Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.197
Filter
1.
Nat Commun ; 15(1): 4787, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38839843

ABSTRACT

Pure organic phosphorescence resonance energy transfer is a research hotspot. Herein, a single-molecule phosphorescence resonance energy transfer system with a large Stokes shift of 367 nm and near-infrared emission is constructed by guest molecule alkyl-bridged methoxy-tetraphenylethylene-phenylpyridines derivative, cucurbit[n]uril (n = 7, 8) and ß-cyclodextrin modified hyaluronic acid. The high binding affinity of cucurbituril to guest molecules in various stoichiometric ratios not only regulates the topological morphology of supramolecular assembly but also induces different phosphorescence emissions. Varying from the spherical nanoparticles and nanorods for binary assemblies, three-dimensional nanoplate is obtained by the ternary co-assembly of guest with cucurbit[7]uril/cucurbit[8]uril, accompanying enhanced phosphorescence at 540 nm. Uncommonly, the secondary assembly of ß-cyclodextrin modified hyaluronic acid and ternary assembly activates a single intramolecular phosphorescence resonance energy transfer process derived from phenyl pyridines unit to methoxy-tetraphenylethylene function group, enabling a near-infrared delayed fluorescence at 700 nm, which ultimately applied to mitochondrial targeted imaging for cancer cells.


Subject(s)
Fluorescence Resonance Energy Transfer , Hyaluronic Acid , Imidazoles , beta-Cyclodextrins , beta-Cyclodextrins/chemistry , Humans , Hyaluronic Acid/chemistry , Imidazoles/chemistry , Fluorescence Resonance Energy Transfer/methods , Bridged-Ring Compounds/chemistry , Nanoparticles/chemistry , Stilbenes/chemistry , Pyridines/chemistry , HeLa Cells , Nanotubes/chemistry , Mitochondria/metabolism , Heterocyclic Compounds, 2-Ring , Macrocyclic Compounds , Imidazolidines
2.
Anal Chem ; 96(19): 7787-7796, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38702857

ABSTRACT

Microorganism are ubiquitous and intimately connected with human health and disease management. The accurate and fast identification of pathogenic microorganisms is especially important for diagnosing infections. Herein, three tetraphenylethylene derivatives (S-TDs: TBN, TPN, and TPI) featuring different cationic groups, charge numbers, emission wavelengths, and hydrophobicities were successfully synthesized. Benefiting from distinct cell wall binding properties, S-TDs were collectively utilized to create a sensor array capable of imaging various microorganisms through their characteristic fluorescent signatures. Furthermore, the interaction mechanism between S-TDs and different microorganisms was explored by calculating the binding energy between S-TDs and cell membrane/wall constituents, including phospholipid bilayer and peptidoglycan. Using a combination of the fluorescence sensor array and a deep learning model of residual network (ResNet), readily differentiation of Gram-negative bacteria (G-), Gram-positive bacteria (G+), fungi, and their mixtures was achieved. Specifically, by extensive training of two ResNet models with large quantities of images data from 14 kinds of microorganism stained with S-TDs, identification of microorganism was achieved at high-level accuracy: over 92.8% for both Gram species and antibiotic-resistant species, with 90.35% accuracy for the detection of mixed microorganism in infected wound. This novel method provides a rapid and accurate method for microbial classification, potentially aiding in the diagnosis and treatment of infectious diseases.


Subject(s)
Deep Learning , Humans , Stilbenes/chemistry , Gram-Positive Bacteria/isolation & purification , Fluorescent Dyes/chemistry , Gram-Negative Bacteria/isolation & purification , Wound Infection/microbiology , Wound Infection/diagnosis , Fungi/isolation & purification
3.
Biosens Bioelectron ; 259: 116416, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38797033

ABSTRACT

The low abundance, heterogeneous expression, and temporal changes of miRNA in different cellular locations pose significant challenges for both the detection sensitivity of miRNA liquid biopsy and intracellular imaging. In this work, we report an intelligently assembled biosensor based on catalytic hairpin assembly (CHA) and aggregation-induced emission (AIE), named as catalytic hairpin aggregation-induced emission (CHAIE), for the ultrasensitive detection and intracellular imaging of miRNA-155. To achieve such goal, tetraphenylethylene-N3 (TPE-N3) is used as AIE luminogen (AIEgen), while graphene oxide is introduced to quench the fluorescence. When the target miRNA is present, CHA reaction is triggered, causing the AIEgen to self-assemble with the hairpin DNA. This will restrict the intramolecular rotation of the AIEgen and produce a strong AIE fluorescence. Interestingly, CHAIE does not require any enzyme or expensive thermal cycling equipment, and therefore provides a rapid detection. Under optimal conditions, the proposed biosensor can determine miRNA in the concentration range from 2 pM to 200 nM within 30 min, with the detection limit of 0.42 pM. The proposed CHAIE biosensor in this work offers a low background signal and high sensitivity, making it applicable for highly precise spatiotemporal imaging of target miRNA in living cells.


Subject(s)
Biosensing Techniques , Graphite , MicroRNAs , Nanocomposites , Graphite/chemistry , MicroRNAs/analysis , Biosensing Techniques/methods , Humans , Nanocomposites/chemistry , Fluorescent Dyes/chemistry , Limit of Detection , Stilbenes/chemistry , Catalysis , Optical Imaging/methods , Spectrometry, Fluorescence/methods , Fluorescence
4.
Eur J Med Chem ; 272: 116497, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38759453

ABSTRACT

A series of combretastatin A-4 (CA-4) derivatives were designed and synthesized, which contain stilbene core structure with different linker, predominantly piperazine derivatives. These compounds were evaluated for their cytotoxic activities against four cancer cell lines, HCT116, A549, AGS, and SK-MES-1. Among them, compound 13 displayed the best effectiveness with IC50 values of 0.227 µM and 0.253 µM against HCT116 and A549 cells, respectively, showing low toxicity to normal cells. Mechanistic studies showed that 13 inhibited HCT116 proliferation via arresting cell cycle at the G2/M phase through disrupting the microtubule network and inducing autophagy in HCT116 cells by regulating the expression levels of autophagy-related proteins. In addition, 13 displayed antiproliferative activities against A549 cells through blocking the cell cycle and inducing A549 cells apoptosis. Because of the poor water solubility of 13, four carbohydrate conjugates were synthesized which exhibited better water solubility. Further investigations revealed that 13 showed positive effects in vivo anticancer study with HCT116 xenograft models. These data suggest that 13 could be served as a promising lead compound for further development of anti-colon carcinoma agent.


Subject(s)
Antineoplastic Agents , Autophagy , Cell Proliferation , Drug Design , Drug Screening Assays, Antitumor , Polymerization , Stilbenes , Tubulin , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Autophagy/drug effects , Cell Proliferation/drug effects , Structure-Activity Relationship , Stilbenes/pharmacology , Stilbenes/chemistry , Stilbenes/chemical synthesis , Tubulin/metabolism , Animals , Polymerization/drug effects , Molecular Structure , HCT116 Cells , Piperazines/pharmacology , Piperazines/chemistry , Piperazines/chemical synthesis , Mice , Dose-Response Relationship, Drug , Apoptosis/drug effects , Tubulin Modulators/pharmacology , Tubulin Modulators/chemical synthesis , Tubulin Modulators/chemistry , Mice, Nude , Piperazine/chemistry , Piperazine/pharmacology , Piperazine/chemical synthesis , Mice, Inbred BALB C
5.
Nanoscale ; 16(21): 10350-10365, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38739006

ABSTRACT

Tumour cells secrete various proangiogenic factors like VEGF, PDGF, and EGF that result in the formation of highly vascularized tumours with an immunosuppressive tumour microenvironment. As tumour growth and metastasis are highly dependent on angiogenesis, targeting tumour vasculature along with rapidly dividing tumour cells is a potential approach for cancer treatment. Here, we specifically engineered sub-100 sized nanomicelles (DTX-CA4 NMs) targeting proliferation and angiogenesis using an esterase-sensitive phosphocholine-tethered docetaxel conjugate of lithocholic acid (LCA) (PC-LCA-DTX) and a poly(ethylene glycol) (PEG) derivative of an LCA-combretastatin A4 conjugate (PEG-LCA-CA4). DTX-CA4 NMs effectively inhibit the tumour growth in syngeneic (CT26) and xenograft (HCT116) colorectal cancer models, inhibit tumour recurrence, and enhance the percentage survival in comparison with individual drug-loaded NMs. DTX-CA4 NMs enhance the T cell-mediated anti-tumour immune response and DTX-CA4 NMs in combination with an immune checkpoint inhibitor, anti-PDL1 antibody, enhance the anti-tumour response. We additionally showed that DTX-CA4 NMs effectively attenuate the production of ceramide-1-phosphate, a key metabolite of the sphingolipid pathway, by downregulating the expression of ceramide kinase at both transcriptional and translational levels. Therefore, this study presents the engineering of effective DTX-CA4 NMs for targeting the tumour microenvironment that can be explored further for clinical applications.


Subject(s)
Cell Proliferation , Ceramides , Docetaxel , Micelles , Neovascularization, Pathologic , Animals , Ceramides/chemistry , Ceramides/pharmacology , Humans , Mice , Cell Proliferation/drug effects , Docetaxel/pharmacology , Docetaxel/chemistry , Neovascularization, Pathologic/drug therapy , Neovascularization, Pathologic/metabolism , Neovascularization, Pathologic/pathology , Lithocholic Acid/chemistry , Lithocholic Acid/pharmacology , Polyethylene Glycols/chemistry , Cell Line, Tumor , Mice, Inbred BALB C , Stilbenes/chemistry , Stilbenes/pharmacology , HCT116 Cells , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Tumor Microenvironment/drug effects , Nanoparticles/chemistry , Xenograft Model Antitumor Assays , Female , Angiogenesis
6.
Chem Biol Interact ; 396: 111058, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38761877

ABSTRACT

Pterostilbene (PTE), a natural phenolic compound, has exhibited promising anticancer properties in the preclinical treatment of cervical cancer (CC). This study aims to comprehensively investigate the potential targets and mechanisms underlying PTE's anticancer effects in CC, thereby providing a theoretical foundation for its future clinical application and development. To accomplish this, we employed a range of methodologies, including network pharmacology, bioinformatics, and computer simulation, with specific techniques such as WGCNA, PPI network construction, ROC curve analysis, KM survival analysis, GO functional enrichment, KEGG pathway enrichment, molecular docking, MDS, and single-gene GSEA. Utilizing eight drug target prediction databases, we have identified a total of 532 potential targets for PTE. By combining CC-related genes from the GeneCards disease database with significant genes derived from WGCNA analysis of the GSE63514 dataset, we obtained 7915 unique CC-related genes. By analyzing the intersection of the 7915 CC-related genes and the 2810 genes that impact overall survival time in CC, we identified 690 genes as crucial for CC. Through the use of a Venn diagram, we discovered 36 overlapping targets shared by PTE and CC. We have constructed a PPI network and identified 9 core candidate targets. ROC and KM curve analyses subsequently revealed IL1B, EGFR, IL1A, JUN, MYC, MMP1, MMP3, and ANXA5 as the key targets modulated by PTE in CC. GO and KEGG pathway enrichment analyses indicated significant enrichment of these key targets, primarily in the MAPK and IL-17 signaling pathways. Molecular docking analysis verified the effective binding of PTE to all nine key targets. MDS results showed that the protein-ligand complex between MMP1 and PTE was the most stable among the nine targets. Additionally, GSEA enrichment analysis suggested a potential link between elevated MMP1 expression and the activation of the IL-17 signaling pathway. In conclusion, our study has identified key targets and uncovered the molecular mechanism behind PTE's anticancer activity in CC, establishing a firm theoretical basis for further exploration of PTE's pharmacological effects in CC therapy.


Subject(s)
Computational Biology , Molecular Docking Simulation , Network Pharmacology , Stilbenes , Uterine Cervical Neoplasms , Humans , Stilbenes/pharmacology , Stilbenes/chemistry , Stilbenes/therapeutic use , Uterine Cervical Neoplasms/drug therapy , Uterine Cervical Neoplasms/metabolism , Uterine Cervical Neoplasms/genetics , Female , Protein Interaction Maps/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Signal Transduction/drug effects
7.
Bioorg Med Chem Lett ; 108: 129816, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38806101

ABSTRACT

As our ongoing work, a novel series of the amide-based CA-4 analogues were successfully designed, synthesized, and explored for their biological evaluation. Among these compounds, 7d and 8a illustrated most potent antiproliferative activity toward A549, HeLa, HCT116, and HT-29 cell lines. Most importantly, these two compounds didn't display noticeable cytotoxic activity on the non-tumoural cell line HEK-293. Further mechanism studies revealed that analogue 8a was identified as a novel tubulin polymerization inhibitor with an IC50 value of 6.90 µM, which is comparable with CA-4. The subsequent investigations unveiled that analogue 8a not only effectively caused cell cycle arrest at the G2/M phase but also induced apoptosis in A549 cells via a concentration-dependent manner. The molecular docking revealed that 8a could occupy well the colchicine-binding site of tubulin. Collectively, these findings indicate that amide-based CA-4 scaffold could be worthy of further evaluation for development of novel tubulin inhibitors with improved safety profile.


Subject(s)
Amides , Antineoplastic Agents , Cell Proliferation , Drug Design , Drug Screening Assays, Antitumor , Molecular Docking Simulation , Stilbenes , Tubulin Modulators , Tubulin , Humans , Tubulin Modulators/pharmacology , Tubulin Modulators/chemical synthesis , Tubulin Modulators/chemistry , Tubulin/metabolism , Structure-Activity Relationship , Amides/chemistry , Amides/pharmacology , Amides/chemical synthesis , Cell Proliferation/drug effects , Stilbenes/chemistry , Stilbenes/pharmacology , Stilbenes/chemical synthesis , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Molecular Structure , Cell Line, Tumor , Dose-Response Relationship, Drug , HEK293 Cells
8.
Anal Chem ; 96(22): 9043-9050, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38774984

ABSTRACT

Zearalenone (ZEN) is an extremely hazardous chemical widely existing in cereals, and its high-sensitivity detection possesses significant significance to human health. Here, the cathodic aggregation-induced electrochemiluminescence (AIECL) performance of tetraphenylethylene nanoaggregates (TPE NAs) was modulated by solvent regulation, based on which an electrochemiluminescence (ECL) aptasensor was constructed for sensitive detection of ZEN. The aggregation state and AIECL of TPE NAs were directly and simply controlled by adjusting the type of organic solvent and the fraction of water, which solved the current shortcomings of low strength and weak stability of the cathode ECL signal for TPE. Impressively, in a tetrahydrofuran-water mixed solution (volume ratio, 6:4), the relative ECL efficiency of TPE NAs reached 16.03%, which was 9.2 times that in pure water conditions, and the maximum ECL spectral wavelength was obviously red-shifted to 617 nm. In addition, "H"-shape DNA structure-mediated dual-catalyzed hairpin self-assembly (H-D-CHA) with higher efficiency by the synergistic effect between the two CHA reactions was utilized to construct a sensitive ECL aptasensor for ZEN analysis with a low detection limit of 0.362 fg/mL. In conclusion, solvent regulation was a simple and efficient method for improving the performance of AIECL materials, and the proposed ECL aptasensor had great potential for ZEN monitoring in food safety.


Subject(s)
Electrochemical Techniques , Electrodes , Luminescent Measurements , Solvents , Zearalenone , Zearalenone/analysis , Zearalenone/chemistry , Solvents/chemistry , Stilbenes/chemistry , Limit of Detection , Biosensing Techniques , Aptamers, Nucleotide/chemistry
9.
Anal Chim Acta ; 1307: 342642, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38719399

ABSTRACT

BACKGROUND: Similar to hypochlorous acid (HClO), hypobromous acid (HBrO) is one of the most notable reactive oxygen species (ROS). Overexpression of HBrO is linked to various diseases causing organ and tissue loss. Due to HBrO's role in the oxidation of micropollutants, real-time monitoring of HBrO in water-based systems is essential. Tetraphenylethylene (TPE)-based organic aggregation-induced emission luminophores (AIEgens) are an emerging category of fluorescent probe materials that have attracted considerable attentions. However, AIE probes are rarely applied to detect HBrO. Developing faster, more precise, and more sensitive AIE probes is thus crucial for detecting biological and environmental HBrO. RESULTS: A small molecule fluorescent probe 4-(1,2,2-triphenylvinyl)benzamidoxime (SWJT-21) was synthesized for the sensitive and selective detection of hypobromous acid (HBrO) based on aggregation-induced emission (AIE). The amidoxime unit of SWJT-21 would undergo an oxidation reaction with HBrO, leading to a structure differentiation between the probe and the product, and therefore the turn-on fluorescence by the AIE effect. The probe could recognize hypobromous acid rapidly (less than 3 s) in high aqueous phase (99 % water) with a turn-on fluorescence response. It was determined that the limit of detection for HBrO was 5.47 nM. Moreover, SWJT-21 demonstrates potential as a test strip for the detection of HBrO. SWJT-21 was also successfully used for the monitoring of HBrO in water samples and for the detection of endogenous/exogenous HBrO in living cells and zebrafish. SIGNIFICANCE: A special AIE fluorescence turn-on probe SWJT-21 based on tetraphenylethylene was designed for detecting HBrO in the environmental and biological systems. This probe has an extremely low detection limit of 5.47 nM and is able to detect HBrO in 99 % aqueous phase in less than 3 s.


Subject(s)
Bromates , Fluorescent Dyes , Stilbenes , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Bromates/analysis , Bromates/chemistry , Stilbenes/chemistry , Animals , Humans , Zebrafish , Spectrometry, Fluorescence , Limit of Detection , Molecular Structure
10.
J Vis Exp ; (206)2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38709040

ABSTRACT

Aflatoxins are highly carcinogenic secondary metabolites of some fungal species, particularly Aspergillus flavus. Aflatoxins often contaminate economically important agricultural commodities, including peanuts, posing a high risk to human and animal health. Due to the narrow genetic base, peanut cultivars demonstrate limited resistance to fungal pathogens. Therefore, numerous wild peanut species with tolerance to Aspergillus have received substantial consideration by scientists as sources of disease resistance. Exploring plant germplasm for resistance to aflatoxins is difficult since aflatoxin accumulation does not follow a normal distribution, which dictates the need for the analyses of thousands of single peanut seeds. Sufficiently hydrated peanut (Arachis spp.) seeds, when infected by Aspergillus species, are capable of producing biologically active stilbenes (stilbenoids) that are considered defensive phytoalexins. Peanut stilbenes inhibit fungal development and aflatoxin production. Therefore, it is crucial to analyze the same seeds for peanut stilbenoids to explain the nature of seed resistance/susceptibility to the Aspergillus invasion. None of the published methods offer single-seed analyses for aflatoxins and/or stilbene phytoalexins. We attempted to fulfill the demand for such a method that is environment-friendly, uses inexpensive consumables, and is sensitive and selective. In addition, the method is non-destructive since it uses only half of the seed and leaves the other half containing the embryonic axis intact. Such a technique allows germination and growth of the peanut plant to full maturity from the same seed used for the aflatoxin and stilbenoid analysis. The integrated part of this method, the manual challenging of the seeds with Aspergillus, is a limiting step that requires more time and labor compared to other steps in the method. The method has been used for the exploration of wild Arachis germplasm to identify species resistant to Aspergillus and to determine and characterize novel sources of genetic resistance to this fungal pathogen.


Subject(s)
Aflatoxins , Arachis , Phytoalexins , Seeds , Sesquiterpenes , Stilbenes , Arachis/microbiology , Arachis/chemistry , Seeds/chemistry , Aflatoxins/analysis , Aflatoxins/metabolism , Stilbenes/metabolism , Stilbenes/analysis , Stilbenes/chemistry , Sesquiterpenes/analysis , Sesquiterpenes/metabolism , Sesquiterpenes/chemistry , Chromatography, High Pressure Liquid/methods
11.
Talanta ; 276: 126277, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38761658

ABSTRACT

Nitroreductase (NTR) is a frequently used biomarker for the assessment of hypoxia level in tumors. As one of the main sources of enzymes, the dysfunction of lysosomes typically leads to various diseases. In this study, an NTR-triggered lysosome-targeting probe, M-TPE-P, was designed based on a tetraphenylethylene core. DFT calculation indicated that the probe possessed a narrow singlet-triplet energy gap (ΔEST), rendering it an efficient photosensitizer. The docking affinity of M-TPE-P to NTR revealed a strong structural match between them. Photophysical properties demonstrated that the probe exhibited high selectivity and sensitivity in a broad pH rang for detecting NTR with kcat/Km as 2.18 × 104 M-1 s-1. The detection limit was determined to be 53.6 ng/mL in 80 % PBS/DMSO solution. Cell imaging studies showed the probe could trace intracellular NTR behavior with green fluorescence. The colocalization analysis indicated its excellent lysosome-targeting specificity. In addition, the probe exhibited effective ROS generation ability and significant PDT effect after NIR irradiation, positioning it as a promising photosensitizer for cancer treatment.


Subject(s)
Lysosomes , Nitroreductases , Photochemotherapy , Photosensitizing Agents , Nitroreductases/metabolism , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Lysosomes/metabolism , Lysosomes/chemistry , Humans , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Optical Imaging , Stilbenes/chemistry , Stilbenes/pharmacology , HeLa Cells , Density Functional Theory , Fluorescence , Molecular Docking Simulation , Reactive Oxygen Species/metabolism
12.
Int J Biol Macromol ; 270(Pt 1): 132026, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38704074

ABSTRACT

Multiple phenolic substances have been shown to promote SIRT3 expression, however, few studies have focused on the effects of these phenolics on SIRT3 enzyme activity. This study constructed a variety of reaction systems to elucidate the mechanisms by which different polyphenols affect SIRT3 enzyme activity. The results showed that acP53317-320 was the most suitable substrate among the five acetylated peptide substrates (Kcat/Km = 74.85 ± 1.86 M-1•s-1). All the phenolic compounds involved in the experiment inhibited the enzymatic activity of SIRT3, and the lowest IC50 among them was quercetin (0.12 ± 0.01 mM) and the highest was piceatannol (1.29 ± 0.08 mM). Their inhibition types were mainly competitive and mixed. In addition, piceatannol was found to be a natural SIRT3 agonist by enzyme kinetic analysis and validation of deacetylation efficiency. This study will provide a useful reference for polyphenol modulation of SIRT3 dosage, as well as the development and application of polyphenol-based SIRT3 activators and agonists.


Subject(s)
Polyphenols , Sirtuin 3 , Sirtuin 3/metabolism , Polyphenols/pharmacology , Polyphenols/chemistry , Acetylation , Humans , Kinetics , Stilbenes/pharmacology , Stilbenes/chemistry
13.
Spectrochim Acta A Mol Biomol Spectrosc ; 318: 124435, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-38796890

ABSTRACT

Infections induced by pathogenic microorganisms will bring negative effects such as diseases that damage health and result in heavy economic burden. Therefore, it is very important to detect and identify the pathogens in time. Moreover, traditional clinical diagnosis or food testing often faces the problem of dealing with a large number of samples. Here, we designed a high-throughput fluorescent sensor array based on the different binding ability of five tetraphenylethylene derivatives (TPEs) with various side chains to different kinds of pathogenic microbes, which is used to detect and distinguish various species, so as to realize rapid mass diagnosis, and hopefully provide guidance for further determination of microbial infections and clinical treatment.


Subject(s)
Spectrometry, Fluorescence , Stilbenes , Spectrometry, Fluorescence/methods , Stilbenes/chemistry , Fluorescent Dyes/chemistry , High-Throughput Screening Assays/methods , Bacteria/isolation & purification
14.
Spectrochim Acta A Mol Biomol Spectrosc ; 318: 124428, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-38781825

ABSTRACT

The combination of Curcumin (CRN), resveratrol (RSV), and quercetin (QRN) has significant antioxidant effects and is found to be more effective than a single polyphenol. Spectrophotometric methods are considered one of the most common analytical techniques for the determination of the drugs due to their sensitivity, rapidness, low cost, and reproducibility. Therefore, the presence of new, and simple methods for the determination of such compounds will be highly valuable, specially in the presence of spectral overlap. In this research, five different facile spectrophotometric methods were investigated for the simultaneous determination of that ternary mixture for the first time, including zero order (I), first derivative (II), ratio difference double divisor (III), first derivative ratio spectra (IV), and mean centering (V) methods. The designed approaches were linear over the concentration ranges of (1.0-10.0), (0.5-8.0), and (1.0-14.0) µg/mL, respectively for curcumin, resveratrol, and quercetin. The different methods were then validated as stated by the International Council of Harmonization. The accuracy and precision have been evaluated by statistical analysis including student t-test, variance ratio F-test, and ANOVA. Moreover, the greenness and whiteness of the proposed methods were assessed to ensure the adherence to the greenness characters.


Subject(s)
Antioxidants , Curcumin , Polyphenols , Quercetin , Resveratrol , Spectrophotometry , Antioxidants/analysis , Spectrophotometry/methods , Polyphenols/analysis , Resveratrol/analysis , Quercetin/analysis , Curcumin/analysis , Green Chemistry Technology/methods , Reproducibility of Results , Stilbenes/analysis , Stilbenes/chemistry
15.
Molecules ; 29(10)2024 May 08.
Article in English | MEDLINE | ID: mdl-38792062

ABSTRACT

Combretastatins isolated from the Combretum caffrum tree belong to a group of closely related stilbenes. They are colchicine binding site inhibitors which disrupt the polymerization process of microtubules in tubulins, causing mitotic arrest. In vitro and in vivo studies have proven that some combretastatins exhibit antitumor properties, and among them, combretastatin A-4 is the most active mitotic inhibitor. In this study, a series of novel combretastatin A-4 analogs containing carboxylic acid, ester, and amide moieties were synthesized and their cytotoxic activity against six tumor cell lines was determined using sulforhodamine B assay. For the most cytotoxic compounds (8 and 20), further studies were performed. These compounds were shown to induce G0/G1 cell cycle arrest in MDA and A549 cells, in a concentration-dependent manner. Moreover, in vitro tubulin polymerization assays showed that both compounds are tubulin polymerization enhancers. Additionally, computational analysis of the binding modes and binding energies of the compounds with respect to the key human tubulin isotypes was performed. We have obtained a satisfactory correlation of the binding energies with the IC50 values when weighted averages of the binding energies accounting for the abundance of tubulin isotypes in specific cancer cell lines were computed.


Subject(s)
Cell Proliferation , Drug Design , Stilbenes , Tubulin Modulators , Tubulin , Humans , Tubulin/metabolism , Tubulin/chemistry , Cell Proliferation/drug effects , Tubulin Modulators/pharmacology , Tubulin Modulators/chemical synthesis , Tubulin Modulators/chemistry , Stilbenes/pharmacology , Stilbenes/chemistry , Stilbenes/chemical synthesis , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Structure-Activity Relationship , Molecular Docking Simulation , A549 Cells , Polymerization/drug effects , Drug Screening Assays, Antitumor
16.
Arch Microbiol ; 206(5): 229, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38647675

ABSTRACT

In modern times, medicine is predominantly based on evidence-based practices, whereas in ancient times, indigenous people relied on plant-based medicines with factual evidence documented in ancient books or folklore that demonstrated their effectiveness against specific infections. Plants and microbes account for 70% of drugs approved by the USFDA (U.S. Food and Drug Administration). Stilbenes, polyphenolic compounds synthesized by plants under stress conditions, have garnered significant attention for their therapeutic potential, bridging ancient wisdom with modern healthcare. Resveratrol, the most studied stilbene, initially discovered in grapes, red wine, peanuts, and blueberries, exhibits diverse pharmacological properties, including cardiovascular protection, antioxidant effects, anticancer activity, and neuroprotection. Traditional remedies, documented in ancient texts like the Ayurvedic Charak Samhita, foreshadowed the medicinal properties of stilbenes long before their modern scientific validation. Today, stilbenes are integral to the booming wellness and health supplement market, with resveratrol alone projected to reach a market value of 90 million US$ by 2025. However, challenges in stilbene production persist due to limited natural sources and costly extraction methods. Bioprospecting efforts reveal promising candidates for stilbene production, particularly endophytic fungi, which demonstrate high-yield capabilities and genetic modifiability. However, the identification of optimal strains and fermentation processes remains a critical consideration. The current review emphasizes the knowledge of the medicinal properties of Stilbenes (i.e., cardiovascular, antioxidant, anticancer, anti-inflammatory, etc.) isolated from plant and microbial sources, while also discussing strategies for their commercial production and future research directions. This also includes examples of novel stilbenes compounds reported from plant and endophytic fungi.


Subject(s)
Resveratrol , Stilbenes , Stilbenes/chemistry , Stilbenes/pharmacology , Humans , Resveratrol/pharmacology , Resveratrol/chemistry , Fungi/drug effects , Endophytes/chemistry , Endophytes/metabolism , Endophytes/isolation & purification , Antioxidants/chemistry , Antioxidants/pharmacology , Medicine, Traditional , Plants/chemistry
17.
Colloids Surf B Biointerfaces ; 238: 113922, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38678790

ABSTRACT

The phytoalexin resveratrol has received increasing attention for its potential to prevent oxidative damages in human organism. To shed further light on molecular mechanisms of its interaction with lipid membranes we study resveratrol influence on the organisation and mechanical properties of biomimetic lipid systems composed of synthetic phosphatidylcholines with mixed aliphatic chains and different degree of unsaturation at sn-2 position (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, POPC, and 1-palmitoyl-2-docosahexaenoyl-sn-glycero-3-phosphocholine, PDPC). High-sensitivity isothermal titration calorimetric measurements reveal stronger spontaneous resveratrol association to polyunsaturated phosphatidylcholine bilayers compared to the monounsaturated ones resulting from hydrophobic interactions, conformational changes of the interacting species and desolvation of molecular surfaces. The latter is supported by the results from Laurdan spectroscopy of large unilamellar vesicles providing data on hydration at the glycerol backbones of glycerophospholipides. Higher degree of lipid order is reported for POPC membranes compared to PDPC. While resveratrol mostly enhances the hydration of PDPC membranes, increasing POPC dehydration is reported upon treatment with the polyphenol. Dehydration of the polyunsaturated lipid bilayers is measured only at the highest phytoalexin content studied (resveratrol/lipid 0.5 mol/mol) and is less pronounced than the effect reported for POPC membranes. The polyphenol effect on membrane mechanics is probed by thermal shape fluctuation analysis of quasispherical giant unilamellar vesicles. Markedly different trend of the bending elasticity with increasing resveratrol concentration is reported for the two types of phospholipid bilayers studied. POPC membranes become more rigid in the presence of resveratrol, whereas PDPC-containing bilayers exhibit softening at lower concentrations of the polyphenol followed by a slight growth without bilayer stiffening even at the highest resveratrol content explored. The new data on the structural organization and membrane properties of resveratrol-treated phosphatidylcholine membranes may underpin the development of future liposomal applications of the polyphenol in medicinal chemistry.


Subject(s)
Lipid Bilayers , Resveratrol , Resveratrol/chemistry , Lipid Bilayers/chemistry , Phosphatidylcholines/chemistry , Glycerophospholipids/chemistry , Glycerophospholipids/metabolism , Stilbenes/chemistry , Biomimetic Materials/chemistry , Unilamellar Liposomes/chemistry , Unilamellar Liposomes/metabolism
18.
Arch Pharm (Weinheim) ; 357(6): e2400094, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38631036

ABSTRACT

Recently, we have developed novel Pim-1 kinase inhibitors starting from a dihydrobenzofuran core structure using a computational approach. Here, we report the design and synthesis of stilbene-based Pim-1 kinase inhibitors obtained by formal elimination of the dihydrofuran ring. These inhibitors of the first design cycle, which were obtained as inseparable cis/trans mixtures, showed affinities in the low single-digit micromolar range. To be able to further optimize these compounds in a structure-based fashion, we determined the X-ray structures of the protein-ligand-complexes. Surprisingly, only the cis-isomer binds upon crystallization of the cis/trans-mixture of the ligands with Pim-1 kinase and the substrate PIMTIDE, the binding mode being largely consistent with that predicted by docking. After crystallization of the exclusively trans-configured derivatives, a markedly different binding mode for the inhibitor and a concomitant rearrangement of the glycine-rich loop is observed, resulting in the ligand being deeply buried in the binding pocket.


Subject(s)
Protein Kinase Inhibitors , Proto-Oncogene Proteins c-pim-1 , Stilbenes , Proto-Oncogene Proteins c-pim-1/antagonists & inhibitors , Proto-Oncogene Proteins c-pim-1/metabolism , Stilbenes/chemistry , Stilbenes/pharmacology , Stilbenes/chemical synthesis , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/chemical synthesis , Structure-Activity Relationship , Crystallography, X-Ray , Molecular Docking Simulation , Drug Design , Ligands , Humans , Binding Sites , Molecular Structure , Models, Molecular
19.
Eur J Pharm Biopharm ; 199: 114280, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38588828

ABSTRACT

Helicobacter pylori (H. pylori) is a microorganism directly linked to severe clinical conditions affecting the stomach. The virulence factors and its ability to form biofilms increase resistance to conventional antibiotics, growing the need for new substances and strategies for the treatment of H. pylori infection. The trans-resveratrol (RESV), a bioactive polyphenol from natural sources, has a potential activity against this gastric pathogen. Here, Chitosan nanoparticles (NP) containing RESV (RESV-NP) were developed for H. pylori management. The RESV-NP were prepared using the ionic gelation method and characterized by Dynamic Light Scattering (DLS), Nanoparticle Tracking Analysis (NTA) and, Cryogenic Transmission Electron Microscopy (Cryo - TEM). The encapsulation efficiency (EE) and in vitro release rate of RESV were quantified using high-performance liquid chromatography (HPLC). RESV-NP performance against H. pylori was evaluated by the quantification of the minimum inhibitory/bactericidal concentrations (MIC/MBC), time to kill, alterations in H. pylori morphology in its planktonic form, effects against H. pylori biofilm and in an in vitro infection model. RESV-NP cytotoxicity was evaluated against AGS and MKN-74 cell lines and by hemolysis assay. Acute toxicity was tested using Galleria mellonella model assays. RESV-NP showed a spherical shape, size of 145.3 ± 24.7 nm, polydispersity index (PDI) of 0.28 ± 0.008, and zeta potential (ZP) of + 16.9 ± 1.81 mV in DLS, while particle concentration was 3.12 x 1011 NP/mL (NTA). RESV-NP EE was 72 %, with full release within the first 5 min. In microbiological assays, RESV-NP presented a MIC/MBC of 3.9 µg/mL, a time to kill of 24 h for complete eradication of H. pylori. At a concentration of 2xMIC (7.8 µg/mL), RESV-NP completely eradicated the H. pylori biofilm, and in an in vitro infection model, RESV-NP (4xMIC - 15.6 µg/mL) showed a significant decrease in bacterial load (1 Log10CFU/mL) when compared to the H. pylori J99 control. In addition, they did not demonstrate a toxic character at MIC concentration for both cell lines. The use of the RESV-NP with mucoadhesion profile is an interesting strategy for oral administration of substances targeting gastric disorders, linked to H. pylori infections.


Subject(s)
Anti-Bacterial Agents , Biofilms , Chitosan , Helicobacter Infections , Helicobacter pylori , Microbial Sensitivity Tests , Nanoparticles , Resveratrol , Resveratrol/administration & dosage , Resveratrol/pharmacology , Helicobacter pylori/drug effects , Chitosan/chemistry , Nanoparticles/chemistry , Helicobacter Infections/drug therapy , Helicobacter Infections/microbiology , Biofilms/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/administration & dosage , Humans , Animals , Drug Carriers/chemistry , Drug Liberation , Stilbenes/pharmacology , Stilbenes/administration & dosage , Stilbenes/chemistry , Particle Size
20.
ACS Sens ; 9(4): 1749-1755, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38587118

ABSTRACT

Aggregation-induced emission (AIE) has offered a promising approach for developing low-background fluorescent methods; however, its applications often suffer from complex probe synthesis and poor biocompatibility. Herein, a novel AIE biosensing method for kanamycin antibiotic assays was developed by utilizing a DNA network nanostructure assembled from an aptamer recognition reaction to capture a large number of tetraphenylethylene fluorogen-labeled signal DNA (DTPE) probes. Due to the excellent hydrophilicity of the oligonucleotides, DTPE exhibited excellent water solubility without obvious background signal emission. Based on an ingenious nucleotide design, an abundance of G-quadruplex blocks neighboring the captured DTPE were formed on the DNA nanostructure. Because of the greatly restricted free motion of DTPE by this unique nanostructure, a strong AIE fluorescence signal response was produced to construct the signal transduction strategy. Together with target recycling and rolling circle amplification-based cascade nucleic acid amplification, this method exhibited a wide linear range from 75 fg mL-1 to 1 ng mL-1 and a detection limit down to 24 fg mL-1. The excellent analytical performance and effective manipulation improvement of the method over previous approaches determine its promising potential for various applications.


Subject(s)
Biosensing Techniques , DNA , G-Quadruplexes , Limit of Detection , Nanostructures , Biosensing Techniques/methods , Nanostructures/chemistry , DNA/chemistry , Fluorescent Dyes/chemistry , Aptamers, Nucleotide/chemistry , Spectrometry, Fluorescence , Kanamycin/analysis , Nucleic Acid Amplification Techniques/methods , Stilbenes/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...