Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.877
Filter
1.
PLoS One ; 19(5): e0302015, 2024.
Article in English | MEDLINE | ID: mdl-38728332

ABSTRACT

Nature has proven to be a treasure resource of bioactive metabolites. In this regard, Tamarix aphylla (F. Tamaricaceae) leaves crude extract was investigated for its gastroprotective effect against indomethacin-induced damage to the gastric mucosa. Additionally, phytochemical investigation of the methanolic extract afforded eight flavonoids' derivatives (1-8). On pharmacology networking study, the isolated compounds identified 123 unique targets where only 45 targets were related to peptic ulcer conditions, these 45 targets include 11 targets specifically correlate to gastric ulcer. The protein-protein interaction defined the PTGS2 gene as one of the highly interacted genes and the complete pharmacology network defined the PTGS2 gene as the most represented gene. The top KEGG signaling pathways according to fold enrichment analysis was the EGFR tyrosine kinase inhibitor resistance pathway. As a result, these findings highlighted the significance of using T. aphylla leaves crude extract as an anti-gastric ulcer candidate, which provides a safer option to chemical antisecretory medicines, which are infamous for their negative side effects. Our findings have illuminated the potent anti-inflammatory and antioxidant effects of T. aphylla, which are likely mediated by suppressing IL-1ß, IL-6, TNF-α, and MAPK signaling pathways, without compromising gastric acidity.


Subject(s)
Indomethacin , MAP Kinase Signaling System , Oxidative Stress , Plant Extracts , Stomach Ulcer , Tamaricaceae , Stomach Ulcer/drug therapy , Stomach Ulcer/chemically induced , Stomach Ulcer/metabolism , Stomach Ulcer/pathology , Animals , Oxidative Stress/drug effects , Plant Extracts/pharmacology , Plant Extracts/chemistry , Indomethacin/adverse effects , Indomethacin/toxicity , Rats , Tamaricaceae/chemistry , MAP Kinase Signaling System/drug effects , Male , Plant Leaves/chemistry , Inflammation/drug therapy , Inflammation/metabolism , Inflammation/chemically induced , Rats, Sprague-Dawley , Network Pharmacology , Gastric Mucosa/metabolism , Gastric Mucosa/drug effects , Gastric Mucosa/pathology , Anti-Ulcer Agents/pharmacology , Anti-Ulcer Agents/therapeutic use , Anti-Ulcer Agents/chemistry , Flavonoids/pharmacology , Flavonoids/chemistry
2.
Toxicol Appl Pharmacol ; 486: 116950, 2024 May.
Article in English | MEDLINE | ID: mdl-38701902

ABSTRACT

Antidepressant duloxetine has been shown protective effect on indomethacin-induced gastric ulcer, which was escorted by inflammation in the gastric mucosa. Cytokines are the principal mediators of inflammation. Thus, by screening the differential expression of cytokines in the gastric mucosa using cytokine array at 3 h after indomethacin exposure, when the gastric ulcer began to format, we found that indomethacin increased cytokines which promoted inflammation responses, whereas duloxetine decreased pro-inflammatory cytokines increased by indomethacin and increased RANTES expression. RANTES was consistently increased by pretreated with both 5 mg/kg and 20 mg/kg duloxetine at 3 h and 6 h after indomethacin exposure in male rats. Selective blockade of RANTES-CCR5 axis by a functional antagonist Met-RANTES or a CCR5 antagonist maraviroc suppressed the protection of duloxetine. Considering the pharmacologic action of duloxetine on reuptake of monoamine neurotransmitters, we examined the serotonin (5-HT), norepinephrine and dopamine contents in the blood and discovered 20 mg/kg duloxetine increased 5-HT levels in platelet-poor plasma, while treatment with 5-HT promoted expression of RANTES in the gastric mucosa and alleviated the indomethacin-induced gastric injury. Furthermore, duloxetine activated PI3K-AKT-VEGF signaling pathway, which was regulated by RANTES-CCR5, and selective inhibitor of VEGF receptor axitinib blocked the prophylactic effect of duloxetine. Furthermore, duloxetine also protected gastric mucosa from indomethacin in female rats, and RANTES was increased by duloxetine after 6 h after indomethacin exposure too. Together, our results identified the role of cytokines, particularly RANTES, and the underlying mechanisms in gastroprotective effect of duloxetine against indomethacin, which advanced our understanding in inflammatory modulation by monoamine-based antidepressants.


Subject(s)
Chemokine CCL5 , Duloxetine Hydrochloride , Gastric Mucosa , Indomethacin , Proto-Oncogene Proteins c-akt , Rats, Sprague-Dawley , Serotonin , Signal Transduction , Stomach Ulcer , Vascular Endothelial Growth Factor A , Animals , Duloxetine Hydrochloride/pharmacology , Gastric Mucosa/drug effects , Gastric Mucosa/pathology , Gastric Mucosa/metabolism , Male , Indomethacin/toxicity , Proto-Oncogene Proteins c-akt/metabolism , Chemokine CCL5/metabolism , Signal Transduction/drug effects , Rats , Vascular Endothelial Growth Factor A/metabolism , Stomach Ulcer/chemically induced , Stomach Ulcer/prevention & control , Stomach Ulcer/pathology , Stomach Ulcer/metabolism , Serotonin/metabolism , Phosphatidylinositol 3-Kinases/metabolism
3.
Mol Biol Rep ; 51(1): 684, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38796650

ABSTRACT

BACKGROUND: Indomethacin is an anti-inflammatory drug that causes ulcers on the gastric mucosa due to its use. Probiotic bacteria are live microorganisms, and it has been stated by various studies that these bacteria have antioxidant and anti-inflammatory effects. In this study, we investigated the possible protective effect of various types of probiotic bacteria (Lactobacillus rhamnosus, Lactobacillus fermentum, and Lactobacillus brevis) against acute gastric mucosal damage caused by indomethacin. METHODS: Control group - Physiological saline was administered daily for 10 days. Indo group-Physiological saline was administered daily for 10 days. Ranitidine + Indo group 5 mg/kg ranitidine dose was administered daily for 5 days. On day 11, a single dose of 100 mg/kg of indomethacin was given to the same group. Probiotic + Indo group 1 ml/kg of oral probiotic bacteria was administered daily for 10 days. On day 11, a single 100 mg/kg dose of indomethacin was given. After the application, the rats were anesthetized with ketamine xylazine, killed under appropriate conditions, the abdominal cavity was opened and the stomach tissues were removed. The obtained gastric tissues were used in the biochemical and histopathological analyses discussed below. All data were statistically evaluated by one-way ANOVA using SPSS 20.00, followed by Duncan Post hoc test. The data were expressed as mean ± SD. P < 0.05 was considered statistically significant. RESULTS: As a result, the administration of indomethacin caused gastric damage, stimulating oxidative stress, inflammation, and apoptosis. We found that the use of probiotic bacteria reduces oxidative stress (TOC), increases the activity of antioxidant enzymes (TAC), suppresses inflammation (IL-6 and Tnf-α), and inhibits apoptosis (Bax and Bcl-2) (P < 0.05). CONCLUSION: Probiotic treatment can mitigate gastric damage and apoptosis caused by indomethacin-induced gastric damage in rats. Probiotic also enhances the restoration of biochemical oxidative enzymes as it has anti-inflammatory, antioxidant, and antiapoptotic properties.


Subject(s)
Apoptosis , Gastric Mucosa , Indomethacin , Inflammation , Oxidative Stress , Probiotics , Stomach Ulcer , Indomethacin/adverse effects , Probiotics/pharmacology , Animals , Stomach Ulcer/chemically induced , Stomach Ulcer/prevention & control , Stomach Ulcer/pathology , Stomach Ulcer/metabolism , Oxidative Stress/drug effects , Apoptosis/drug effects , Rats , Gastric Mucosa/drug effects , Gastric Mucosa/pathology , Gastric Mucosa/metabolism , Inflammation/metabolism , Male , Rats, Wistar , Antioxidants/metabolism , Antioxidants/pharmacology
4.
Clin Exp Pharmacol Physiol ; 51(5): e13857, 2024 05.
Article in English | MEDLINE | ID: mdl-38566371

ABSTRACT

Chronic stress often triggers gastrointestinal complications, including gastric injury and ulcers. Understanding the role of heat shock protein 27 (HSP27) in stress-induced gastric ulcers could unveil novel therapeutic targets. Here, we established a stress-induced gastric ulcer rat model using water immersion restraint stress and administered adenovirus-packaged HSP27 overexpression vector. Gastric ulcer severity was scored, and mucosal changes were assessed. Gastric epithelial and endothelial cells were treated with lipopolysaccharide and transfected with HSP27 overexpression vectors to evaluate cell viability, migration and angiogenesis. Expression levels of HSP27, C-X-C motif chemokine ligand 12 (CXCL12) and C-X-C motif chemokine receptor 4 (CXCR4) were measured in tissues and cells. HSP27 expression was initially low during stress-induced gastric ulceration but increased during ulcer healing. HSP27 overexpression accelerated ulcer healing in rats, promoting gastric epithelial cell proliferation and migration and gastric endothelial cell angiogenesis through the CXCL12/CXCR4 axis. Inhibitor IT1t reversed the effects of HSP27 overexpression on cell proliferation, migration and angiogenesis. In summary, HSP27 overexpression facilitated ulcer healing, which was partially mediated by the CXCL12/CXCR4 axis.


Subject(s)
Stomach Ulcer , Animals , Rats , Chemokine CXCL12/genetics , Endothelial Cells/metabolism , HSP27 Heat-Shock Proteins/genetics , Stomach Ulcer/etiology , Stomach Ulcer/metabolism , Ulcer , Wound Healing
5.
Recent Pat Biotechnol ; 18(4): 344-357, 2024.
Article in English | MEDLINE | ID: mdl-38566382

ABSTRACT

BACKGROUND: There are patents available related to fermented food and beverages which enhance to human health. Citrus limetta (Mosambi) has a high content of flavonoids and exhibits antioxidant activity, which could stimulate the digestive system and be useful for gastroprotective activity. It supports digestion by neutralizing the acidic digestive juices and reducing gastric acidity. OBJECTIVE: This study explored the potential of using waste peel extract from Citrus limetta to prevent ulcers. The study specifically sought to assess the anti-ulcer properties of fermented and non-fermented extracts and compare them. Further, the study looked at the potential benefits of treating or preventing ulcers with Citrus limetta waste peels and whether fermentation affected the efficacy of the treatment. METHODS: Thirty female Wistar albino rats were equally distributed into five different groups. Group 1 received distilled water (20 ml/kg/b.w); Group 2 received indomethacin (mg/kg/b.w); Group 3 received omeprazole (20 mg/kg/b.w); Group 4 received aqueous extract of Mosambi peel (400 mg/kg/b.w) and Group 5 received fermented product of extract of Mosambi peel (400 mg/kg/b.w). RESULTS: Findings explored that, compared to non-fermented citrus fruit juice, biofermented exhibited less gastric volume (1.58 ± 0.10 ml vs. 1.8 ± 0.14 ml), reduced MDA levels (355.23 ± 100.70 µmol/mg protein vs. 454.49 ± 155.88 µmol/mg protein), and low ulcer index (0.49 ± 0.07 vs. 0.72 ± 0.14). CONCLUSION: The results suggest that the bio-fermented product of Citrus limetta peel has better anti-ulcer potential against peptic ulcer induced by indomethacin in Wistar albino rats compared to non-fermented.


Subject(s)
Anti-Ulcer Agents , Citrus , Fermentation , Plant Extracts , Rats, Wistar , Stomach Ulcer , Animals , Citrus/chemistry , Female , Rats , Plant Extracts/pharmacology , Plant Extracts/chemistry , Anti-Ulcer Agents/pharmacology , Anti-Ulcer Agents/chemistry , Stomach Ulcer/drug therapy , Stomach Ulcer/metabolism , Stomach Ulcer/pathology , Patents as Topic , Indomethacin/metabolism , Fruit/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Omeprazole/pharmacology
6.
Inflammopharmacology ; 32(3): 2049-2060, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38570398

ABSTRACT

Gastric ulcers affect approx. 10% of population. Non-steroidal anti-inflammatory drugs (NSAIDs), including acetylsalicylic acid (ASA) predispose to or impair the physiologically complex healing of pre-existing ulcers. Since H2S is an endogenous cytoprotective molecule, we hypothesized that new H2S-releasing ASA-derivative (ATB-340) could overcome pathological impact of NSAIDs on GI regeneration.Clinically translational gastric ulcers were induced in Wistar rats using state-of-the-art microsurgical model employing serosal application of acetic acid. This was followed by 9 days long i.g. daily treatment with vehicle, ATB-340 (6-24 mg/kg) or equimolar ASA doses (4-14 mg/kg). Ulcer area was assessed macro- and microscopically. Prostaglandin (PG)E2  levels, indicating pharmacological activity of NSAIDs and 8-hydroxyguanozine content, reflecting nucleic acids oxidation in serum/gastric mucosa, were determined by ELISA. Qualitative and/or quantitative pathway-specific alterations at the ulcer margin were evaluated using real-time PCR and mass spectrometry-based proteomics.ASA, unlike ATB-340, dose-dependently delayed/impaired gastric tissue recovery, deregulating 310 proteins at the ulcer margin, including Ras signalling, wound healing or apoptosis regulators. ATB-340 maintained NSAIDs-specific cyclooxygenase-inhibiting capacity on systemic and GI level but in time-dependent manner. High dose of ATB-340 (24 mg/kg daily), but not ASA, decreased nucleic acids oxidation and upregulated anti-oxidative/anti-inflammatory heme oxygenase-1, 24-dehydrocholesterol reductase or suppressor of cytokine signalling (SOCS3) at the ulcer margin.Thus, ASA impairs the physiological healing of pre-existing gastric ulcers, inducing the extensive molecularly functional and proteomic alterations at the wound margin. H2S-releasing ATB-340 maintains the target activity of NSAIDs with limited impact on gastric PGE2 signalling and physiological GI regeneration, enhancing anti-inflammatory and anti-oxidative response, and providing the pharmacological advantage.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal , Aspirin , Gastric Mucosa , Hydrogen Sulfide , Proteomics , Rats, Wistar , Stomach Ulcer , Wound Healing , Animals , Stomach Ulcer/drug therapy , Stomach Ulcer/metabolism , Aspirin/pharmacology , Rats , Proteomics/methods , Hydrogen Sulfide/metabolism , Hydrogen Sulfide/pharmacology , Male , Wound Healing/drug effects , Gastric Mucosa/drug effects , Gastric Mucosa/metabolism , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Dinoprostone/metabolism , Chronic Disease , Dose-Response Relationship, Drug , Disease Models, Animal , Naproxen/analogs & derivatives
7.
Sci Rep ; 14(1): 6193, 2024 03 14.
Article in English | MEDLINE | ID: mdl-38486044

ABSTRACT

Gastric ulcers are a type of digestive disease that can severely affect a person's quality of life. Our study aimed to investigate the effects of fish oil on ethanol-induced gastric ulcers in rats, with the purpose of providing more comprehensive information on the topic. The study looked at various factors such as gastric ulcer index, and nitric oxide (NO) levels in stomach tissue. To investigate apoptosis, the mRNA levels of Bax, Bcl-2, and Caspase 3 were analyzed. The results showed that fish oil can reduce gastric acidity and the gastric ulcer index in cases of ethanol-induced gastric ulcers. It was found that fish oil can increase NO levels and improve the anti-apoptotic system by increasing the expression of Bcl-2 while decreasing the expression of Bax and Caspase 3. In general, the study demonstrates that fish oil can protect the stomach from ethanol-induced damage by reducing the apoptosis pathway via nitric oxide.


Subject(s)
Stomach Ulcer , Humans , Rats , Animals , Stomach Ulcer/chemically induced , Stomach Ulcer/drug therapy , Stomach Ulcer/metabolism , Caspase 3/metabolism , Gastric Mucosa/metabolism , Nitric Oxide/metabolism , Ethanol/toxicity , Ethanol/metabolism , Fish Oils/adverse effects , Quality of Life , bcl-2-Associated X Protein/genetics , bcl-2-Associated X Protein/metabolism , Apoptosis
8.
J Ethnopharmacol ; 328: 118015, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38499261

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: The traditional Chinese medicine (TCM) formula Banxia Xiexin decoction (BXD) has definite therapeutic effect in treating stress-induced gastric ulceration (SIGU) and many other gastrointestinal diseases, but its effect on gastric lymphatic pumping (GLP) remains unclear. AIM OF THE STUDY: Elucidating the role of GLP in SIGU and BXD treatment, and exploring the molecular mechanisms of GLP regulation. MATERIALS AND METHODS: In vivo GLP imaging were performed on SIGU rat model, and the lymphatic dynamic parameters were evaluated. Gastric antrum tissues and serum were collected for macroscopic, histopathological and ulcerative parameters analysis. Gastric lymphatic vessel (GLV) tissues were collected for RNA-Seq assays. Differentially expressed genes (DEGs) were screened from RNA-Seq result and submitted for transcriptomic analysis. Key DEGs and their derivative proteins were measured by qRT-PCR and WB. RESULTS: GLP was significantly suppressed in SIGU rats. BXD could recover GLP, ameliorate stomach lymphostasis, and alleviate the ulcerative damage. Transcriptome analysis of GLV showed the top up-DEGs were concentrated in smooth muscle contraction signaling pathway, while the top the down-DEGs were concentrated in energy metabolism pathways especially fatty acid degradation pathway, which indicated BXD can promote lymphatic smooth muscle contraction, regulate energy metabolism, and reduce fatty acid degradation. The most possible target of these mechanisms was the lymphatic smooth muscle cells (LSMCs) which drove the GLP. This speculation was further validated by the qRT-PCR and WB assessments for the level of key genes and proteins. CONCLUSIONS: By activating the smooth muscle contraction signaling pathway, restoring energy supply, modulating energy metabolism program and reducing fatty acid degradation, BXD effectively recovered GLP, mitigated the accumulation of inflammatory cytokines and metabolic wastes in the stomach, which importantly contributes to its efficacy in treating SIGU.


Subject(s)
Drugs, Chinese Herbal , Lymphatic Vessels , Stomach Ulcer , Rats , Animals , Stomach Ulcer/drug therapy , Stomach Ulcer/metabolism , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Energy Metabolism , Lymphatic Vessels/metabolism , Fatty Acids/therapeutic use
9.
Colloids Surf B Biointerfaces ; 234: 113762, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38244483

ABSTRACT

Gastric ulcers are worrying, and their worsening conditions may result in bleeding in the internal lining of the stomach. The problem is annoying, and both patients and professionals are still not satisfied with the available treatment options. Hesperidin, a flavonoid molecule with potent anti-inflammatory and antioxidant effects, can work like witchcraft to repair gastric ulcers and preserve the stomach lining. Here, we employed a strategy that involved covering the surface of the nano-lipid carriers (NLCs) with sericin before encasing the hesperidin within (Se-He-NLC). Sericin, a biodegradable polymer increases the muco-adhesion with stomach lining and deployment of hesperidin in controlled manner. Se-He-NLCs were physico-chemically characterized for drug loading, encapsulation, particle size, morphology, drug release, chemical stability, and chemical bonding. The nanocarriers showed first order drug release in a controlled manner. Se-He-NLCs showed better in vitro permeation and ex vivo mucoadhesion, thereby by promoting the in vivo bioavailability. Se-He-NLCs also promoted the reduced glutathione (GSH) and glutathione-S-transferase (GST) levels by 2.24- and 1.61-folds, respectively in the stomach lining, and also the regulation of superoxide dismutase (SOD) and catalase (CAT) activities parallel to the control group. In addition, tissues lipid hydroperoxides (LOOH) and myeloperoxidase (MPO) activity were reduced significantly with Se-He-NLCs administration. Se-He-NLC therapy of stomach ulcers in vivo demonstrated better binding ratio and ulcer healing potential. This approach reveals huge capacity for delivering therapies to treat gastric ulcers based on the clinical significance of sericin coated hesperidin nanocarriers in gastric ulcer treatment.


Subject(s)
Hesperidin , Nanoparticles , Sericins , Stomach Ulcer , Humans , Rats , Animals , Stomach Ulcer/drug therapy , Stomach Ulcer/metabolism , Hesperidin/pharmacology , Rats, Wistar , Antioxidants/metabolism , Superoxide Dismutase/metabolism
10.
J Sci Food Agric ; 104(3): 1723-1731, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37851602

ABSTRACT

BACKGROUND: In the present work, acute gastric ulcer models were constructed by administering hydrochloric acid/ethanol. The mice ingested white jade snail secretion (WJSS) through gastric infusion. Ulcer areas in gastric tissue were recorded, and malondialdehyde (MDA) and superoxide dismutase (SOD) were also measured. Notably, high-throughput 16S rDNA analysis of intestinal flora and determination of amino acid composition in feces were performed to understand the effect of WJSS on model mice. RESULTS: Compared with the control group, the ulcer area in the WJSS low-, medium- and high-concentration groups declined by 28.02%, 39.57% and 77.85%, respectively. MDA content decreased by 24.71%, 49.58% and 64.25%, and SOD relative enzyme activity fell by 28.19%, 43.37% and 9.60%, respectively. The amounts of amino acids in the low-, medium- and high-concentration groups were slightly lower, and probiotic bacteria such as Bacteroidetes and Lactobacillales increased in different-concentration WJSS groups. Adding WJSS contributes to the establishment of beneficial intestinal flora and the absorption of amino acids. CONCLUSION: Our results showed that WJSS has a beneficial effect on inhibiting hydrochloric acid-ethanolic gastric ulcers, suggesting that WJSS has excellent potential as a novel anti-ulcer agent. Combined with ulcer area, MDA content, SOD content, gut probiotics and other indicators, a high concentration of WJSS had the best protective effect on acute gastric ulcer. © 2023 Society of Chemical Industry.


Subject(s)
Anti-Ulcer Agents , Stomach Ulcer , Mice , Animals , Stomach Ulcer/drug therapy , Stomach Ulcer/metabolism , Antioxidants/metabolism , Hydrochloric Acid , Ulcer/drug therapy , Ulcer/metabolism , Anti-Ulcer Agents/metabolism , Anti-Ulcer Agents/pharmacology , Anti-Ulcer Agents/therapeutic use , Ethanol/metabolism , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism , Plant Extracts/metabolism , Amino Acids/metabolism , Gastric Mucosa/metabolism
11.
Biomed Pharmacother ; 169: 115868, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37952360

ABSTRACT

Licorice flavonoid (LF) is the main component of Glycyrrhizae Radix et Rhizoma, a "medicine food homology" herbal medicine, which has anti-digestive ulcer activity, but the mechanism in anti-gastric ulcer (GU) remains to be elucidated. In this study, we manifested that LF increased the viability of human gastric mucosal epithelial (GES-1) cells, attenuated ethanol (EtOH)-induced manifestations, reduced histological injury, suppressed inflammation, and restored gastric mucosal barrier in GU rats. After LF therapy, the EtOH-induced gut dysbiosis was partly modulated, and short-chain fatty acids (SCFAs) like butyric acid, propionic acid, and valeric acid were found in higher concentrations. We discovered that the majority of genera that increased in the GU group had a negative correlation with SCFAs in the intestinal tract. In addition, LF-upregulated SCFAs boosted mucus secretion in the gastric epithelium and the expression of mucoprotein (MUC) 5AC and MUC6, particularly the MUC5AC in the gastric foveola. Moreover, LF triggered the EGFR/ERK signal pathway which promoted gastric mucus cell regeneration. Therefore, the findings indicated that LF could inhibit inflammation, promote mucosal barrier repair and angiogenesis, regulate gut microbiota and SCFA metabolism; more importantly, promote epithelial proliferation via activation of the EGFR/ERK pathway, exerting a protective and regenerative effect on the gastric mucosa.


Subject(s)
Gastrointestinal Microbiome , Glycyrrhiza , Stomach Ulcer , Rats , Humans , Animals , Stomach Ulcer/chemically induced , Stomach Ulcer/drug therapy , Stomach Ulcer/metabolism , Fatty Acids, Volatile/metabolism , Inflammation/metabolism , Ethanol/adverse effects , Mucus/metabolism , ErbB Receptors/metabolism
12.
J Med Food ; 26(11): 777-798, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37902784

ABSTRACT

The aim of this study was to systematically review the scientific literature, with Preferred Reporting Items of Systematic Reviews and Meta-analyses (PRISMA) guidelines, of the articles found in the past 11 years on the gastroprotective role of fruit extracts in gastric ulcers induced by non-steroidal anti-inflammatory drugs (NSAIDs). Scientific articles published between 2010 and 2020 were included in this systematic review, including in vitro and in vivo models, to define the gastroprotective role of fruit extracts. Studies were selected by Rayyan using PubMed, Web of Science, Scopus, and Science Direct databases. The keywords for the search strategy were: "gastric injury," "gastric ulcer," "fruit," "indomethacin," and "aspirin." Twenty-two articles with animal models of gastric ulcers were included. The NSAIDs used were aspirin and indomethacin. To know the damage caused by these, the ulceration index and biomarkers, such as aggressive/defensive factors involved in the gastric ulceration process, were measured. Most studies have shown that fruit extracts have antiulcer activity, with the most abundant metabolites being flavonoids, followed by terpenes and alkaloids. Possible antiulcer activities such as antioxidant, cytoprotective, gastric acid antisecretory, anti-inflammatory, or angiogenesis stimulant were declared, manifested mainly as a reduction of lipid peroxidation products, an increase in antioxidant enzymes and prostaglandins, and by the formation of a protective film through protein precipitation in the ulcer area. This systematic review demonstrates the importance of fruit extracts as gastric protectors.


Subject(s)
Anti-Ulcer Agents , Stomach Ulcer , Rats , Animals , Stomach Ulcer/chemically induced , Stomach Ulcer/drug therapy , Stomach Ulcer/metabolism , Antioxidants/metabolism , Fruit/metabolism , Gastric Mucosa/metabolism , Plant Extracts/therapeutic use , Rats, Wistar , Anti-Ulcer Agents/pharmacology , Anti-Ulcer Agents/therapeutic use , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Indomethacin/adverse effects , Aspirin/adverse effects , Aspirin/metabolism
13.
Int J Biol Macromol ; 245: 125556, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37364804

ABSTRACT

The treatment of gastric ulcer and perforation using synthetic and biomaterials has been a clinical challenge. In this work, a drug-carrying layer of hyaluronic acid was combined with a gastric submucosal decellularized extracellular matrix called gHECM. The regulation of macrophage polarization by the extracellular matrix's components was then investigated. This work proclaims how gHECM responds to inflammation and aids in the regeneration of the gastric lining by altering the phenotype of surrounding macrophages and stimulating the body's whole immune response. In a nutshell, gHECM promotes tissue regeneration by changing the phenotype of macrophages around the site of injury. In particular, gHECM reduces the production of pro-inflammatory cytokines, decreases the percentage of M1 macrophages, and further encourages differentiation of macrophage subpopulation to the M2 phenotype and the release of anti-inflammatory cytokines, which could block the NF-κB pathway. Activated macrophages are capable of immediately delivering through spatial barriers, modulating the peripheral immune system, influencing the inflammatory microenvironment, and ultimately promoting the recovery of inflammation and healing of ulcers. They contribute to the secreted cytokines that act on local tissues or enhance the chemotactic ability of macrophages through paracrine secretion. In this study, we focused on the immunological regulatory network of macrophage polarization to further develop the mechanisms behind this process. Nevertheless, the signaling pathways involved in this process need to be further explored and identified. We think that our research will encourage more investigation into how the decellularized matrix affects immune modulation and will help the decellularized matrix perform better as a new class of natural biomaterials for tissue engineering.


Subject(s)
Hyaluronic Acid , Stomach Ulcer , Humans , Hyaluronic Acid/pharmacology , Hyaluronic Acid/metabolism , Stomach Ulcer/metabolism , Macrophages/metabolism , Extracellular Matrix/metabolism , Cytokines/metabolism , Inflammation/metabolism , Biocompatible Materials/metabolism
14.
J Ethnopharmacol ; 314: 116545, 2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37196816

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Ruda-6 (RD-6), a typical traditional Mongolian medicine formulae consisting of 6 herbs, has been traditionally used in treating gastric disorders. Even though it has been shown to protect against gastric ulcers (GU) in animal models, the gut microbiome and serum metabololite-related mechanisms that prevent GU are not well understood. AIM OF THE STUDY: This study was conducted to evaluate the gastroprotective mechanism of RD-6 associated with the alteration of the gut microbiome and serum metabolic profiles in GU rats. MATERIALS AND METHODS: RD-6 (0.27, 1.35 and 2.7 g/kg) or ranitidine (40 mg/kg) were orally administered in rats for three weeks before the induction of gastric ulcer using indomethacin (30 mg/kg, single oral dose). The gastric ulcer index, ulcer area, H&E staining, and the levels of TNF-α, iNOS, MPO and MDA were quantified to evaluate the ulcer inhibitory effects of RD-6. Then, 16S rRNA gene sequencing combined with LC-MS metabolic profiling was performed to investigate the effect of RD-6 on the gut microbiota and serum metabolites in rats. Moreover, a spearman analysis was used to calculate the correlation coefficient between the different microbiota and the metabolites. RESULTS: RD-6 inhibited the gastric lesion damage caused by indomethacin in rats, decreased the ulcer index by 50.29% (p < 0.05), reduced the levels of TNF-α, iNOS, MDA and MPO in gastric tissue. Additionally, RD-6 reshaped the diversity and microbial composition, and reversed the reduced bacteria including [Eubacterium]_xylanophilum group, Sellimonas, Desulfovibrio, and UCG-009, and the increased bacteria Aquamicrobium caused by indomethacin induction. Furthermore, RD-6 regulated the levels of metabolites including amino acids and organic acids, and these affected metabolites were involved in taurine and hypotaurine metabolism and tryptophan metabolism. Spearman analysis revealed that the perturbed gut microbiota were closely related to the changes in differential serum metabolites. CONCLUSION: In view of the 16S rRNA gene sequencing and LC-MS metabolic results, the present study suggests the mechanism of RD-6 ameliorating GU via modulating intestinal microbiota and their metabolites.


Subject(s)
Gastrointestinal Microbiome , Stomach Ulcer , Rats , Animals , Indomethacin/toxicity , Stomach Ulcer/chemically induced , Stomach Ulcer/drug therapy , Stomach Ulcer/metabolism , Medicine, Mongolian Traditional , Ulcer , Tumor Necrosis Factor-alpha/pharmacology , RNA, Ribosomal, 16S/genetics , Metabolomics
15.
Inflammopharmacology ; 31(6): 3183-3201, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37184667

ABSTRACT

BACKGROUND: Many drugs have been restricted in the treatment of gastric ulcers (GU). So, herbal medicines are now in great demand for their better cultural acceptability, compatibility, and minimal side effects. Therefore, our study aimed to assess the protective efficacy of Aloe vera gel and Geranium robertianum extracts against Aspirin®-induced GU in Wistar rats. METHODS: Antioxidant activity and chemical composition of both herbs were analysed. Then, we divided forty female Wistar rats into five groups: a negative control group, a positive control group of Aspirin®-induced GU, and pretreated groups with Aloe Vera, geranium, and Famotidine (reference drug). The locomotor disability, anxiety-like behaviour, and ultrasonography were assessed. Ultimately, scarification of animals to determine gastric juice pH and ulcer index. Then the collection of stomach and liver for histopathological and immunohistochemical examinations, besides tracing the oxidative stress biomarkers and related genes. RESULTS: High content of polyphenols was revealed in both extracts. The pretreatment with Aloe vera gel and geranium showed significant antioxidant activities with free radical scavenging and ferric-reducing power (FRAP). Moreover, they improved the stomach architecture and alleviated anxiety-like behaviour and motor deficits. They significantly reduced the expression of proinflammatory cytokine (TNF-α), inflammatory, and oxidative stress genes (NF-KB, HO-1, Nrf-2) while increasing the Keap-1 in gastric mucosa. CONCLUSION: Data presented a significant protective effect of Aloe vera gel and geranium against Aspirin®-induced GU; they reduced gastric mucosal injury with potential anxiolytic effects through their anti-inflammatory and antioxidant properties. Therefore, they may be considered promising agents for preventing or treating gastric ulceration.


Subject(s)
Aloe , Anti-Anxiety Agents , Geranium , Stomach Ulcer , Rats , Female , Animals , Antioxidants/pharmacology , Antioxidants/therapeutic use , Rats, Wistar , Stomach Ulcer/chemically induced , Stomach Ulcer/drug therapy , Stomach Ulcer/metabolism , Aspirin , Anti-Anxiety Agents/pharmacology , Powders/adverse effects , Plant Extracts/therapeutic use , Aloe/chemistry
16.
Inflammopharmacology ; 31(3): 1495-1510, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36882659

ABSTRACT

The prevalence of gastric ulcers is increasing worldwide, especially those brought on by non-steroidal anti-inflammatory drugs (NSAIDS), so prevention is extremely crucial. The protective potential of carbon monoxide (CO) in several inflammatory disorders has been clarified. The goal of the current study was to investigate the gastroprotective effect of CO produced by its pharmacological donor (CORM2) and its nanoparticles (NPs) against indomethacin (INDO)-induced ulcers. Investigations on CORM2's dose-dependent effects were also conducted. For induction of gastric ulcer, 100 mg kg-1 of INDO was given orally. Before ulcer induction, CORM2 (5, 10, and 15 mg kg-1), CORM2 nanoparticles (5 mg kg-1), or ranitidine (30 mg kg-1) were given intraperitoneally for 7 days. Ulcer score, gastric acidity, gastric contents of malondialdehyde (MDA), nitric oxide (NO), heme oxygenase-1 (HO-1), and carboxyhemoglobin (COHb) blood content were estimated. Additionally, gene expression of nuclear factor erythroid 2-related factor 2 (NRF2) and immunohistochemical staining of cyclooxygenase-1 (COX-1) as well as cyclooxygenase-2 (COX-2) were analyzed. Results demonstrated a substantial dose-dependent decrease in ulcer score, pro-inflammatory indicators, and oxidative stress markers with CORM2 and its NPs. Furthermore, CORM2 and its NPs markedly increased NRF2, COX-1, and HO-1, but CORM2 NPs outperformed CORM2 in this regard. In conclusion, the CO released by CORM2 can protect against INDO-induced gastric ulcers dose dependently, and the highest used dose had no effect on COHb concentration.


Subject(s)
Stomach Ulcer , Rats , Animals , Stomach Ulcer/chemically induced , Stomach Ulcer/drug therapy , Stomach Ulcer/metabolism , Gastric Mucosa , Carbon Monoxide/metabolism , Rats, Wistar , Ulcer/metabolism , NF-E2-Related Factor 2/metabolism , Indomethacin/pharmacology , Cyclooxygenase 2/metabolism
17.
Biomed Pharmacother ; 161: 114531, 2023 May.
Article in English | MEDLINE | ID: mdl-36934555

ABSTRACT

BACKGROUND: The use of NSAIDs have caused stomach injury by inhibiting endogenous mucosal prostaglandin production. Cucumis melo is reported to possess antiulcer potential. This study investigates the mechanism underlying the antiulcer potentials of Cucumis melo (CUM). METHODS: Thirty-five male Wistar rat were randomly assigned to each of seven groups; A(control given water and rat pellets), B(gastric ulcer induced with ibuprofen 400 mg/kg), C (Misoprotol 200 µg/kg), D to G (pretreated with different variation of CUM extract; 25 %, 50 %, 75 % and 100 % at a dose of 1 ml/kg for 3 weeks prior to gastric ulcer induction). Ulcer score, ulcer index and percentage inhibition, total gastric acidity was measured. Antioxidant activities, Malondialdehyde, H+/K+ ATPase, PGE2, TNF-α was done by spectrophotometry. Molecular docking investigation of Cucumis melo compounds against Prostaglandin E2 was carried out. Level of significance was tested at P ≤ 0.05 using Tukey post hoc. RESULT: Total gastric acidity, ulcer score, ulcer index, MDA, TNF-α significantly decreased after CUM treatment when compared to group B. The percentage inhibition, antioxidant activities, PGE2 concentration was significantly increased in all treatment groups compared to group B. Interactions of selected compounds of CUM with Prostaglandin E2 at various docking pockets showed folic acid has highest binding affinity followed by delta7-avenasterol and codisterol to PGE2 receptor. this study shows that one of the mechanisms by which CUM exhibits its antiulcer potential by enhancing Prostaglandin synthesis and antioxidant capacity. Therefore, Cucumis melo can therefore be explored as novel antiulcer agents.


Subject(s)
Cucumis , Stomach Ulcer , Rats , Male , Animals , Stomach Ulcer/chemically induced , Stomach Ulcer/drug therapy , Stomach Ulcer/metabolism , Ibuprofen/metabolism , Dinoprostone/metabolism , Molecular Docking Simulation , Antioxidants/metabolism , Rats, Wistar , Cucumis/metabolism , Tumor Necrosis Factor-alpha/metabolism , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Plant Extracts/chemistry , Gastric Mucosa/metabolism
18.
Int J Biol Macromol ; 236: 124001, 2023 May 01.
Article in English | MEDLINE | ID: mdl-36907308

ABSTRACT

This study aimed to explore whether Dendrobium huoshanense stem polysaccharide (cDHPS) ameliorates alcohol-induced gastric ulcer (GU) through the strengthening effect of the gastric mucosal barrier in rats and its potential mechanism. In normal rats, the pretreatment of cDHPS effectively strengthened gastric mucosal barrier by increasing mucus secretion and tight junction protein expression. In GU rats, cDHPS supplementation effectively alleviated alcohol-induced gastric mucosal injury and nuclear factor κB (NF-κB)-driven inflammation by strengthening gastric mucosal barrier. Moreover, cDHPS significantly activated nuclear factor E2-related factor 2 (Nrf2) signaling and promoted antioxidant enzymes activities in both normal and GU rats. These results suggested that the pretreatment of cDHPS could strengthen gastric mucosal barrier to inhibit oxidative stress and NF-κB-driven inflammation induced gastric mucosal injury, which was likely related to the activation of Nrf2 signaling.


Subject(s)
Dendrobium , Stomach Ulcer , Rats , Animals , NF-kappa B/metabolism , Stomach Ulcer/chemically induced , Stomach Ulcer/drug therapy , Stomach Ulcer/metabolism , NF-E2-Related Factor 2/metabolism , Antioxidants/pharmacology , Inflammation , Polysaccharides/adverse effects
19.
Molecules ; 27(22)2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36432009

ABSTRACT

Extreme ethanol ingestion is associated with developing gastric ulcers. Achillea millefolium (yarrow) is one of the most commonly used herbs with numerous proven pharmacological actions. The goal of the hereby investigation is to explore the gastroprotective action of yarrow essential oil against ethanol-induced gastric ulcers and to reveal the unexplored mechanisms. Rats were distributed into five groups (n = 6); the control group administered 10% Tween 20, orally, for two weeks; the ethanol group administered absolute ethanol (5 mL/kg) to prompt gastric ulcer on the last day of the experiment. Yarrow essential oil 100 or 200 mg/kg + ethanol groups pretreated with yarrow oil (100 or 200 mg/kg, respectively), orally, for two weeks prior to gastric ulcer induction by absolute ethanol. Lanso + ethanol group administered 20 mg/kg lansoprazole, orally, for two weeks prior to gastric ulcer induction by ethanol. Results of the current study showed that ethanol caused several macroscopic and microscopic alterations, amplified lipid peroxidation, pro-inflammatory cytokines, and apoptotic markers, as well as diminished PGE2, NO, and antioxidant enzyme activities. On the other hand, animals pretreated with yarrow essential oil exhibited fewer macroscopic and microscopic modifications, reduced ulcer surface, and increased Alcian blue binding capacity, pH, and pepsin activity. In addition, yarrow essential oil groups exhibited reduced pro-inflammatory cytokines, apoptotic markers, and MDA, restored the PGE2 and NO levels, and recovered the antioxidant enzyme activities. Ethanol escalated Nrf2 and HO-1 expressions, whereas pretreatment of yarrow essential oil caused further intensification in Nrf2 and HO-1. To conclude, the current study suggested yarrow essential oil as a gastroprotective agent against ethanol-induced gastric lesions. This gastroprotective effect could be related to the antioxidant, anti-inflammatory, and anti-apoptotic actions of the essential oil through the instigation of the Nrf2/HO-1 pathway.


Subject(s)
Achillea , Oils, Volatile , Peptic Ulcer , Stomach Ulcer , Rats , Animals , Stomach Ulcer/chemically induced , Stomach Ulcer/drug therapy , Stomach Ulcer/metabolism , Achillea/metabolism , NF-E2-Related Factor 2/metabolism , Antioxidants/adverse effects , Plant Oils/pharmacology , Rats, Wistar , Oils, Volatile/adverse effects , Peptic Ulcer/drug therapy , Ethanol/adverse effects , Plant Extracts/adverse effects , Cytokines , Prostaglandins E
20.
Tissue Cell ; 79: 101957, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36265369

ABSTRACT

AIMS: This study aimed to evaluate the gastroduodenal protective action of crude fraction extracted from P. caribaeorum mucus in Wistar rats. MAIN METHOD: Initially, phytochemical screening was performed to measure secondary metabolites present in the extract. Subsequently, studies of gastroprotective action in Wistar rats were developed. The animals were randomly divided into six experimental groups: SF0.9% group, misoprostol group, and test groups (200, 100, 10, and 1 mg/kg) that received different doses of the crude fraction of zoanthid mucus (CFZM) diluted in SF0.9%. After 14 days of treatment, acute gastric ulcers were induced by gavage by administering aspirin (200 mg/kg). The stomach and duodenum were removed for histopathological and gene analysis of the mucosa. KEY FINDINGS: The present study found that all investigated metabolites showed negative results. The crude fraction showed a gastric and duodenal protective effect evidenced by an increase in the amount and production of mucins (MUC1 and MUC5AC) and mucus production area in the stomach. Histopathological analysis evidenced a decrease in epithelial damage in the duodenum, with a more significant extension of intestinal villi and a greater amount of goblet cells. SIGNIFICANCE: The crude fraction, extracted from P. caribaeorum, showed gastric and duodenal protective action and is not inert in murine gastroduodenal tissues.


Subject(s)
Anthozoa , Stomach Ulcer , Rats , Mice , Animals , Rats, Wistar , Gastric Mucosa , Mucus/metabolism , Stomach Ulcer/chemically induced , Stomach Ulcer/drug therapy , Stomach Ulcer/metabolism , Duodenum/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...