Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 513
Filter
1.
Fluids Barriers CNS ; 21(1): 66, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39152442

ABSTRACT

BACKGROUND: Group B Streptococcus (GBS) is the leading cause of neonatal meningitis responsible for a substantial cause of death and disability worldwide. The vast majority of GBS neonatal meningitis cases are due to the CC17 hypervirulent clone. However, the cellular and molecular pathways involved in brain invasion by GBS CC17 isolates remain largely elusive. Here, we studied the specific interaction of the CC17 clone with the choroid plexus, the main component of the blood-cerebrospinal fluid (CSF) barrier. METHODS: The interaction of GBS CC17 or non-CC17 strains with choroid plexus cells was studied using an in vivo mouse model of meningitis and in vitro models of primary and transformed rodent choroid plexus epithelial cells (CPEC and Z310). In vivo interaction of GBS with the choroid plexus was assessed by microscopy. Bacterial invasion and cell barrier penetration were examined in vitro, as well as chemokines and cytokines in response to infection. RESULTS: GBS CC17 was found associated with the choroid plexus of the lateral, 3rd and 4th ventricles. Infection of choroid plexus epithelial cells revealed an efficient internalization of the bacteria into the cells with GBS CC17 displaying a greater ability to invade these cells than a non-CC17 strain. Internalization of the GBS CC17 strain involved the CC17-specific HvgA adhesin and occurred via a clathrin-dependent mechanism leading to transcellular transcytosis across the choroid plexus epithelial monolayer. CPEC infection resulted in the secretion of several chemokines, including CCL2, CCL3, CCL20, CX3CL1, and the matrix metalloproteinase MMP3, as well as immune cell infiltration. CONCLUSION: Our findings reveal a GBS strain-specific ability to infect the blood-CSF barrier, which appears to be an important site of bacterial entry and an active site of immune cell trafficking in response to infection.


Subject(s)
Choroid Plexus , Streptococcus agalactiae , Choroid Plexus/metabolism , Choroid Plexus/microbiology , Choroid Plexus/immunology , Animals , Streptococcus agalactiae/pathogenicity , Mice , Adhesins, Bacterial/metabolism , Virulence , Epithelial Cells/metabolism , Epithelial Cells/microbiology , Blood-Brain Barrier/microbiology , Blood-Brain Barrier/metabolism , Disease Models, Animal , Streptococcal Infections/metabolism , Streptococcal Infections/microbiology , Streptococcal Infections/immunology , Mice, Inbred C57BL , Transcytosis/physiology , Female
2.
Front Biosci (Landmark Ed) ; 29(8): 303, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39206918

ABSTRACT

BACKGROUND: Rheumatic heart disease (RHD) is an autoimmune disease caused by recurrent infections of Group A streptococcus (GAS), ultimately leading to inflammation and the fibrosis of heart valves. Recent studies have highlighted the crucial role of C-C chemokine receptor type 2-positive (CCR2+) macrophages in autoimmune diseases and tissue fibrosis. However, the specific involvement of CCR2+ macrophages in RHD remains unclear. METHODS: This study established an RHD rat model using inactivated GAS and complete Freund's adjuvant, demonstrating a correlation between CCR2+ macrophages and fibrosis in the mitral valves of these rats. RESULTS: Intraperitoneal injection of the CCR2 antagonist Rs-504393 significantly reduced macrophage infiltration, inflammation, and fibrosis in valve tissues of RHD rats compared to the solvent-treated group . Existing evidence suggests that C-C motif chemokine ligand 2 (CCL2) acts as the primary recruiting factor for CCR2+ cells. To validate this, human monocytic leukemia cells (THP-1) were cultured in vitro to assess the impact of recombinant CCL2 protein on macrophages. CCL2 exhibited pro-inflammatory effects similar to lipopolysaccharide (LPS), promoting M1 polarization in macrophages. Moreover, the combined effect of LPS and CCL2 was more potent than either alone. Knocking down CCR2 expression in THP-1 cells using small interfering RNA suppressed the pro-inflammatory response and M1 polarization induced by CCL2. CONCLUSIONS: The findings from this study indicate that CCR2+ macrophages are pivotal in the valvular remodeling process of RHD. Targeting the CCL2/CCR2 signaling pathway may therefore represent a promising therapeutic strategy to alleviate valve fibrosis in RHD.


Subject(s)
Inflammation , Macrophages , Receptors, CCR2 , Rheumatic Heart Disease , Animals , Humans , Male , Rats , Chemokine CCL2/metabolism , Chemokine CCL2/genetics , Disease Models, Animal , Eicosapentaenoic Acid/analogs & derivatives , Fibrosis , Heart Valves/pathology , Inflammation/metabolism , Macrophages/metabolism , Macrophages/immunology , Rats, Inbred Lew , Receptors, CCR2/metabolism , Receptors, CCR2/genetics , Rheumatic Heart Disease/immunology , Rheumatic Heart Disease/microbiology , Rheumatic Heart Disease/metabolism , Rheumatic Heart Disease/pathology , Streptococcal Infections/immunology , Streptococcal Infections/microbiology , Streptococcal Infections/metabolism , Streptococcus pyogenes , THP-1 Cells
3.
Brain Behav Immun ; 122: 241-255, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39084540

ABSTRACT

Pediatric Acute-onset Neuropsychiatric Syndrome (PANS) is characterized by the abrupt onset of significant obsessive-compulsive symptoms (OCS) and/or severe food restriction, together with other neuropsychiatric manifestations. An autoimmune pathogenesis triggered by infection has been proposed for at least a subset of PANS. The older diagnosis of Pediatric Autoimmune Neuropsychiatric Disorder Associated with Streptococcus (PANDAS) describes rapid onset of OCD and/or tics associated with infection with Group A Streptococcus. The pathophysiology of PANS and PANDAS remains incompletely understood. We recently found serum antibodies from children with rigorously defined PANDAS to selectively bind to cholinergic interneurons (CINs) in the striatum. Here we examine this binding in children with relapsing and remitting PANS, a more heterogeneous condition, collected in a distinct clinical context from those examined in our previous work, from children with a clinical history of Streptococcus infection. IgG from PANS cases showed elevated binding to striatal CINs in both mouse and human brain. Patient plasma collected during symptom flare decreased a molecular marker of CIN activity, phospho-riboprotein S6, in ex vivo brain slices; control plasma did not. Neither elevated antibody binding to CINs nor diminished CIN activity was seen with plasma collected from the same children during remission. These findings replicate what we have seen previously in PANDAS and support the hypothesis that at least a subset of PANS cases have a neuroimmune pathogenesis. Given the critical role of CINs in modulating basal ganglia function, these findings confirm striatal CINs as a locus of interest in the pathophysiology of both PANS and PANDAS.


Subject(s)
Corpus Striatum , Interneurons , Obsessive-Compulsive Disorder , Streptococcal Infections , Humans , Child , Streptococcal Infections/immunology , Streptococcal Infections/metabolism , Male , Obsessive-Compulsive Disorder/metabolism , Obsessive-Compulsive Disorder/immunology , Female , Animals , Interneurons/metabolism , Interneurons/immunology , Mice , Corpus Striatum/metabolism , Autoimmune Diseases/immunology , Autoimmune Diseases/metabolism , Adolescent , Immunoglobulin G/metabolism , Autoantibodies/metabolism , Autoantibodies/immunology , Cholinergic Neurons/metabolism , Child, Preschool
4.
J Infect Dis ; 230(1): 188-197, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39052722

ABSTRACT

The subtilisin-like protease-1 (SspA-1) plays an important role in the pathogenesis of a highly virulent strain of Streptococcus suis 2. However, the mechanism of SspA-1-triggered excessive inflammatory response is still unknown. In this study, we demonstrated that activation of type I IFN signaling is required for SspA-1-induced excessive proinflammatory cytokine production. Further experiments showed that the TLR2 endosomal pathway mediates SspA-1-induced type I IFN signaling and the inflammatory response. Finally, we mapped the major signaling components of the related pathway and found that the TIR adaptor proteins Mal, TRAM, and MyD88 and the downstream activation of IRF1 and IRF7 were involved in this pathway. These results explain the molecular mechanism by which SspA-1 triggers an excessive inflammatory response and reveal a novel effect of type I IFN in S. suis 2 infection, possibly providing further insights into the pathogenesis of this highly virulent S. suis 2 strain.


Subject(s)
Cytokines , Endosomes , Interferon Type I , Signal Transduction , Streptococcus suis , Toll-Like Receptor 2 , Streptococcus suis/immunology , Streptococcus suis/pathogenicity , Streptococcus suis/metabolism , Interferon Type I/metabolism , Toll-Like Receptor 2/metabolism , Cytokines/metabolism , Animals , Endosomes/metabolism , Mice , Streptococcal Infections/immunology , Streptococcal Infections/microbiology , Streptococcal Infections/metabolism , Bacterial Proteins/metabolism , Type IV Secretion Systems/metabolism , Type IV Secretion Systems/genetics , Humans , Myeloid Differentiation Factor 88/metabolism , Myeloid Differentiation Factor 88/genetics , Mice, Inbred C57BL
5.
Infect Immun ; 92(7): e0007724, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38869295

ABSTRACT

The interplay between host nutritional immune mechanisms and bacterial nutrient uptake systems has a major impact on the disease outcome. The host immune factor calprotectin (CP) limits the availability of essential transition metals, such as manganese (Mn) and zinc (Zn), to control the growth of invading pathogens. We previously demonstrated that the competition between CP and the human pathogen group A streptococcus (GAS) for Zn impacts GAS pathogenesis. However, the contribution of Mn sequestration by CP in GAS infection control and the role of GAS Mn acquisition systems in overcoming host-imposed Mn limitation remain unknown. Using a combination of in vitro and in vivo studies, we show that GAS-encoded mtsABC is a Mn uptake system that aids bacterial evasion of CP-imposed Mn scarcity and promotes GAS virulence. Mn deficiency caused by either the inactivation of mtsC or CP also impaired the protective function of GAS-encoded Mn-dependent superoxide dismutase. Our ex vivo studies using human saliva show that saliva is a Mn-scant body fluid, and Mn acquisition by MtsABC is critical for GAS survival in human saliva. Finally, animal infection studies using wild-type (WT) and CP-/- mice showed that MtsABC is critical for GAS virulence in WT mice but dispensable in mice lacking CP, indicating the direct interplay between MtsABC and CP in vivo. Together, our studies elucidate the role of the Mn import system in GAS evasion of host-imposed metal sequestration and underscore the translational potential of MtsABC as a therapeutic or prophylactic target.


Subject(s)
Leukocyte L1 Antigen Complex , Manganese , Streptococcal Infections , Streptococcus pyogenes , Manganese/metabolism , Streptococcal Infections/microbiology , Streptococcal Infections/immunology , Streptococcal Infections/metabolism , Streptococcus pyogenes/metabolism , Streptococcus pyogenes/pathogenicity , Streptococcus pyogenes/immunology , Animals , Humans , Mice , Leukocyte L1 Antigen Complex/metabolism , Virulence , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Host-Pathogen Interactions/immunology , Saliva/microbiology , Saliva/immunology , Disease Models, Animal
6.
Infect Immun ; 92(6): e0014124, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38722166

ABSTRACT

The human-specific bacterial pathogen group A Streptococcus (GAS) is a significant cause of morbidity and mortality. Macrophages are important to control GAS infection, but previous data indicate that GAS can persist in macrophages. In this study, we detail the molecular mechanisms by which GAS survives in THP-1 macrophages. Our fluorescence microscopy studies demonstrate that GAS is readily phagocytosed by macrophages, but persists within phagolysosomes. These phagolysosomes are not acidified, which is in agreement with our findings that GAS cannot survive in low pH environments. We find that the secreted pore-forming toxin Streptolysin O (SLO) perforates the phagolysosomal membrane, allowing leakage of not only protons but also large proteins including the lysosomal protease cathepsin B. Additionally, GAS recruits CD63/LAMP-3, which may contribute to lysosomal permeabilization, especially in the absence of SLO. Thus, although GAS does not inhibit fusion of the lysosome with the phagosome, it has multiple mechanisms to prevent proper phagolysosome function, allowing for persistence of the bacteria within the macrophage. This has important implications for not only the initial response but also the overall functionality of the macrophages, which may lead to the resulting pathologies in GAS infection. Our data suggest that therapies aimed at improving macrophage function may positively impact patient outcomes in GAS infection.


Subject(s)
Bacterial Proteins , Lysosomes , Macrophages , Streptococcus pyogenes , Streptolysins , Streptococcus pyogenes/immunology , Humans , Macrophages/microbiology , Macrophages/immunology , Macrophages/metabolism , Lysosomes/metabolism , Lysosomes/microbiology , Streptolysins/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Phagosomes/microbiology , Phagosomes/metabolism , THP-1 Cells , Phagocytosis , Streptococcal Infections/immunology , Streptococcal Infections/microbiology , Streptococcal Infections/metabolism , Cathepsin B/metabolism , Hydrogen-Ion Concentration
7.
Int J Biol Macromol ; 268(Pt 2): 131839, 2024 May.
Article in English | MEDLINE | ID: mdl-38663699

ABSTRACT

Streptococcus suis (S. suis) is a significant zoonotic microorganism that causes a severe illness in both pigs and humans and is characterized by severe meningitis and septicemia. Suilysin (SLY), which is secreted by S. suis, plays a crucial role as a virulence factor in the disease. To date, the interaction between SLY and host cells is not fully understood. In this study, we identified the interacting proteins between SLY and human brain microvascular endothelial cells (HBMECs) using the TurboID-mediated proximity labeling method. 251 unique proteins were identified in TurboID-SLY treated group, of which six plasma membrane proteins including ARF6, GRK6, EPB41L5, DSC1, TJP2, and PNN were identified. We found that the proteins capable of interacting with SLY are ARF6 and PNN. Subsequent investigations revealed that ARF6 substantially increased the invasive ability of S. suis in HBMECs. Furthermore, ARF6 promoted SLY-induced the activation of p38 MAPK signaling pathway in HBMECs. Moreover, ARF6 promoted the apoptosis in HBMECs through the activation of p38 MAPK signaling pathway induced by SLY. Finally, we confirmed that ARF6 could increase the virulence of SLY in C57BL/6 mice. These findings offer valuable insights that contribute to a deeper understanding of the pathogenic mechanism of SLY.


Subject(s)
ADP-Ribosylation Factor 6 , ADP-Ribosylation Factors , Apoptosis , Endothelial Cells , Hemolysin Proteins , Streptococcus suis , Streptococcus suis/pathogenicity , Streptococcus suis/metabolism , Humans , Animals , Apoptosis/drug effects , Mice , ADP-Ribosylation Factors/metabolism , ADP-Ribosylation Factors/genetics , Endothelial Cells/metabolism , Endothelial Cells/drug effects , Endothelial Cells/microbiology , Hemolysin Proteins/metabolism , Hemolysin Proteins/pharmacology , p38 Mitogen-Activated Protein Kinases/metabolism , Streptococcal Infections/microbiology , Streptococcal Infections/metabolism , Virulence , Brain/metabolism
8.
PLoS Pathog ; 20(3): e1012072, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38452154

ABSTRACT

Streptococcus pyogenes is a human-specific pathogen that commonly colonizes the upper respiratory tract and skin, causing a wide variety of diseases ranging from pharyngitis to necrotizing fasciitis and toxic shock syndrome. S. pyogenes has a repertoire of secreted virulence factors that promote infection and evasion of the host immune system including the cytolysins streptolysin O (SLO) and streptolysin S (SLS). S. pyogenes does not naturally infect the upper respiratory tract of mice although mice transgenic for MHC class II human leukocyte antigens (HLA) become highly susceptible. Here we used HLA-transgenic mice to assess the role of both SLO and SLS during both nasopharyngeal and skin infection. Using S. pyogenes MGAS8232 as a model strain, we found that an SLS-deficient strain exhibited a 100-fold reduction in bacterial recovery from the nasopharynx and a 10-fold reduction in bacterial burden in the skin, whereas an SLO-deficient strain did not exhibit any infection defects in these models. Furthermore, depletion of neutrophils significantly restored the bacterial burden of the SLS-deficient bacteria in skin, but not in the nasopharynx. In mice nasally infected with the wildtype S. pyogenes, there was a marked change in localization of the tight junction protein ZO-1 at the site of infection, demonstrating damage to the nasal epithelia that was absent in mice infected with the SLS-deficient strain. Overall, we conclude that SLS is required for the establishment of nasopharyngeal infection and skin infection in HLA-transgenic mice by S. pyogenes MGAS8232 and provide evidence that SLS contributes to nasopharyngeal infection through the localized destruction of nasal epithelia.


Subject(s)
Streptococcal Infections , Streptococcus pyogenes , Humans , Mice , Animals , Streptococcus pyogenes/metabolism , Streptolysins/genetics , Streptolysins/metabolism , Mice, Transgenic , Streptococcal Infections/metabolism , Bacterial Proteins/metabolism , Nasopharynx
9.
Toxicon ; 243: 107705, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38556062

ABSTRACT

OBJECTIVES: Streptococcus pneumoniae (SP) is a major cause of community-acquired pneumonia. Ferroptosis pitches in pneumonia. Long noncoding RNA nuclear paraspeckle assembly transcript 1 (lncRNA NEAT1) regulates ferroptosis in various cells. Therefore, this study probed the mechanism of lncRNA NEAT1 on SP-induced ferroptosis in AECs. METHODS: Serum lncRNA NEAT1 level in 36 streptococcus pneumonia patients were retrospectively detected, with its correlations with inflammatory factor (TNF-α/IL-1ß/IL-6) levels analyzed. Human pulmonary alveolar epithelial cells (HPAEpiC) were transfected with sh-NEAT1 and induced by SP. Cell viability was evaluated by CCK-8. Lactate dehydrogenase (LDH) activity was assessed. Iron content, and levels of TNF-α/IL-1ß/IL-6/IL-10/lncRNA NEAT1/lipid peroxidation products [malondialdehyde (MDA)/glutathione (GSH)/reactive oxygen species/(ROS)]/ferroptosis-related proteins [Cyclooxgenase 2 (COX2)/recombinant solute carrier family 7 member 11 (SLC7A11)/total nuclear factor erythroid 2-related factor 2 (Nrf2)/cytoplasmic Nrf2 (C-Nrf2)/nuclear Nrf2 (N-Nrf2)/GPX4)] were determined by kit/ELISA/RT-qPCR/kits/Western blot. Nrf2 nuclear translocation was detected by immunofluorescence assay. On top of lncRNA NEAT1 knockdown, SP-induced HPAEpiC were treated with ML385. RESULTS: Serum lncRNA NEAT1 level was elevated in streptococcus pneumonia patients, and were positively interrelated with TNF-α/IL-1ß/IL-6 levels. SP promoted cell HPAEpiC injury and inflammatory response, and up-regulated lncRNA NEAT1 level. LncRNA NEAT1 knockdown suppressed HPAEpiC injury/inflammatory response (reduced LDH activity and TNF-α/IL-1ß/IL-6 levels, elevated IL-10) and suppressed ferroptosis (decreased iron/MDA/ROS contents and COX2 level, increased GSH/SLC7A11), facilitated Nrf2 nuclear translocation, and up-regulated GPX4. Nrf2-GPX4 pathway inhibition annulled NEAT1 knockdown-mediated improvement on SP-induced HPAEpiC ferroptosis/injury/inflammatory response. CONCLUSIONS: LncRNA NEAT1 knockdown suppressed SP-induced HPAEpiC ferroptosis by activating Nrf2-GPX4 pathway, thereby alleviating cell injury and inflammatory response.


Subject(s)
Alveolar Epithelial Cells , Ferroptosis , NF-E2-Related Factor 2 , RNA, Long Noncoding , Streptococcus pneumoniae , Humans , Alveolar Epithelial Cells/metabolism , Gene Knockdown Techniques , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Phospholipid Hydroperoxide Glutathione Peroxidase/genetics , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , RNA, Long Noncoding/genetics , Streptococcal Infections/genetics , Streptococcal Infections/metabolism
10.
Int Immunopharmacol ; 130: 111638, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38373387

ABSTRACT

L-arginine, as an essential substance of the immune system, plays a vital role in innate immunity. MiR155, a multi-functional microRNA, has gained importance as a regulator of homeostasis in immune cells. However, the immunoregulatory mechanism between L-arginine and miR155 in bacterial infections is unknown. Here, we investigated the potential role of miR155 in inflammation and the molecular regulatory mechanisms of L-arginine in Streptococcus uberis (S. uberis) infections. And we observed that miR155 was up-regulated after infection, accompanying the depletion of L-arginine, leading to metabolic disorders of amino acids and severe tissue damage. Mechanically, the upregulated miR155 mediated by the p65 protein played a pro-inflammatory role by suppressing the suppressor of cytokine signaling 6 (SOCS6)-mediated p65 ubiquitination and degradation. This culminated in a violently inflammatory response and tissue damage. Interestingly, a significant anti-inflammatory effect was revealed in L-arginine supplementation by reducing miR155 production via inhibiting p65. This work firstly uncovers the pro-inflammatory role of miR155 and an anti-inflammatory mechanism of L-arginine in S.uberis infection with a mouse mastitis model. Collectively, we provide new insights and strategies for the prevention and control of this important pathogen, which is of great significance for ensuring human food health and safety.


Subject(s)
Arginine , Mastitis , MicroRNAs , Streptococcal Infections , Animals , Female , Humans , Mice , Arginine/metabolism , Inflammation/metabolism , MicroRNAs/genetics , Streptococcal Infections/metabolism , Streptococcus/physiology , Suppressor of Cytokine Signaling Proteins/metabolism , Mastitis/immunology , Mastitis/metabolism
11.
BMC Biol ; 22(1): 33, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38331785

ABSTRACT

BACKGROUND: Ribosomal protein SA (RPSA) of human brain microvascular endothelial cells (HBMECs) can transfer from the cytosol to the cell surface and act as a receptor for some pathogens, including Streptococcus suis serotype 2 (SS2), a zoonotic pathogen causing meningitis in pigs and humans. We previously reported that SS2 virulence factor enolase (ENO) binds to RPSA on the cell surface of HBMECs and induces apoptosis. However, the mechanism that activates RPSA translocation to the cell surface and induces ENO-mediated HBMEC apoptosis is unclear. RESULTS: Here, we show that RPSA localization and condensation on the host cell surface depend on its internally disordered region (IDR). ENO binds to the IDR of RPSA and promotes its interaction with RPSA and vimentin (VIM), which is significantly suppressed after 1,6-Hexanediol (1,6-Hex, a widely used tool to disrupt phase separation) treatment, indicating that ENO incorporation and thus the concentration of RPSA/VIM complexes via co-condensation. Furthermore, increasing intracellular calcium ions (Ca2+) in response to SS2 infection further facilitates the liquid-like condensation of RPSA and aggravates ENO-induced HBMEC cell apoptosis. CONCLUSIONS: Together, our study provides a previously underappreciated molecular mechanism illuminating that ENO-induced RPSA condensation activates the migration of RPSA to the bacterial cell surface and stimulates SS2-infected HBMEC death and, potentially, disease progression. This study offers a fresh avenue for investigation into the mechanism by which other harmful bacteria infect hosts via cell surfaces' RPSA.


Subject(s)
Streptococcal Infections , Streptococcus suis , Humans , Animals , Swine , Endothelial Cells/metabolism , Serogroup , Phosphopyruvate Hydratase/genetics , Phosphopyruvate Hydratase/metabolism , Brain/metabolism , Apoptosis , Ribosomal Proteins/metabolism , Streptococcal Infections/metabolism , Streptococcal Infections/microbiology
12.
Virulence ; 14(1): 2258057, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37743649

ABSTRACT

Host innate immunity plays a pivotal role in the early detection and neutralization of invading pathogens. Here, we show that pseudokinase mixed lineage kinase-like protein (MLKL) is required for host defence against Streptococcus pluranimalium infection by enhancing NLRP3 inflammasome activation and extracellular trap formation. Notably, Mlkl deficiency leads to increased mortality, increased bacterial colonization, severe destruction of organ architecture, and elevated inflammatory cell infiltration in murine models of S. pluranimalium pulmonary and systemic infection. In vivo and in vitro data provided evidence that potassium efflux-dependent NLRP3 inflammasome signalling downstream of active MLKL confers host protection against S. pluranimalium infection and initiates bacterial killing and clearance. Moreover, Mlkl deficiency results in defects in extracellular trap-mediated bactericidal activity. In summary, this study revealed that MLKL mediates the host defence response to S. pluranimalium, and suggests that MLKL is a potential drug target for preventing and controlling pathogen infection.


Subject(s)
Extracellular Traps , Inflammasomes , Streptococcal Infections , Animals , Mice , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Protein Kinases/genetics , Streptococcal Infections/genetics , Streptococcal Infections/metabolism
13.
Virulence ; 14(1): 2249779, 2023 12.
Article in English | MEDLINE | ID: mdl-37641974

ABSTRACT

Streptococcus suis type 2 (SS2), a major emerging/re-emerging zoonotic pathogen found in humans and pigs, can cause severe clinical infections, and pose public health issues. Our previous studies recognized peptidyl-prolyl isomerase (PrsA) as a critical virulence factor promoting SS2 pathogenicity. PrsA contributed to cell death and operated as a pro-inflammatory effector. However, the molecular pathways through which PrsA contributes to cell death are poorly understood. Here in this study, we prepared the recombinant PrsA protein and found that pyroptosis and necroptosis were involved in cell death stimulated by PrsA. Specific pyroptosis and necroptosis signalling inhibitors could significantly alleviate the fatal effect. Cleaved caspase-1 and IL-1ß in pyroptosis with phosphorylated MLKL proteins in necroptosis pathways, respectively, were activated after PrsA stimulation. Truncated protein fragments of enzymatic PPIase domain (PPI), N-terminal (NP), and C-terminal (PC) domains fused with PPIase, were expressed and purified. PrsA flanking N- or C-terminal but not enzymatic PPIase domain was found to be critical for PrsA function in inducing cell death and inflammation. Additionally, PrsA protein could be anchored on the cell surface to interact with host cells. However, Toll-like receptor 2 (TLR2) was not implicated in cell death and recognition of PrsA. PAMPs of PrsA could not promote TLR2 activation, and no rescued phenotypes of death were shown in cells blocking of TLR2 receptor or signal-transducing adaptor of MyD88. Overall, these data, for the first time, advanced our perspective on PrsA function and elucidated that PrsA-induced cell death requires its flanking N- or C-terminal domain but is dispensable for recognizing TLR2. Further efforts are still needed to explore the precise molecular mechanisms of PrsA-inducing cell death and, therefore, contribution to SS2 pathogenicity.


Subject(s)
Bacterial Proteins , Streptococcal Infections , Streptococcus suis , Toll-Like Receptor 2 , Animals , Humans , Cell Death , Peptidylprolyl Isomerase , Pyroptosis , Streptococcus suis/genetics , Swine , Toll-Like Receptor 2/genetics , Bacterial Proteins/metabolism , Streptococcal Infections/metabolism
14.
J Dairy Sci ; 106(6): 4214-4231, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37080785

ABSTRACT

To effectively prevent and control bovine mastitis, farmers and their advisors need to take infection pathways and durations into account. Still, studies exploring both aspects through molecular epidemiology with sampling of entire dairy cow herds over longer periods are scarce. Therefore, quarter foremilk samples were collected at 14-d intervals from all lactating dairy cows (n = 263) over 18 wk in one commercial dairy herd. Quarters were considered infected with Staphylococcus aureus, Streptococcus uberis, or Streptococcus dysgalactiae when ≥100 cfu/mL of the respective pathogen was detected, or with Staphylococcus epidermidis or Staphylococcus haemolyticus when ≥500 cfu/mL of the respective pathogen was detected. All isolates of the mentioned species underwent randomly amplified polymorphic DNA (RAPD)-PCR to explore strain diversity and to distinguish ongoing from new infections. Survival analysis was used to estimate infection durations. Five different strains of Staph. aureus were isolated, and the most prevalent strain caused more than 80% of all Staph. aureus infections (n = 46). In contrast, 46 Staph. epidermidis and 69 Staph. haemolyticus strains were isolated, and none of these caused infections in more than 2 different quarters. The 3 most dominant strains of Strep. dysgalactiae (7 strains) and Strep. uberis (18 strains) caused 81% of 33 and 49% of 37 infections in total, respectively. The estimated median infection duration for Staph. aureus was 80 d, and that for Staph. epidermidis and Staph. haemolyticus was 28 and 22 d, respectively. The probability of remaining infected with Strep. dysgalactiae or Strep. uberis for more than 84 and 70 d was 58.7 and 53.5%, respectively. Staphylococcus epidermidis and Staph. haemolyticus were not transmitted contagiously and the average infection durations were short, which brings into question whether antimicrobial treatment of intramammary infections with these organisms is justified. In contrast, infections with the other 3 pathogens lasted longer and largely originated from contagious transmission.


Subject(s)
Cattle Diseases , Mastitis, Bovine , Staphylococcal Infections , Streptococcal Infections , Female , Cattle , Animals , Staphylococcus , Lactation , Random Amplified Polymorphic DNA Technique/veterinary , Milk/metabolism , Streptococcus , Staphylococcus aureus , Streptococcal Infections/veterinary , Streptococcal Infections/metabolism , Staphylococcal Infections/veterinary , Staphylococcal Infections/metabolism , Mastitis, Bovine/epidemiology , Staphylococcus haemolyticus , Cattle Diseases/metabolism
15.
J Bacteriol ; 205(4): e0003923, 2023 04 25.
Article in English | MEDLINE | ID: mdl-36920220

ABSTRACT

Streptococcus pyogenes, also known as group A Streptococcus, causes a wide variety of diseases ranging from mild noninvasive to severe invasive infections. To identify possible causes of colonization-to-invasive switches, we determined the genomic sequences of 10 isolates from five pairs each composed of an invasive strain and a carriage strain originating from five infectious clusters. Among them, one pair displayed a single-nucleotide difference in covS, encoding the sensor histidine kinase of the two-component CovRS system that controls the expression of 15% of the genome. In contrast to previously described cases where the invasive strains harbor nonfunctional CovS proteins, the carriage strain possessed the mutation covST115C, leading to the replacement of the tyrosine at position 39 by a histidine. The CovSY39H mutation affected the expression of the genes from the CovR regulon in a unique fashion. Genes usually overexpressed in covS mutant strains were underexpressed and vice versa. Furthermore, the covS mutant strain barely responded to the addition of the CovS-signaling compounds Mg2+ and LL-37. The variations in the accumulation of two virulence factors paralleled the transcription modifications. In addition, the covST115C mutant strain showed less survival than its wild-type counterpart in murine macrophages. Finally, in two murine models of infection, the covS mutant strain was less virulent than the wild-type strain. Our study suggests that the CovSY39H protein compromises CovS phosphatase activity and that this yields a noninvasive strain. IMPORTANCE Streptococcus pyogenes, also known as group A Streptococcus, causes a wide variety of diseases, leading to 517,000 deaths yearly. The two-component CovRS system, which responds to MgCl2 and the antimicrobial peptide LL-37, controls the expression of 15% of the genome. Invasive strains may harbor nonfunctional CovS sensor proteins that lead to the derepression of most virulence genes. We isolated a colonization strain that harbors a novel covS mutation. This mutant strain harbored a transcriptome profile opposite that of other covS mutant strains, barely responded to environmental signals, and was less virulent than the wild-type strain. This supports the importance of the derepression of the expression of most virulence genes, via mutations that impact the phosphorylation of the regulator CovR, for favoring S. pyogenes invasive infections.


Subject(s)
Streptococcal Infections , Streptococcus pyogenes , Mice , Animals , Virulence , Streptococcus pyogenes/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Virulence Factors/genetics , Virulence Factors/metabolism , Histidine Kinase/genetics , Histidine Kinase/metabolism , Streptococcal Infections/metabolism , Gene Expression Regulation, Bacterial
16.
Mol Syst Biol ; 19(3): e11021, 2023 03 09.
Article in English | MEDLINE | ID: mdl-36744393

ABSTRACT

Group B Streptococcus (GBS) is a pathobiont that can ascend to the placenta and cause adverse pregnancy outcomes, in part through production of the toxin ß-hemolysin/cytolysin (ß-h/c). Innate immune cells have been implicated in the response to GBS infection, but the impact of ß-h/c on their response is poorly defined. We show that GBS modulates innate immune cell states by subversion of host inflammation through ß-h/c, allowing worse outcomes. We used an ascending mouse model of GBS infection to measure placental cell state changes over time following infection with a ß-h/c-deficient and isogenic wild type GBS strain. Transcriptomic analysis suggests that ß-h/c-producing GBS elicit a worse phenotype through suppression of host inflammatory signaling in placental macrophages and neutrophils, and comparison of human placental macrophages infected with the same strains recapitulates these results. Our findings have implications for identification of new targets in GBS disease to support host defense against pathogenic challenge.


Subject(s)
Placenta , Streptococcal Infections , Mice , Animals , Female , Pregnancy , Humans , Placenta/metabolism , Streptococcus agalactiae/genetics , Streptococcus agalactiae/metabolism , Inflammation , Macrophages , Streptococcal Infections/metabolism
17.
Int Immunopharmacol ; 113(Pt A): 109413, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36461586

ABSTRACT

Excessive production of reactive oxygen species (ROS) leads to oxidative stress in host cells and affects the progress of disease. Mitochondria are an important source of ROS and their dysfunction is closely related to ROS production. S. uberis is a common causative agent of mastitis. The expression of key enzymes of the mitochondrial apoptotic pathway is increased in mammary epithelial cells after S. uberis stimulation, while expression of proteins related to mitochondrial function is decreased. Drp1, a key protein associated with mitochondrial function, is activated upon infection. Accompanied by mitochondria-cytosol translocation of Drp1, Fis1 expression is significantly upregulated while Mfn1 expression is downregulated implying that the balance of mitochondrial dynamics is disrupted. This leads to mitochondrial fragmentation, decreased mitochondrial membrane potential, higher levels of mROS and oxidative injury. The AMPK activator AICAR inhibits the increased phosphorylation of Drp1 and the translocation of Drp1 to mitochondria by salvaging mitochondrial function in an AMPK/Drp1 dependent manner, which has a similar effect to Drp1 inhibitor Mdivi-1. These data show that AMPK, as an upstream negative regulator of Drp1, ameliorates mitochondrial dysfunction induced by S. uberis infection.


Subject(s)
AMP-Activated Protein Kinases , Dynamins , Mitochondrial Dynamics , Streptococcal Infections , Streptococcus , Female , AMP-Activated Protein Kinases/genetics , AMP-Activated Protein Kinases/metabolism , Mitochondria/genetics , Mitochondria/metabolism , Reactive Oxygen Species , Dynamins/genetics , Dynamins/metabolism , Streptococcal Infections/genetics , Streptococcal Infections/metabolism , Streptococcal Infections/physiopathology , Animals , Mice , Epithelial Cells/metabolism , Epithelial Cells/microbiology , Mammary Glands, Animal/cytology , Mammary Glands, Animal/metabolism , Mitochondrial Dynamics/genetics , Mitochondrial Dynamics/physiology , Mitochondrial Diseases/etiology , Mitochondrial Diseases/genetics , Mitochondrial Diseases/metabolism
18.
Cell Mol Biol (Noisy-le-grand) ; 68(7): 1-8, 2022 Jul 31.
Article in English | MEDLINE | ID: mdl-36495527

ABSTRACT

A comparative overview of the global gene expression levels of S. agalactiae reference strain NEM316 at the exponential growth phase was done through RNA-sequencing. The expression levels of 47 genes potentially linked to virulence evidenced that: i) the major nuclease, GBS_RS03720/gbs0661, presented higher mean expression values than the remainder of DNase genes; ii) the genetic pilus island PI-2a genes presented higher mean expression values than PI-1 coding genes; and, iii) three virulence-associated genes ranked among the top-100 most expressed genes (GBS_RS07760, GBS_RS09445 and GBS_RS03485). Among this top-100, genes encoding proteins involved in "Translation, ribosomal structure and biogenesis" represented 46%. Curiously, genes with no assigned function were grouped in the category of highly expressed genes. As very little is known about the molecular mechanisms behind the release of DNases, preliminary assays were developed to understand whether direct DNA exposure would affect gene expression at the exponential growth phase. No differentially expressed genes were detected, indicating that follow-up studies are needed to disclose the complex molecular pathways (and stimuli) triggering the release of DNases. In general, our insights on the global expression levels of NEM316 at exponential growth phase with and without DNA exposure should open novel research lines to decipher S. agalactiae puzzling adaptation and virulence mechanisms, such as DNase production.


Subject(s)
Streptococcal Infections , Streptococcus agalactiae , Humans , Streptococcus agalactiae/genetics , Streptococcus agalactiae/metabolism , Fimbriae, Bacterial/genetics , Fimbriae, Bacterial/metabolism , Virulence/genetics , Gene Expression Profiling , Streptococcal Infections/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism
19.
J Bacteriol ; 204(11): e0027022, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36286511

ABSTRACT

In addition to providing a typing mechanism for group A Streptococcus (GAS) isolates (T typing), cell surface pilus production impacts GAS virulence characteristics, including adherence and immune evasion. The pilus biosynthesis genes are located in the fibronectin- and collagen-binding T-antigen (FCT) region of the genome, and nine different FCT types, encoding more than 20 different T types, have been described. GAS isolates are not uniform in their degree or pattern of pilus expression, as highlighted by pilus production being thermoregulated in isolates that harbor the FCT-type FCT-3 (e.g., M-types M3 and M49) but not in isolates that harbor FCT-2 (e.g., M-type M1). Here, we investigated the molecular basis underlying our previous finding that M3 GAS isolates produce pili in lower abundance than M1 or M49 isolates do. We discovered that, at least in part, the low pilus expression observed for M3 isolates is a consequence of the repression of pilus gene expression by the CovR/CovS two-component regulatory system and of an M3-specific mutation in the nra gene, encoding a positive regulator of pilus gene expression. We also discovered that the orthologous transcriptional regulators RofA and Nra, whose encoding genes are located within FCT-2 and FCT-3, respectively, are not functionally identical. Finally, we sequenced the genome of an M3 isolate that had naturally undergone recombinational replacement of the FCT region, changing the FCT and T types of this strain from FCT-3/T3 to FCT-2/T1. Our study furthers the understanding of strain- and type-specific variation in virulence factor production by an important human pathogen. IMPORTANCE Our ability to characterize how a pathogen infects and causes disease, and consequently our ability to devise approaches to prevent or attenuate such infections, is inhibited by the finding that isolates of a given pathogen often show phenotypic variability, for example, in their ability to adhere to host cells through modulation of cell surface adhesins. Such variability is observed between isolates of group A Streptococcus (GAS), and this study investigates the molecular basis for why some GAS isolates produce pili, cell wall-anchored adhesins, in lower abundance than other isolates do. Given that pili are being considered as potential antigens in formulations of future GAS vaccines, this study may inform vaccine design.


Subject(s)
Streptococcal Infections , Humans , Streptococcal Infections/metabolism , Bacterial Proteins/metabolism , Streptococcus pyogenes/genetics , Fimbriae, Bacterial/genetics , Fimbriae, Bacterial/metabolism , Adhesins, Bacterial/genetics , Adhesins, Bacterial/metabolism , Gene Expression Regulation, Bacterial
20.
Microb Pathog ; 172: 105766, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36087689

ABSTRACT

Streptococcus suis (S. suis) is an important zoonotic pathogen that can cause high morbidity and mortality in both humans and swine. As the most important life-threatening infection of the central nervous system (CNS), meningitis is an important syndrome of S. suis infection. The vancomycin resistance associated sensor/regulator (VraSR) is a critical two-component signal transduction system that affects the ability of S. suis to resist the host innate immune system and promotes its ability to adhere to brain microvascular endothelial cells (BMECs). Prior work also found mice infected with ΔvraSR had no obvious neurological symptoms, unlike mice infected with wild-type SC19. Whether and how VraSR participates in the development of S. suis meningitis remains unknown. Here, we found ΔvraSR-infected mice did not show obvious meningitis, compared with wild-type SC19-infected mice. Moreover, the proinflammatory cytokines and chemokines in serum and brains of ΔvraSR-infected mice, including IL-6, TNF-α, MCP-1 and IFN-γ, were significantly lower than wild-type infected group. Besides, blood-brain barrier (BBB) permeability also confirmed that the mutant had lower ability to disrupt BBB. Furthermore, in vivo and in vitro experiments showed that SC19 could increase BBB permeability by downregulating tight junction (TJ) proteins such as ZO-1, ß-Catenin, Occludin, and Clauidn-5, compared with mutant ΔvraSR. These findings provide new insight into the influence of S. suis VraSR on BBB disruption during the pathogenic process of streptococcal meningitis, thereby offering potential targets for future preventative and therapeutic strategies against this disease.


Subject(s)
Meningitis, Bacterial , Streptococcal Infections , Streptococcus suis , Humans , Animals , Mice , Swine , Streptococcus suis/metabolism , Blood-Brain Barrier/metabolism , beta Catenin/metabolism , Endothelial Cells/metabolism , Vancomycin Resistance , Occludin/metabolism , Tumor Necrosis Factor-alpha/metabolism , Interleukin-6/metabolism , Meningitis, Bacterial/metabolism , Streptococcal Infections/metabolism , Signal Transduction/physiology , Cytokines/metabolism , Tight Junction Proteins/metabolism , Chemokines/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL