Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21.556
Filter
1.
BMC Pregnancy Childbirth ; 24(1): 412, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849751

ABSTRACT

BACKGROUND: Human breast milk (HBM) is a contributing factor in modulating the infant's gut microbiota, as it contains bacteria that are directly transferred to the infant during breastfeeding. It has been shown that children of women diagnosed with gestational diabetes mellitus (GDM) have a different gut microbiota compared to children of women without GDM. Our hypothesis is therefore that women with GDM have a different HBM microbiota, which may influence the metabolic function and capacity of the child later in life. The aim of this study was to investigate whether women with GDM have a different breast milk microbiota 1-3 weeks postpartum compared to women without GDM. METHODS: In this case-control study, a total of 45 women were included: 18 women with GDM and 27 women without GDM. A milk sample was collected from each participant 1 to 3 weeks postpartum and the bacterial composition was examined by 16 S rRNA gene sequencing targeting the V4 region. RESULTS: High relative abundances of Streptococcus and Staphylococcus were present in samples from both women with and without GDM. No difference could be seen in either alpha diversity, beta diversity, or specific taxa between groups. CONCLUSION: Our results did not support the existence of a GDM-associated breast milk microbiota at 1-3 weeks postpartum. Further research is needed to fully understand the development of the gut microbiota of infants born to mothers with GDM.


Subject(s)
Diabetes, Gestational , Gastrointestinal Microbiome , Milk, Human , Humans , Female , Milk, Human/microbiology , Diabetes, Gestational/microbiology , Pregnancy , Adult , Case-Control Studies , RNA, Ribosomal, 16S/analysis , Postpartum Period , Microbiota , Streptococcus/isolation & purification , Breast Feeding , Staphylococcus/isolation & purification
2.
BMC Vet Res ; 20(1): 249, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849801

ABSTRACT

BACKGROUND: Intramammary infection is the result of invasion and multiplication of microorganisms in the mammary gland and commonly leads to mastitis in dairy animals. Although much has been done to improve cows' udder health, mastitis remains a significant and costly health issue for dairy farmers, especially if subclinical. In this study, quarter milk samples from clinically healthy cows were harvested to detect pathogens via quantitative PCR (qPCR) and evaluate changes in individual milk traits according to the number of quarters infected and the type of microorganism(s). A commercial qPCR kit was used for detection of Mycoplasma bovis, Mycoplasma spp., Staphylococcus aureus, coagulase-negative staphylococci (CNS), Streptococcus agalactiae, Streptococcus dysgalactiae, Streptococcus uberis, Prototheca spp., Escherichia coli, Klebsiella spp., Enterococcus spp. and Lactococcus lactis ssp. lactis. Quarter and pooled milk information of 383 Holstein, 132 Simmental, 129 Rendena, and 112 Jersey cows in 9 Italian single-breed herds was available. RESULTS: Among the cows with pathogen(s) present in at least 1 quarter, CNS was the most commonly detected DNA, followed by Streptococcus uberis, Mycoplasma bovis, and Streptococcus agalactiae. Cows negative to qPCR were 206 and had the lowest milk somatic cell count. Viceversa, cows with DNA isolated in ≥ 3 quarters were those with the highest somatic cell count. Moreover, when major pathogens were isolated in ≥ 3 quarters, milk had the lowest casein index and lactose content. In animals with pathogen(s) DNA isolated, the extent with whom milk yield and major solids were impaired did not significantly differ between major and minor pathogens. CONCLUSIONS: The effect of the number of affected quarters on the pool milk quality traits was investigated in clinically healthy cows using a commercial kit. Results remark the important negative effect of subclinical udder inflammations on milk yield and quality, but more efforts should be made to investigate the presence of untargeted microorganisms, as they may be potentially dangerous for cows. For a smarter use of antimicrobials, analysis of milk via qPCR is advisable - especially in cows at dry off - to identify quarters at high risk of inflammation and thus apply a targeted/tailored treatment.


Subject(s)
Mastitis, Bovine , Milk , Animals , Cattle , Milk/microbiology , Milk/chemistry , Female , Mastitis, Bovine/microbiology , DNA, Bacterial/analysis , Streptococcus/isolation & purification , Lactation , Real-Time Polymerase Chain Reaction/veterinary
3.
Article in English | MEDLINE | ID: mdl-38695863

ABSTRACT

Human breast milk contains lactic acid bacteria (LAB), which have an important influence on the composition of the intestinal microbia of infants. In this study, one strain of an α-hemolytic species of the genus Streptococcus, IMAU99199T, isolated from the breast milk of a healthy nursing mother in Hohhot city PR China, was studied to characterise its taxonomic status using phenotypic and molecular taxonomic methods. The results indicated that it represented a member of the mitis-suis clade, pneumoniae subclade of the genus Streptococcus. It is a Gram-stain-positive, catalase-negative and oxidase-negative bacterium, and the cells are globular, paired or arranged in short chains. The results of a phylogenetic analysis of its 16S rRNA gene and two housekeeping genes (gyrB and rpoB) placed it in the genus Streptococcus. A phylogenetic tree based on 135 single-copy genes sequences indicated that IMAU99199T formed a closely related branch well separated from 'Streptococcus humanilactis' IMAU99125, 'Streptococcus bouchesdurhonensis' Marseille Q6994, Streptococcus mitis NCTC 12261T, 'Streptococcus vulneris' DM3B3, Streptococcus toyakuensis TP1632T, Streptococcus pseudopneumoniae ATCC BAA-960T and Streptococcus pneumoniae NCTC 7465T. IMAU99199T and 'S. humanilactis' IMAU99125 had the highest average nucleotide identity (93.7 %) and digital DNA-DNA hybridisation (55.3 %) values, which were below the accepted thresholds for novel species. The DNA G+C content of the draft genome of IMAU99199T was 39.8 %. The main cellular fatty acids components of IMAU99199T were C16 : 0 and C16 : 1ω7. It grew at a temperature range of 25-45 °C (the optimum growth temperature was 37 °C) and a pH range of 5.0-8.0 (the optimum growth pH was 7.0). These data indicate that strain IMAU99199T represents a novel species in the genus Streptococcus, for which the name Streptococcus hohhotensis sp. nov. is proposed. The type strain is IMAU99199T (=GDMCC 1.1874T=KCTC 21155T).


Subject(s)
Bacterial Typing Techniques , Base Composition , DNA, Bacterial , Fatty Acids , Milk, Human , Phylogeny , RNA, Ribosomal, 16S , Sequence Analysis, DNA , Streptococcus , RNA, Ribosomal, 16S/genetics , Humans , Female , China , DNA, Bacterial/genetics , Milk, Human/microbiology , Streptococcus/genetics , Streptococcus/isolation & purification , Streptococcus/classification , Fatty Acids/analysis , Nucleic Acid Hybridization , Genes, Bacterial
4.
BMC Vet Res ; 20(1): 173, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702665

ABSTRACT

Strangles is a highly contagious disease of the equine upper respiratory tract caused by Streptococcus equi subspecies. Streptococcus equi subsp. equi (S. equi) and Streptococcus equi subsp. zooepidemicus (S. zooepidemicus) was isolated, as local, hot, and field strains, from horses clinically suffering from respiratory distress. The isolated Streptococci were identified using bacteriological and molecular techniques. Four formulations of inactivated S. equi vaccines were developed and evaluated. The first formulation was prepared using the S. equi isolates, adjuvanted with MONTANIDE GEL adjuvant, while the second formulation was adjuvanted with MONTANIDE ISA-70 adjuvant. The other 2 formulations were inactivated combined vaccines prepared from both S. equi and S. zooepidemicus isolates. The 3rd formulation was the combined isolates adjuvanted with MONTANIDE GEL while the 4th formulation was the combined isolates adjuvanted with MONTANIDE ISA-70. The developed vaccines' physical properties, purity, sterility, safety, and potency were ensured. The immunizing efficacy was determined in isogenic BALB/c mice and white New Zealand rabbits using the passive hemagglutination test. Also, the antibodies' titer of the combined S. equi and S. zooepidemicus vaccine adjuvanted with MONTANIDE ISA-70 in foals was tracked using an indirect enzyme-linked immunosorbent assay. The protective efficacy of the developed vaccines was determined using a challenge test in both laboratory and field animal models, where a 75% protection rate was achieved. The combined vaccine proved to be more efficacious than the monovalent vaccine. Also, the MONTANIDE ISA-70 adjuvant provided significant protective efficacy than the MONTANIDE GEL. The current work is introducing a very promising mitigative and strategic controlling solution for strangles.


Subject(s)
Horse Diseases , Mice, Inbred BALB C , Streptococcal Infections , Streptococcal Vaccines , Streptococcus equi , Streptococcus , Animals , Streptococcus equi/immunology , Horses , Rabbits , Streptococcal Infections/veterinary , Streptococcal Infections/prevention & control , Streptococcal Infections/microbiology , Streptococcal Infections/immunology , Mice , Horse Diseases/prevention & control , Horse Diseases/microbiology , Horse Diseases/immunology , Streptococcal Vaccines/immunology , Streptococcal Vaccines/administration & dosage , Female , Antibodies, Bacterial/blood , Adjuvants, Immunologic/administration & dosage , Vaccines, Inactivated/immunology
5.
Carbohydr Polym ; 337: 122164, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38710558

ABSTRACT

Water-insoluble α-glucans synthesized from sucrose by glucansucrases from Streptococcus spp. are essential in dental plaque and caries formation. Because limited information is available on the fine structure of these biopolymers, we analyzed the structures of unmodified glucans produced by five recombinant Streptococcus (S.) mutans DSM 20523 and S. salivarius DSM 20560 glucansucrases in detail. A combination of methylation analysis, endo-dextranase and endo-mutanase hydrolyses, and HPSEC-RI was used. Furthermore, crystal-like regions were analyzed by using XRD and 13C MAS NMR spectroscopy. Our results showed that the glucan structures were highly diverse: Two glucans with 1,3- and 1,6-linkages were characterized in detail besides an almost exclusively 1,3-linked and a linear 1,6-linked glucan. Furthermore, one glucan contained 1,3-, 1,4-, and 1,6-linkages and thus had an unusual, not yet described structure. It was demonstrated that the glucans had a varying structural architecture by using partial enzymatic hydrolyses. Furthermore, crystal-like regions formed by 1,3-glucopyranose units were observed for the two 1,3- and 1,6-linked glucans and the linear 1,3-linked glucan. 1,6-linked regions were mobile and not involved in the crystal-like areas. Altogether, our results broaden the knowledge of the structure of water-insoluble α-glucans from Streptococcus spp.


Subject(s)
Glucans , Glycosyltransferases , Water , Glucans/chemistry , Water/chemistry , Glycosyltransferases/metabolism , Glycosyltransferases/chemistry , Streptococcus/enzymology , Solubility , Streptococcus mutans/enzymology
6.
BMC Vet Res ; 20(1): 193, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38734661

ABSTRACT

BACKGROUND: Bovine mastitis is a widespread disease affecting dairy cattle worldwide and it generates substantial losses for dairy farmers. Mastitis may be caused by bacteria, fungi or algae. The most common species isolated from infected milk are, among others, Streptococcus spp., Escherichia coli, Staphylococcus aureus and non-aureus staphylococci and mammaliicocci. The aim of this paper is to determine the frequency of occurrence of bacterial species in milk samples from cows with mastitis from three regions of Poland: the north-east, the south-west and the south. To this end 203 milk samples taken from cows with a clinical form (CM) of mastitis (n = 100) and healthy animals (n = 103) were examined, which included culture on an appropriate medium followed by molecular detection of E. coli, S. aureus, Streptococcus agalactiae and Streptococcus uberis, as one of the most common species isolated from mastitis milk. RESULTS: The results obtained indicated that S. uberis was the most commonly cultivated CM species (38%, n = 38), followed by S. aureus (22%, n = 22), E. coli (21%, n = 21) and S. agalactiae (18%, n = 18). Similar frequencies in molecular methods were obtained for S. uberis (35.1%) and S. aureus (28.0%). The variation of sensitivity of both methods may be responsible for the differences in the E. coli (41.0%, p = 0.002) and S. agalactiae (5.0%, p = 0.004) detection rates. Significant differences in composition of species between three regions of Poland were noted for E. coli incidence (p < 0.001), in both the culture and molecular methods, but data obtained by the PCR method indicated that this species was the least common in north-eastern Poland, while the culture method showed that in north-eastern Poland E. coli was the most common species. Significant differences for the molecular method were also observed for S. uberis (p < 0.001) and S. aureus (p < 0.001). Both species were most common in southern and south-western Poland. CONCLUSIONS: The results obtained confirm the need to introduce rapid molecular tests for veterinary diagnostics, as well as providing important epidemiological data, to the best of our knowledge data on Polish cows in selected areas of Poland is lacking.


Subject(s)
Mastitis, Bovine , Milk , Streptococcus , Animals , Cattle , Mastitis, Bovine/microbiology , Mastitis, Bovine/epidemiology , Poland/epidemiology , Female , Milk/microbiology , Streptococcus/isolation & purification , Streptococcus/genetics , Streptococcus/classification , Escherichia coli/isolation & purification , Escherichia coli/genetics , Escherichia coli/classification , Staphylococcus aureus/isolation & purification , Staphylococcus aureus/genetics , Streptococcus agalactiae/isolation & purification , Streptococcus agalactiae/genetics , Bacteria/isolation & purification , Bacteria/classification , Bacteria/genetics
7.
Anim Sci J ; 95(1): e13959, 2024.
Article in English | MEDLINE | ID: mdl-38769761

ABSTRACT

This study investigates the relationships between subclinical mastitis and milk quality with selected microRNAs in cow milk. California Mastitis Test (CMT)-positive (n = 20) and negative (n = 20) samples were compared (Experiment I). Additionally, samples with CMT-positive but microbiological-negative, as well as positive for only Staphylococcus subspecies (Staph spp.) and only Streptococcus subspecies (Strep spp.) were examined (Experiment II). Four groups were formed in Experiment II: Group I (CMT and microbiological-negative) (n = 20), Group II (CMT-positive but microbiological-negative) (n = 10), Group III (Staph spp.) (n = 5), Group IV (Strep spp.) (n = 5). While electrical conductivity, somatic cell count (SCC), malondialdehyde (MDA) increased, miR-27a-3p and miR-223 upregulated and miR-125b downregulated in the CMT-positive group in Experiment I. SCC and MDA were higher in CMT-positive groups. miR-27a-3p and miR-223 upregulated in Groups III and IV. While miR-155 is upregulated, miR-125b downregulated in Group IV. Milk fat is positively correlated with miR-148a and miR-223. As miR-27a-3p positively correlated with SCC and MDA, miR-125b negatively correlated with electrical conductivity and SCC. miR-148a and MDA were positively correlated. miR-155 was correlated with fat-free dry matter, protein, lactose, and freezing point. miR-223 was positively correlated with SCC and miR-148a. Results particularly highlight miR-27a-3p and miR-223 as potential biomarkers in subclinical mastitis, especially those caused by Staph spp. and Strep spp., while miR-148a, miR-155, and miR-223 stand out in determining milk quality.


Subject(s)
Mastitis, Bovine , MicroRNAs , Milk , Animals , Milk/microbiology , MicroRNAs/metabolism , MicroRNAs/genetics , Cattle , Female , Mastitis, Bovine/microbiology , Mastitis, Bovine/diagnosis , Mastitis, Bovine/genetics , Mastitis, Bovine/metabolism , Staphylococcus/isolation & purification , Cell Count/veterinary , Streptococcus/isolation & purification , Food Quality , Malondialdehyde/metabolism , Malondialdehyde/analysis , Electric Conductivity , Asymptomatic Infections
8.
BMC Vet Res ; 20(1): 169, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38698383

ABSTRACT

BACKGROUND: Bovine mastitis is one of the most widespread diseases affecting cattle, leading to significant losses for the dairy industry. Currently, the so-called gold standard in mastitis diagnosis involves determining the somatic cell count (SCC). Apart from a number of advantages, this method has one serious flaw: It does not identify the etiological factor causing a particular infection, making it impossible to introduce targeted antimicrobial therapy. This can contribute to multidrug-resistance in bacterial species. The diagnostic market lacks a test that has the advantages of SCC and also recognizes the species of pathogen causing the inflammation. Therefore, the aim of our study was to develop a lateral flow immunoassay (LFIA) based on elongation factor Tu for identifying most prevalent Gram-positive cocci responsible for causing mastitis including Streptococcus uberis, Streptococcus agalactiae and Staphylococcus aureus. RESULTS: As a result, we showed that the assay for S. uberis detection demonstrated a specificity of 89.02%, a sensitivity of 43.59%, and an accuracy of 80.3%. In turn, the second variant - assay for Gram-positive cocci reached a specificity of 95.59%, a sensitivity of 43.28%, and an accuracy of 78.33%. CONCLUSIONS: Our study shows that EF-Tu is a promising target for LFIA and we have delivered evidence that further evaluation could improve test parameters and fill the gap in the mastitis diagnostics market.


Subject(s)
Mastitis, Bovine , Streptococcus agalactiae , Streptococcus , Mastitis, Bovine/diagnosis , Mastitis, Bovine/microbiology , Animals , Cattle , Female , Streptococcus agalactiae/isolation & purification , Streptococcus/isolation & purification , Staphylococcus aureus/isolation & purification , Sensitivity and Specificity , Streptococcal Infections/veterinary , Streptococcal Infections/diagnosis , Streptococcal Infections/microbiology , Gram-Positive Cocci/isolation & purification , Immunoassay/veterinary , Immunoassay/methods , Staphylococcal Infections/veterinary , Staphylococcal Infections/diagnosis , Staphylococcal Infections/microbiology , Milk/microbiology , Milk/cytology
9.
Chem Biol Drug Des ; 103(6): e14554, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38806405

ABSTRACT

This paper reports the design, synthesis, and antibacterial activity study of pleuromutilin derivatives with 2-methyl-4-nitroaniline and 2-methoxy-4-nitroaniline side chains at the C22 position. The structures of the new compounds were characterized by 1H-NMR, 13C-NMR and HRMS. The inhibitory activity of the compounds against MSSA, pyogeniccoccus, streptococcus, and MRSA strains was determined using the micro broth dilution method. The results showed that the compounds exhibited certain activity against Gram-positive bacteria, among which compounds A8a, A8b, A8c, A8d, and A7 demonstrated superior antibacterial activity against MSSA, MRSA, and pyogeniccoccus compared to tiamulin, although the derivatives showed lower antibacterial activity against streptococcus compared to the control drug. Based on the favorable in vitro activity of A8c, the time-kill kinetics against MRSA were evaluated, revealing that compound A8c could inhibit bacterial proliferation in a concentration-dependent manner.


Subject(s)
Anti-Bacterial Agents , Diterpenes , Drug Design , Methicillin-Resistant Staphylococcus aureus , Microbial Sensitivity Tests , Pleuromutilins , Polycyclic Compounds , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Diterpenes/pharmacology , Diterpenes/chemistry , Diterpenes/chemical synthesis , Polycyclic Compounds/pharmacology , Polycyclic Compounds/chemistry , Polycyclic Compounds/chemical synthesis , Methicillin-Resistant Staphylococcus aureus/drug effects , Structure-Activity Relationship , Streptococcus/drug effects , Gram-Positive Bacteria/drug effects
10.
Biosensors (Basel) ; 14(5)2024 May 17.
Article in English | MEDLINE | ID: mdl-38785731

ABSTRACT

Loop-mediated isothermal amplification (LAMP) technology is extensively utilized for the detection of infectious diseases owing to its rapid processing and high sensitivity. Nevertheless, conventional LAMP signaling methods frequently suffer from a lack of sequence specificity. This study integrates a triplex-forming oligonucleotide (TFO) probe into the LAMP process to enhance sequence specificity. This TFO-LAMP technique was applied for the detection of Group B Streptococcus (GBS). The TFO probe is designed to recognize a specific DNA sequence, termed the TFO targeting sequence (TTS), within the amplified product, facilitating detection via fluorescent instrumentation or lateral flow biosensors. A screening method was developed to identify TFO sequences with high affinity to integrate TFO into LAMP, subsequently incorporating a selected TTS into an LAMP primer. In the TFO-LAMP assay, a FAM-labeled TFO is added to target the TTS. This TFO can be captured by an anti-FAM antibody on lateral flow test strips, thus creating a nucleic acid testing biosensor. The efficacy of the TFO-LAMP assay was confirmed through experiments with specimens spiked with varying concentrations of GBS, demonstrating 85% sensitivity at 300 copies and 100% sensitivity at 30,000 copies. In conclusion, this study has successfully developed a TFO-LAMP technology that offers applicability in lateral flow biosensors and potentially other biosensor platforms.


Subject(s)
Biosensing Techniques , Nucleic Acid Amplification Techniques , Oligonucleotides , Streptococcus/genetics , Streptococcus/isolation & purification , Humans , DNA, Bacterial/analysis , Molecular Diagnostic Techniques
11.
Acta Vet Scand ; 66(1): 20, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38769566

ABSTRACT

Bacteriophage-encoded endolysins, peptidoglycan hydrolases breaking down the Gram-positive bacterial cell wall, represent a groundbreaking class of novel antimicrobials to revolutionize the veterinary medicine field. Wild-type endolysins exhibit a modular structure, consisting of enzymatically active and cell wall-binding domains, that enable genetic engineering strategies for the creation of chimeric fusion proteins or so-called 'engineered endolysins'. This biotechnological approach has yielded variants with modified lytic spectrums, introducing new possibilities in antimicrobial development. However, the discovery of highly similar endolysins by different groups has occasionally resulted in the assignment of different names that complicate a straightforward comparison. The aim of this review was to perform a homology-based comparison of the wild-type and engineered endolysins that have been characterized in the context of bovine mastitis-causing streptococci and staphylococci, grouping homologous endolysins with ≥ 95.0% protein sequence similarity. Literature is explored by homologous groups for the wild-type endolysins, followed by a chronological examination of engineered endolysins according to their year of publication. This review concludes that the wild-type endolysins encountered persistent challenges in raw milk and in vivo settings, causing a notable shift in the field towards the engineering of endolysins. Lead candidates that display robust lytic activity are nowadays selected from screening assays that are performed under these challenging conditions, often utilizing advanced high-throughput protein engineering methods. Overall, these recent advancements suggest that endolysins will integrate into the antibiotic arsenal over the next decade, thereby innovating antimicrobial treatment against bovine mastitis-causing streptococci and staphylococci.


Subject(s)
Bacteriophages , Endopeptidases , Mastitis, Bovine , Staphylococcus , Animals , Mastitis, Bovine/microbiology , Mastitis, Bovine/drug therapy , Cattle , Endopeptidases/pharmacology , Endopeptidases/metabolism , Endopeptidases/chemistry , Endopeptidases/genetics , Staphylococcus/drug effects , Staphylococcal Infections/veterinary , Staphylococcal Infections/drug therapy , Streptococcus/drug effects , Female , Streptococcal Infections/veterinary , Streptococcal Infections/drug therapy , Anti-Bacterial Agents/pharmacology
12.
BMC Res Notes ; 17(1): 138, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750516

ABSTRACT

OBJECTIVE: The purpose of this study was to identify the M protein trans-acting positive regulator (Mga) orthologue and its adjacent M-like protein (SCM) alleles in Streptococcus canis. RESULTS: Using the 39 SCM allele isolates and polymerase chain reaction-based amplification and sequencing, we obtained the deduced Mga amino acid (AA) sequences. The 22 Mga sequences in whole-genome sequences were obtained by searching the National Collection of Type Cultures 12,191(T) Mga sequence into the database. The percentage identity to the type-strain Mga sequence was examined along with its size. The presence of the Mga-specific motifs was confirmed. Of the 62 strains, we identified 59 Mga sequences with an AA size of 509 (except for four different sizes). Percentage identity ranged from 96.66 to 100% with the confirmed Mga-specific motifs and diverse SCM allele populations. Our findings support the presence of an Mga orthologue and diverse SCM allele populations.


Subject(s)
Alleles , Bacterial Proteins , Streptococcus , Streptococcus/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Amino Acid Sequence
13.
Prev Vet Med ; 228: 106230, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38772119

ABSTRACT

Strangles, a disease caused by infection with Streptococccus equi subspecies equi (S. equi), is endemic worldwide and one of the most frequently diagnosed infectious diseases of horses. Recent work has improved our knowledge of key parameters of transmission dynamics, but important knowledge gaps remain. Our aim was to apply mathematical modelling of S. equi transmission dynamics to prioritise future research areas, and add precision to estimates of transmission parameters thereby improving understanding of S. equi epidemiology and quantifying the control effort required. A compartmental deterministic model was constructed. Parameter values were estimated from current literature wherever possible. We assessed the sensitivity of estimates for the basic reproduction number on the population scale to varying assumptions for the unknown or uncertain parameters of: (mean) duration of carriership (1∕γC), relative infectiousness of carriers (f), proportion of infections that result in carriership (p), and (mean) duration of immunity after natural infection (1∕γR). Available incidence and (sero-)prevalence data were compared to model outputs to improve point estimates and ranges for these currently unknown or uncertain transmission-related parameters. The required vaccination coverage of an ideal vaccine to prevent major outbreaks under a range of control scenarios was estimated, and compared available data on existing vaccines. The relative infectiousness of carriers (as compared to acutely ill horses) and the duration of carriership were identified as key knowledge gaps. Deterministic compartmental simulations, combined with seroprevalence data, suggest that 0.05

Subject(s)
Horse Diseases , Streptococcal Infections , Animals , Horses , Streptococcal Infections/veterinary , Streptococcal Infections/epidemiology , Streptococcal Infections/transmission , Horse Diseases/transmission , Horse Diseases/epidemiology , Horse Diseases/microbiology , Models, Theoretical , Prevalence , Incidence , Streptococcus equi , Models, Biological , Streptococcus
14.
Protein Sci ; 33(6): e5037, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38801244

ABSTRACT

The bacteriophage protein paratox (Prx) blocks quorum sensing in its streptococcal host by directly binding the signal receptor and transcription factor ComR. This reduces the ability of Streptococcus to uptake environmental DNA and protects phage DNA from damage by recombination. Past work characterizing the Prx:ComR molecular interaction revealed that paratox adopts a well-ordered globular fold when bound to ComR. However, solution-state biophysical measurements suggested that Prx may be conformationally dynamic. To address this discrepancy, we investigated the stability and dynamic properties of Prx in solution using circular dichroism, nuclear magnetic resonance, and several fluorescence-based protein folding assays. Our work shows that under dilute buffer conditions Prx is intrinsically disordered. We also show that the addition of kosmotropic salts or protein stabilizing osmolytes induces Prx folding. However, the solute stabilized fold is different from the conformation Prx adopts when it is bound to ComR. Furthermore, we have characterized Prx folding thermodynamics and folding kinetics through steady-state fluorescence and stopped flow kinetic measurements. Our results show that Prx is a highly dynamic protein in dilute solution, folding and refolding within the 10 ms timescale. Overall, our results demonstrate that the streptococcal phage protein Prx is an intrinsically disordered protein in a two-state equilibrium with a solute-stabilized folded form. Furthermore, the solute-stabilized fold is likely the predominant form of Prx in a solute-crowded bacterial cell. Finally, our work suggests that Prx binds and inhibits ComR, and thus quorum sensing in Streptococcus, by a combination of conformational selection and induced-fit binding mechanisms.


Subject(s)
Intrinsically Disordered Proteins , Intrinsically Disordered Proteins/chemistry , Intrinsically Disordered Proteins/metabolism , Protein Folding , Viral Proteins/chemistry , Viral Proteins/metabolism , Viral Proteins/genetics , Streptococcus Phages/chemistry , Streptococcus Phages/metabolism , Streptococcus Phages/genetics , Streptococcus/virology , Streptococcus/chemistry , Streptococcus/metabolism
15.
Arch Oral Biol ; 164: 105978, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38718465

ABSTRACT

OBJECTIVE: To evaluate the effect of the association of potassium iodide to antimicrobial photodynamic therapy on human carious dentin produced with a microcosm biofilm model. METHODS: A microcosm biofilm model was used to generate a caries lesion on human dentin. Pooled human saliva diluted with glycerol was used as an inoculum on specimens immersed on McBain artificial saliva enriched with 1 % sucrose (24 h at 37 °C in 5 % CO2). After refreshing culture media for 7 days, the dentin specimens were divided in 5 groups (3 specimens per group, in triplicate; n = 9): C (NaCl 0.9 %), CX (2 % chlorhexidine), PKI (0.01 % methylene blue photosensitizer+50 mM KI), L (laser at 15 J, 180 s, 22.7 J/cm2), and PKIL (methylene blue + KI + Laser). After the treatments, dentin was collected, and a 10-fold serial dilution was performed. The number of total microorganisms, total lactobacilli, total streptococci, and Streptococcus mutans was analyzed by microbial counts (CFU/mL). After normality and homoscedasticity analysis, the Welch's ANOVA and Dunnett's tests were used for CFU. All tests used a 5 % significance level. RESULTS: CX and PKIL groups showed significant bacterial decontamination of dentin, compared to group C (p < 0.05) reaching reductions up to 3.8 log10 for CX for all microorganisms' groups and PKIL showed 0.93, 1.30, 1.45, and 1.22 log10 for total microorganisms, total lactobacilli, total streptococci, and S. mutans, respectively. CONCLUSION: aPDT mediated by the association of KI and methylene blue with red laser reduced the viability of microorganisms from carious dentin and could be a promising option for cavity decontamination.


Subject(s)
Biofilms , Dental Caries , Dentin , Methylene Blue , Photochemotherapy , Photosensitizing Agents , Potassium Iodide , Streptococcus mutans , Humans , Methylene Blue/pharmacology , Methylene Blue/therapeutic use , Photochemotherapy/methods , Dental Caries/microbiology , Dental Caries/drug therapy , Dental Caries/therapy , Dentin/microbiology , Dentin/drug effects , Potassium Iodide/pharmacology , Potassium Iodide/therapeutic use , Biofilms/drug effects , Streptococcus mutans/drug effects , Photosensitizing Agents/therapeutic use , Photosensitizing Agents/pharmacology , Saliva/microbiology , Lactobacillus/drug effects , Streptococcus/drug effects , Chlorhexidine/pharmacology , Chlorhexidine/therapeutic use , In Vitro Techniques , Colony Count, Microbial , Saliva, Artificial , Lasers
16.
Int J Biol Macromol ; 270(Pt 2): 132334, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38744368

ABSTRACT

Hyaluronic acid (HA), which is a highly versatile glycosaminoglycan, is widely applied across the fields of food, cosmetics, and pharmaceuticals. It is primary produced through Streptococcus fermentation, but the product presents inherent challenges concerning consistency and potential pathogenicity. However, recent strides in molecular biology have paved the way for genetic engineering, which facilitates the creation of high-yield, nonpathogenic strains adept at synthesizing HA with specific molecular weights. This comprehensive review extensively explores the molecular biology underpinning pivotal HA synthase genes, which elucidates the intricate mechanisms governing HA synthesis. Moreover, it delineates various strategies employed in engineering HA-producing strains.


Subject(s)
Genetic Engineering , Hyaluronic Acid , Streptococcus , Hyaluronic Acid/biosynthesis , Streptococcus/genetics , Streptococcus/metabolism , Genetic Engineering/methods , Fermentation , Hyaluronan Synthases/genetics , Hyaluronan Synthases/metabolism , Biosynthetic Pathways/genetics
17.
Open Vet J ; 14(1): 53-69, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38633195

ABSTRACT

Background: The high summer mortality in many fish farms, which had detrimental economic and social implications, was a serious challenge that the fish industry had to deal with. Aim: With an examination of the most effective antibiotic, the ongoing research was intended to shed light on the identification of the main bacterial pathogens associated with the summer mortality syndrome in the diseased farmed Nile tilapia. Methods: Six hundred dead Nile tilapia samples that had suffered from summer mortality were collected from several fish farms between May and October of 2022. The gathered fish displayed hemorrhagic areas on the skin, scale detachment, fin degeneration, erosions, skin ulcers, and corneal opacity with unilateral and/or bilateral exophthalmia. The most prominent internal appearance was swelling of the internal organs with sanguineous ascetic fluid. Results: There were 225 bacterial isolates found. Six species were identified through phenotypic and biochemical analysis; they were Aeromonas, Vibrio, Streptococcus, Pseudomonas, Enterococcus, and Edwardsiella spp., in descending percentage, respectively. Aeromonas spp., Vibrio spp., and Streptococcus spp. were the three most frequent isolated bacterial pathogens. The identification of Aeromonas hydrophila, Vibrio spp., and Streptococcus iniae, the three most common bacterial isolates, was confirmed by molecular analysis by polymerase chain reaction. Most of the tested strains were found to be responsive to Ciprofloxacin (CIP), Gentamicin (CN), and Chloramphenicol (C) but resistant to Amoxicillin (AMX), according to an antibiotic sensitivity test. Conclusion: The three most dangerous common bacterial infections discovered during mass-farmed tilapia summer mortality are A. hydrophil a, Vibrio sp., and S. iniae. This makes it clear that high water temperatures may raise the possibility of bacterial infections, which could cause widespread tilapia mortality and substantial financial losses. Therefore, it is crucial to maintain a beneficial fish culture, environment, and husbandry practices to enhance the tilapia-rearing environment and lessen the virulence of the disease. Isolated bacterial strains showed low levels of resistance to AMX but were vulnerable to CIP, CN, and C.


Subject(s)
Bacterial Infections , Cichlids , Animals , Cichlids/microbiology , Streptococcus , Anti-Bacterial Agents , Virulence , Bacterial Infections/veterinary
18.
Bioorg Med Chem Lett ; 105: 129737, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38599297

ABSTRACT

A new monoterpenoid, neoroseoside (1), along with two previously reported compounds, 2″-O-α-l-rhamnosyl-6-C-fucosylluteolin (2) and farobin A (3) were isolated from the Zea mays. The structure of compound 1 was determined through the analysis spectroscopic data, including mass spectrometry (MS), infrared (IR) spectroscopy, and nuclear magnetic resonance (NMR) data. The absolute configurations of 1 were deduced from the comparing the values of optical rotations and from the interpretation of electronic circular dichroism (ECD) spectra. Compounds 2 and 3 displayed moderate antibacterial activity against Streptococcus mutans ATCC 25175 (inhibition rates 24 % and 28 %, respectively) and Streptococcus sobrinus ATCC 33478 (inhibition rate of 26 %), at a concentration of 100 µg/mL, whereas compound 1 did not have any significant antibacterial activities. The compounds 1-3 also showed anti-inflammatory activity on cytokine IL-6 and TNF-α.


Subject(s)
Anti-Bacterial Agents , Microbial Sensitivity Tests , Monoterpenes , Zea mays , Zea mays/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Monoterpenes/pharmacology , Monoterpenes/chemistry , Monoterpenes/isolation & purification , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/isolation & purification , Structure-Activity Relationship , Molecular Structure , Streptococcus mutans/drug effects , Interleukin-6/metabolism , Interleukin-6/antagonists & inhibitors , Drug Discovery , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Tumor Necrosis Factor-alpha/metabolism , Dose-Response Relationship, Drug , Streptococcus/drug effects
19.
Vet Res ; 55(1): 51, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38622639

ABSTRACT

Lyophilized Streptococcus spp. isolates (n = 50) from animal samples submitted to the diagnostic laboratory at the University of Connecticut in the 1940s were revivified to investigate the genetic characteristics using whole-genome sequencing (WGS). The Streptococcus spp. isolates were identified as follows; S. agalactiae (n = 14), S. dysgalactiae subsp. dysgalactiae (n = 10), S. dysgalactiae subsp. equisimils (n = 5), S. uberis (n = 8), S. pyogenes (n = 7), S. equi subsp. zooepidemicus (n = 4), S. oralis (n = 1), and S. pseudoporcinus (n = 1). We identified sequence types (ST) of S. agalactiae, S. dysgalactiae, S. uberis, S. pyogenes, and S. equi subsp. zooepidemicus and reported ten novel sequence types of those species. WGS analysis revealed that none of Streptococcus spp. carried antibiotic resistance genes. However, tetracycline resistance was observed in four out of 15 S. dysgalactiae isolates and in one out of four S. equi subsp. zooepidemicus isolate. This data highlights that antimicrobial resistance is pre-existed in nature before the use of antibiotics. The draft genome sequences of isolates from this study and 426 complete genome sequences of Streptococcus spp. downloaded from BV-BRC and NCBI GenBank database were analyzed for virulence gene profiles and phylogenetic relationships. Different Streptococcus species demonstrated distinct virulence gene profiles, with no time-related variations observed. Phylogenetic analysis revealed high genetic diversity of Streptococcus spp. isolates from the 1940s, and no clear spatio-temporal clustering patterns were observed among Streptococcus spp. analyzed in this study. This study provides an invaluable resource for studying the evolutionary aspects of antibiotic resistance acquisition and virulence in Streptococcus spp.


Subject(s)
Anti-Bacterial Agents , Streptococcal Infections , Animals , Anti-Bacterial Agents/pharmacology , Virulence/genetics , Streptococcal Infections/veterinary , Phylogeny , Streptococcus/genetics
20.
Sci Rep ; 14(1): 8413, 2024 04 10.
Article in English | MEDLINE | ID: mdl-38600137

ABSTRACT

Strain-specific probiotics can present antioxidant activity and reduce damage caused by oxidation. Streptococcus alactolyticus strain FGM (S. alactolyticus strain FGM) isolated from the chicken cecum shows potential probiotic properties which have been previously demonstrated. However, the antioxidant properties of S. alactolyticus strain FGM remain unknown. In this view, cell-free supernatant (CFS), intact cells (IC) and intracellular extracts (CFE) of strain FGM and 3 strains of Lactobacillus (LAB) were prepared, and their scavenging capacities against DPPH, hydroxyl radicals and linoleic acid peroxidation inhibitory were compared in this study. The effects of strain FGM cell-free supernatant (FCFS) on NO production, activity of SOD and GSH-Px in RAW264.7 cells and LPS-induced RAW264.7 cells were analyzed. The metabolites in the supernatant were quantitated by N300 Quantitative Metabolome. It was shown that the physicochemical characteristics of CFS to scavenge DPPH, hydroxyl radicals, and linoleic acid peroxidation inhibitory were significantly stronger than that of IC and CFE in the strain FGM (P < 0.05), respectively 87.12% ± 1.62, 45.03% ± 1.27, 15.63% ± 1.34. FCFS had a promotional effect on RAW264.7 cells, and significantly elevated SOD and GSH-Px activities in RAW264.7 cells. 25 µL FCFS significantly promoted the proliferation of RAW264.7 cells induced by LPS, increased the activities of SOD and GSH-PX, and decreased the release of NO. Furthermore, among the differential metabolites of FCFS quantified by N300, 12 metabolites were significantly up-regulated, including lactic acid, indole lactic acid, linoleic acid, pyruvic acid etc., many of which are known with antioxidant properties. In conclusion, FCFS had good antioxidant properties and activity, which can be attributed to metabolites produced from strain FGM fermentation. It was further confirmed that S. alactolyticus strain FGM and its postbiotic have potential probiotic properties and bright application prospects in livestock and poultry breeding.


Subject(s)
Antioxidants , Probiotics , Streptococcus , Antioxidants/pharmacology , Antioxidants/metabolism , Linoleic Acid , Lipopolysaccharides , Probiotics/metabolism , Hydroxyl Radical , Superoxide Dismutase , Lactic Acid/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...