Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Biomater Sci Eng ; 10(1): 166-177, 2024 Jan 08.
Article in English | MEDLINE | ID: mdl-37978912

ABSTRACT

Cancer remains an issue on a global scale. It is estimated that nearly 10 million people succumbed to cancer worldwide in 2020. New treatment options are urgently needed. A promising approach is a conversion of tumor-promoting M2 tumor-associated macrophages (TAMs) as part of the tumor microenvironment to tumor-suppressive M1 TAMs by small interfering RNA (siRNA). In this work, we present a well-characterized polymeric nanocarrier system capable of targeting M2 TAMs by a ligand-receptor interaction. Therefore, we developed a blended PEI-based polymeric nanoparticle system conjugated with mannose, which is internalized after interaction with macrophage mannose receptors (MMRs), showing low cytotoxicity and negligible IL-6 activation. The PEI-PCL-PEI (5 kDa-5 kDa-5 kDa) and Man-PEG-PCL (2 kDa-2 kDa) blended siRNA delivery system was optimized for maximum targeting capability and efficient endosomal escape by evaluation of different polymer and N/P ratios. The nanoparticles were formulated by surface acoustic wave-assisted microfluidics, achieving a size of ∼80 nm and a zeta potential of approximately +10 mV. Special attention was given to the endosomal escape as the so-called bottleneck of RNA drug delivery. To estimate the endosomal escape capability of the nanocarrier system, we developed a prediction method by evaluating the particle stability via the inflection temperature. Our predictions were then verified in an in vitro setting by applying confocal microscopy. For cellular experiments, however, human THP-1 cells were polarized to M2 macrophages by cytokine treatment and validated through MMR expression. To show the efficiency of the nanoparticle system, GAPDH and IκBα knockdown was performed in the presence or absence of an MMR blocking excess of mannan. Cellular uptake, GAPDH knockdown, and NF-κB western blot confirmed efficient mannose targeting. Herein, we presented a well-characterized nanoparticle delivery system and a promising approach for targeting M2 macrophages by a mannose-MMR interaction.


Subject(s)
Neoplasms , Stimuli Responsive Polymers , Humans , Stimuli Responsive Polymers/metabolism , RNA, Small Interfering/genetics , Mannose/metabolism , Macrophages/metabolism , Macrophages/pathology , Polymers/metabolism , Neoplasms/drug therapy
2.
Mikrochim Acta ; 188(12): 435, 2021 11 27.
Article in English | MEDLINE | ID: mdl-34837525

ABSTRACT

A strategy for preparing a dual-stimuli-responsive porous polymer membrane enzyme reactor (D-PPMER) is described, consisting of poly (styrene-maleic anhydride-N-isopropylacrylamide-acrylate-3',3'-dimethyl-6-nitro-spiro[2H-1-benzopyran-2,2'-indoline]-1'-esterspiropyran ester) [P(S-M-N-SP)] and D-amino acid oxidase. Tunable control via "on/off" 365 nm UV light irradiation and temperature variation was used to change the membrane surface configuration and adjust the enzymolysis efficiency of the D-PPMER. A chiral capillary electrophoresis technique was developed for evaluation of the enzymatic efficiency of D-PPMER with a Zn(II)-dipeptide complex as the chiral selector and D,L-serine as the substrate. Interestingly, the enzymatic kinetic reaction rate of D-PPMER under UV irradiation at 36 °C (9.2 × 10-2 mM·min-1) was 3.2-fold greater than that of the free enzyme (2.9 × 10-2 mM·min-1). This was because upon UV irradiation at high temperature, the P(SP) and P(N) moieties altered from a "stretched" to a "curled" state to encapsulate the enzyme in smaller cavities. The confinement effect of the cavities further improved the enzymatic efficiency of the D-PPMER. This protocol highlights the outstanding potential of smart polymers, enables tunable control over the kinetic rates of stimuli-responsive enzyme reactors, and establishes a platform for adjusting enzymolysis efficiency using two different stimuli.


Subject(s)
Enzymes, Immobilized/metabolism , Stimuli Responsive Polymers/metabolism , Porosity
3.
Int J Mol Sci ; 21(13)2020 Jul 02.
Article in English | MEDLINE | ID: mdl-32630690

ABSTRACT

Smart or stimuli-responsive materials are an emerging class of materials used for tissue engineering and drug delivery. A variety of stimuli (including temperature, pH, redox-state, light, and magnet fields) are being investigated for their potential to change a material's properties, interactions, structure, and/or dimensions. The specificity of stimuli response, and ability to respond to endogenous cues inherently present in living systems provide possibilities to develop novel tissue engineering and drug delivery strategies (for example materials composed of stimuli responsive polymers that self-assemble or undergo phase transitions or morphology transformations). Herein, smart materials as controlled drug release vehicles for tissue engineering are described, highlighting their potential for the delivery of precise quantities of drugs at specific locations and times promoting the controlled repair or remodeling of tissues.


Subject(s)
Drug Delivery Systems/methods , Stimuli Responsive Polymers/chemistry , Tissue Engineering/methods , Biocompatible Materials/chemistry , Hydrogen-Ion Concentration , Oxidation-Reduction , Phase Transition , Polymers/chemistry , Stimuli Responsive Polymers/metabolism , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...