more important than its position in the glycerol structure. None of the diacylmonostigmasterylsuccinoyl-sn-glycerols (DASStGs) before or after heating exhibited cytotoxic or genotoxic potential to small intestine and colon mucosa cells.


Subject(s)
Glycerides , Stigmasterol , Humans , Glycerides/toxicity , Glycerol/chemistry , Heating , Fatty Acids
17.
Stud Health Technol Inform ; 308: 417-427, 2023 Nov 23.
Article in English | MEDLINE | ID: mdl-38007768

ABSTRACT

OBJECTIVE: To analyze anti-depression mechanism of Baihe Zhimu decoction (BZD) based on network pharmacology method, which provides reference for the development of new drugs and the clinical application of classical prescriptions. METHOD: The main chemical components and targets of Baihe and Zhimu were obtained through traditional Chinese medicine pharmacology system technology platform (TCMSP) database, and the active components of TCM were filtered according to ADME; Major targets for anti-depression were get through Gencards, OMIM and DRUGBANK databases; Protein interaction analysis was performed using the String platform; Build PPI networks and mine potential protein functional modules in the network; The Metascape platform was used to analyze the "drug-ingredients-target" and its involved biological processes and pathways; Finally, the molecular docking validation was performed by Systems Dock Web Site. RESULTS: The core active ingredients of BZD treating depression are kaempferol and Stigmasterol, The core targets are AKT1, TNF, TP53, PTGS2, and CASP3. The biological pathway of the anti-depression mainly acts on Lipid and atherosclerosis, Chemical carcinogenesis and receptor activation. Molecular docking results showed that AKT1, TNF and TP53 have good affinity with components kaempferol and Stigmasterol. CONCLUSION: This study initially revealed the mechanism of multicomponent, multiple target and multiple pathway of anti-depression, which may be related to neuroactive ligand-receptor interaction, atherosclerotic, PI3K-Akt and TNF signaling pathway.


Subject(s)
Kaempferols , Network Pharmacology , Molecular Docking Simulation , Phosphatidylinositol 3-Kinases , Stigmasterol
18.
Medicine (Baltimore) ; 102(45): e34871, 2023 Nov 10.
Article in English | MEDLINE | ID: mdl-37960775

ABSTRACT

BACKGROUND: Thyroid cancer (TC) is the most common endocrine malignancy that has rapidly increased in global incidence. Prunella vulgaris (PV) has manifested therapeutic effects in patients with TC. We aimed to investigate its molecular mechanisms against TC and provide potential drug targets by using network pharmacology and molecular docking. METHODS: The ingredients of PV were retrieved from Traditional Chinese Medicine Systematic Pharmacology Database. TC-related gene sets were established using the GeneCard and OMIM databases. The establishment of the TC-PV target gene interaction network was accomplished using the STRING database. Cytoscape constructed networks for visualization. Protein-protein interaction, gene ontology and the biological pathway Kyoto encyclopedia of genes and genomes enrichment analyses were performed to discover the potential mechanism. Molecular docking technology was used to analyze the effective compounds from PV for treating TC. RESULTS: 11 active compounds and 192 target genes were screened from PV. 177 potential targets were obtained by intersecting PV and TC gene sets. Network pharmacological analysis showed that the PV active ingredients including Vulgaxanthin-I, quercetin, Morin, Stigmasterol, poriferasterol monoglucoside, Spinasterol, kaempferol, delphinidin, stigmast-7-enol, beta-sitosterol and luteolin showed better correlation with TC target genes such as JUN, AKT1, mitogen-activated protein kinase 1, IL-6 and RELA. The gene ontology and Kyoto encyclopedia of genes and genomes indicated that PV can act by regulating the host defense and response to oxidative stress immune response and several signaling pathways are closely associated with TC, such as the TNF and IL-17. Protein-protein interaction network identified 8 hub genes. The molecular docking was conducted on the most significant gene MYC. Eleven active compounds of PV can enter the active pocket of MYC, namely poriferasterol monoglucoside, stigmasterol, beta-sitosterol, vulgaxanthin-I, spinasterol, stigmast-7-enol, luteolin, delphinidin, morin, quercetin and kaempferol. Further analysis showed that oriferasterol monoglucoside, followed by tigmasterol, were the potential therapeutic compound identified in PV for the treatment of TC. CONCLUSION: The network pharmacological strategy integrates molecular docking to unravel the molecular mechanism of PV. MYC is a promising drug target to reduce oxidative stress damage and potential anti-tumor effect. Oriferasterol monoglucoside and kaempferol were 2 bioactive compounds of PV to treat TC. This provides a basis to understand the mechanism of the anti-TC activity of PV.


Subject(s)
Drugs, Chinese Herbal , Prunella , Thyroid Neoplasms , Humans , Kaempferols , Network Pharmacology , Luteolin , Molecular Docking Simulation , Quercetin , Stigmasterol , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Medicine, Chinese Traditional
19.
Sci Rep ; 13(1): 18492, 2023 10 28.
Article in English | MEDLINE | ID: mdl-37898675

ABSTRACT

The aim of the study was to investigated the mechanism of Strychnos nux-vomica L. (Semen Strychni, SS) against papillary carcinoma thyroid (PTC) by combined of network pharmacology and experimental verification. By searching the TCMSP, SEA and SwissTarget Prediction database, the main active ingredients and related targets were obtained. Utilizing Venny 2.1.0 String database and Cytoscape 3.7.2 to screened the intersection target and constructed protein-protein interaction (PPI) network diagram. Using R 4.0.4 software carried out the enrichment analysis of GO and KEGG. HPLC was carried out using LC-20A modular HPLC system to identify the bioactive compound brucine present in SS. Molecular docking was performed using Discovery 2019 software. The inhibition rate was detected by CCK8 method. Western blot was used to detect the expression levels of brucine anti-PTC related pathway proteins. 14 active components were screened out, of which 4 main components showed tight relationship with PTC. SS may play the anti-PTC role by acting on two main pathways (TNF signaling pathway and MAPK signaling pathway) and mediating various biological functions. HPLC analysis revealed that brucine was a suitable marker for standardization of the SS. 4 active components exhibit strong binding energy with core protein. Brucine could significantly reduce the activity of BCPAP cells compared with isobrucine, stigmasterol, (+)-catechin. Brucine may reduce the protein expression levels of IL-6, VEGFA, JUN, TP53, 1L1B, PTGS2, BCL2, CASP3, CASP8, and CASP9 while increase the protein expression levels of BAD, cleaved-CASP3, cleaved-CASP8, and cleaved-CASP9 in BCPAP cells, respectively. The active components of SS against PTC mainly include isobrucine, stigmasterol, (+)-catechin, brucine. Among them, brucine exhibits the strongest anti-PTC activity in BCPAP cells, which may reduce the PTC-related protein expression levels. Therefore, SS may exhibits the anti-PTC activities through multiple targets and pathways.


Subject(s)
Catechin , Drugs, Chinese Herbal , Thyroid Neoplasms , Humans , Semen , Caspase 3 , Network Pharmacology , Molecular Docking Simulation , Stigmasterol , Thyroid Cancer, Papillary , Thyroid Neoplasms/drug therapy
20.
BMC Complement Med Ther ; 23(1): 316, 2023 Sep 11.
Article in English | MEDLINE | ID: mdl-37697361

ABSTRACT

BACKGROUND: Stigmasterol is an unsaturated phytosterol that belong to the class of tetracyclic steroids abundant in Rhoicissus tridentata. Stigmasterol is an important constituent since it has shown impressive pharmacological effects such as anti-osteoarthritis, anticancer, anti-diabetic, anti-inflammatory, antiparasitic, immunomodulatory, antifungal, antioxidant, antibacterial, and neuroprotective activities. Furthermore, due to the presence of π system and hydroxyl group, stigmasterol is readily derivatized through substitution and addition reactions, allowing for the synthesis of a wide variety of stigmasterol derivatives. METHODS: Stigmasterol (1) isolated from Rhoicissus tridentata was used as starting material to yield eight bio-active derivatives (2-9) through acetylation, epoxidation, epoxide ring opening, oxidation, and dihydroxylation reactions. The structures of all the compounds were established using spectroscopic techniques, NMR, IR, MS, and melting points. The synthesized stigmasterol derivatives were screened for cytotoxicity against the hormone receptor-positive breast cancer (MCF-7), triple-negative breast cancer (HCC70), and non-tumorigenic mammary epithelial (MCF-12 A) cell lines using the resazurin assay. RESULTS: Eight stigmasterol derivatives were successfully synthesized namely; Stigmasterol acetate (2), Stigmasta-5,22-dien-3,7-dione (3), 5,6-Epoxystigmast-22-en-3ß-ol (4), 5,6-Epoxystigmasta-3ß,22,23-triol (5), Stigmastane-3ß,5,6,22,23-pentol (6), Stigmasta-5-en-3,7-dion-22,23-diol (7), Stigmasta-3,7-dion-5,6,22,23-ol (8) and Stigmast-5-ene-3ß,22,23-triol (9). This is the first report of Stigmasta-5-en-3,7-dion-22,23-diol (7) and Stigmasta-3,7-dion-5,6,22,23-ol (8). The synthesized stigmasterol analogues showed improved cytotoxic activity overall compared to the stigmasterol (1), which was not toxic to the three cell lines tested (EC50 ˃ 250 µM). In particular, 5,6-Epoxystigmast-22-en-3ß-ol (4) and stigmast-5-ene-3ß,22,23-triol (9) displayed improved cytotoxicity and selectivity against MCF-7 breast cancer cells (EC50 values of 21.92 and 22.94 µM, respectively), while stigmastane-3ß,5,6,22,23-pentol (6) showed improved cytotoxic activity against the HCC70 cell line (EC50: 16.82 µM). CONCLUSION: Natural products from Rhoicissus tridentata and their derivatives exhibit a wide range of pharmacological activities, including anticancer activity. The results obtained from this study indicate that molecular modification of stigmasterol functional groups can generate structural analogues with improved anticancer activity. Stigmasterol derivatives have potential as candidates for novel anticancer drugs.


Subject(s)
Antineoplastic Agents , Neoplasms , Stigmasterol/pharmacology , Propylene Glycols , Antineoplastic Agents/pharmacology , Anti-Bacterial Agents
SELECTION OF CITATIONS
SEARCH DETAIL
...