Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.875
Filter
1.
Front Immunol ; 15: 1388721, 2024.
Article in English | MEDLINE | ID: mdl-38840926

ABSTRACT

The disaccharide (ß-D-glucopyranosyluronic acid)-(1→4)-ß-D-glucopyranoside represents a repeating unit of the capsular polysaccharide of Streptococcus pneumoniae serotype 3. A conjugate of the disaccharide with BSA (di-BSA conjugate) adjuvanted with aluminum hydroxide induced - in contrast to the non-adjuvanted conjugate - IgG1 antibody production and protected mice against S. pneumoniae serotype 3 infection after intraperitoneal prime-boost immunization. Adjuvanted and non-adjuvanted conjugates induced production of Th1 (IFNγ, TNFα); Th2 (IL-5, IL-13); Th17 (IL-17A), Th1/Th17 (IL-22), and Th2/Th17 cytokines (IL-21) after immunization. The concentration of cytokines in mice sera was higher in response to the adjuvanted conjugate, with the highest level of IL-17A production after the prime and boost immunizations. In contrast, the non-adjuvanted conjugate elicited only weak production of IL-17A, which gradually decreased after the second immunization. After boost immunization of mice with the adjuvanted di-BSA conjugate, there was a significant increase in the number of CD45+/CD19+ B cells, TCR+ γδ T cell, CD5+ В1 cells, and activated cells with MHC II+ expression in the spleens of the mice. IL-17A, TCR+ γδ T cells, and CD5+ В1 cells play a crucial role in preventing pneumococcal infection, but can also contribute to autoimmune diseases. Immunization with the adjuvanted and non-adjuvanted di-BSA conjugate did not elicit autoantibodies against double-stranded DNA targeting cell nuclei in mice. Thus, the molecular and cellular markers associated with antibody production and protective activity in response to immunization with the di-BSA conjugate adjuvanted with aluminum hydroxide are IL-17A, TCR+ γδ T cells, and CD5+ В1 cells against the background of increasing MHC II+ expression.


Subject(s)
Interleukin-17 , Pneumococcal Vaccines , Serum Albumin, Bovine , Streptococcus pneumoniae , Animals , Interleukin-17/immunology , Interleukin-17/metabolism , Streptococcus pneumoniae/immunology , Mice , Serum Albumin, Bovine/immunology , Pneumococcal Vaccines/immunology , Pneumococcal Infections/immunology , Pneumococcal Infections/prevention & control , Disaccharides/immunology , Bacterial Capsules/immunology , Polysaccharides, Bacterial/immunology , Adjuvants, Immunologic/administration & dosage , Female , Antibodies, Bacterial/blood , Antibodies, Bacterial/immunology , Intraepithelial Lymphocytes/immunology , Serogroup , Receptors, Antigen, T-Cell, gamma-delta/immunology , Receptors, Antigen, T-Cell, gamma-delta/metabolism
3.
Front Immunol ; 15: 1392316, 2024.
Article in English | MEDLINE | ID: mdl-38711516

ABSTRACT

Streptococcus pneumoniae remains a significant global threat, with existing vaccines having important limitations such as restricted serotype coverage and high manufacturing costs. Pneumococcal lipoproteins are emerging as promising vaccine candidates due to their surface exposure and conservation across various serotypes. While prior studies have explored their potential in mice, data in a human context and insights into the impact of the lipid moiety remain limited. In the present study, we examined the immunogenicity of two pneumococcal lipoproteins, DacB and MetQ, both in lipidated and non-lipidated versions, by stimulation of primary human immune cells. Immune responses were assessed by the expression of common surface markers for activation and maturation as well as cytokines released into the supernatant. Our findings indicate that in the case of MetQ lipidation was crucial for activation of human antigen-presenting cells such as dendritic cells and macrophages, while non-lipidated DacB demonstrated an intrinsic potential to induce an innate immune response. Nevertheless, immune responses to both proteins were enhanced by lipidation. Interestingly, following stimulation of dendritic cells with DacB, LipDacB and LipMetQ, cytokine levels of IL-6 and IL-23 were significantly increased, which are implicated in triggering potentially important Th17 cell responses. Furthermore, LipDacB and LipMetQ were able to induce proliferation of CD4+ T cells indicating their potential to induce an adaptive immune response. These findings contribute valuable insights into the immunogenic properties of pneumococcal lipoproteins, emphasizing their potential role in vaccine development against pneumococcal infections.


Subject(s)
Adaptive Immunity , Bacterial Proteins , Cytokines , Streptococcus pneumoniae , Humans , Streptococcus pneumoniae/immunology , Cytokines/metabolism , Bacterial Proteins/immunology , Lipoproteins/immunology , Lipoproteins/metabolism , Dendritic Cells/immunology , Dendritic Cells/metabolism , Antigen-Presenting Cells/immunology , Antigen-Presenting Cells/metabolism , Pneumococcal Vaccines/immunology , Pneumococcal Infections/immunology , Pneumococcal Infections/prevention & control , Macrophages/immunology , Macrophages/metabolism , Cells, Cultured
4.
Nat Commun ; 15(1): 4326, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773113

ABSTRACT

Resolving inflammation is thought to return the affected tissue back to homoeostasis but recent evidence supports a non-linear model of resolution involving a phase of prolonged immune activity. Here we show that within days following resolution of Streptococcus pneumoniae-triggered lung inflammation, there is an influx of antigen specific lymphocytes with a memory and tissue-resident phenotype as well as macrophages bearing alveolar or interstitial phenotype. The transcriptome of these macrophages shows enrichment of genes associated with prostaglandin biosynthesis and genes that drive T cell chemotaxis and differentiation. Therapeutic depletion of post-resolution macrophages, inhibition of prostaglandin E2 (PGE2) synthesis or treatment with an EP4 antagonist, MF498, reduce numbers of lung CD4+/CD44+/CD62L+ and CD4+/CD44+/CD62L-/CD27+ T cells as well as their expression of the α-integrin, CD103. The T cells fail to reappear and reactivate upon secondary challenge for up to six weeks following primary infection. Concomitantly, EP4 antagonism through MF498 causes accumulation of lung macrophages and marked tissue fibrosis. Our study thus shows that PGE2 signalling, predominantly via EP4, plays an important role during the second wave of immune activity following resolution of inflammation. This secondary immune activation drives local tissue-resident T cell development while limiting tissue injury.


Subject(s)
Dinoprostone , Disease Models, Animal , Lung , Macrophages , Mice, Inbred C57BL , Pneumonia, Pneumococcal , Receptors, Prostaglandin E, EP4 Subtype , Streptococcus pneumoniae , Animals , Pneumonia, Pneumococcal/immunology , Pneumonia, Pneumococcal/pathology , Pneumonia, Pneumococcal/microbiology , Pneumonia, Pneumococcal/metabolism , Mice , Dinoprostone/metabolism , Streptococcus pneumoniae/immunology , Receptors, Prostaglandin E, EP4 Subtype/metabolism , Receptors, Prostaglandin E, EP4 Subtype/genetics , Macrophages/immunology , Macrophages/metabolism , Lung/immunology , Lung/pathology , Lung/microbiology , Macrophages, Alveolar/immunology , Macrophages, Alveolar/metabolism , Integrin alpha Chains/metabolism , Integrin alpha Chains/genetics , Female , Antigens, CD/metabolism , Antigens, CD/genetics , T-Lymphocytes/immunology
5.
Proc Natl Acad Sci U S A ; 121(22): e2310864121, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38781213

ABSTRACT

IL-22 plays a critical role in defending against mucosal infections, but how IL-22 production is regulated is incompletely understood. Here, we show that mice lacking IL-33 or its receptor ST2 (IL-1RL1) were more resistant to Streptococcus pneumoniae lung infection than wild-type animals and that single-nucleotide polymorphisms in IL33 and IL1RL1 were associated with pneumococcal pneumonia in humans. The effect of IL-33 on S. pneumoniae infection was mediated by negative regulation of IL-22 production in innate lymphoid cells (ILCs) but independent of ILC2s as well as IL-4 and IL-13 signaling. Moreover, IL-33's influence on IL-22-dependent antibacterial defense was dependent on housing conditions of the mice and mediated by IL-33's modulatory effect on the gut microbiota. Collectively, we provide insight into the bidirectional crosstalk between the innate immune system and the microbiota. We conclude that both genetic and environmental factors influence the gut microbiota, thereby impacting the efficacy of antibacterial immune defense and susceptibility to pneumonia.


Subject(s)
Immunity, Innate , Interleukin-1 Receptor-Like 1 Protein , Interleukin-22 , Interleukin-33 , Interleukins , Streptococcus pneumoniae , Animals , Interleukin-33/immunology , Interleukin-33/genetics , Interleukin-33/metabolism , Interleukins/metabolism , Interleukins/immunology , Interleukins/genetics , Mice , Streptococcus pneumoniae/immunology , Interleukin-1 Receptor-Like 1 Protein/metabolism , Interleukin-1 Receptor-Like 1 Protein/genetics , Interleukin-1 Receptor-Like 1 Protein/immunology , Humans , Mice, Knockout , Microbiota/immunology , Mice, Inbred C57BL , Pneumonia, Pneumococcal/immunology , Pneumonia, Pneumococcal/microbiology , Gastrointestinal Microbiome/immunology , Lymphocytes/immunology , Lymphocytes/metabolism , Polymorphism, Single Nucleotide
6.
Pediatr Infect Dis J ; 43(2): e67-e70, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38758207

ABSTRACT

We evaluated whether the quantification of IgG to pneumococcal capsular polysaccharides is an accurate diagnostic test for pneumococcal infection in children with pneumonia in Nepal. Children with pneumococcal pneumonia did not have higher convalescent, or higher fold change, IgG to pneumococcal polysaccharides than children with other causes of pneumonia. Caution is needed in interpreting antibody responses in pneumococcal infections.


Subject(s)
Antibodies, Bacterial , Community-Acquired Infections , Immunoglobulin G , Pneumonia, Pneumococcal , Polysaccharides, Bacterial , Streptococcus pneumoniae , Humans , Antibodies, Bacterial/blood , Child, Preschool , Polysaccharides, Bacterial/immunology , Immunoglobulin G/blood , Infant , Streptococcus pneumoniae/immunology , Pneumonia, Pneumococcal/diagnosis , Pneumonia, Pneumococcal/immunology , Community-Acquired Infections/diagnosis , Community-Acquired Infections/immunology , Male , Female , Child , Nepal , Bacterial Capsules/immunology
7.
Vaccine ; 42(16): 3555-3563, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38704263

ABSTRACT

BACKGROUND: A U.S. case-control study (2010-2014) demonstrated vaccine effectiveness (VE) for ≥ 1 dose of the thirteen-valent pneumococcal conjugate vaccine (PCV13) against vaccine-type (VT) invasive pneumococcal disease (IPD) at 86 %; however, it lacked statistical power to examine VE by number of doses and against individual serotypes. METHODS: We used the indirect cohort method to estimate PCV13 VE against VT-IPD among children aged < 5 years in the United States from May 1, 2010 through December 31, 2019 using cases from CDC's Active Bacterial Core surveillance, including cases enrolled in a matched case-control study (2010-2014). Cases and controls were defined as individuals with VT-IPD and non-PCV13-type-IPD (NVT-IPD), respectively. We estimated absolute VE using the adjusted odds ratio of prior PCV13 receipt (1-aOR x 100 %). RESULTS: Among 1,161 IPD cases, 223 (19.2 %) were VT cases and 938 (80.8 %) were NVT controls. Of those, 108 cases (48.4 %; 108/223) and 600 controls (64.0 %; 600/938) had received > 3 PCV13 doses; 23 cases (17.6 %) and 15 controls (2.4 %) had received no PCV doses. VE ≥ 3 PCV13 doses against VT-IPD was 90.2 % (95 % Confidence Interval75.4-96.1 %), respectively. Among the most commonly circulating VT-IPD serotypes, VE of ≥ 3 PCV13 doses was 86.8 % (73.7-93.3 %), 50.2 % (28.4-80.5 %), and 93.8 % (69.8-98.8 %) against serotypes 19A, 3, and 19F, respectively. CONCLUSIONS: At least three doses of PCV13 continue to be effective in preventing VT-IPD among children aged < 5 years in the US. PCV13 was protective against serotypes 19A and 19F IPD; protection against serotype 3 IPD did not reach statistical significance.


Subject(s)
Pneumococcal Infections , Pneumococcal Vaccines , Serogroup , Streptococcus pneumoniae , Humans , Pneumococcal Vaccines/administration & dosage , Pneumococcal Vaccines/immunology , Pneumococcal Infections/prevention & control , Pneumococcal Infections/epidemiology , United States/epidemiology , Child, Preschool , Infant , Female , Male , Streptococcus pneumoniae/immunology , Streptococcus pneumoniae/classification , Case-Control Studies , Vaccines, Conjugate/immunology , Vaccines, Conjugate/administration & dosage , Vaccine Efficacy/statistics & numerical data , Cohort Studies , Infant, Newborn , Vaccination/statistics & numerical data
8.
Front Immunol ; 15: 1382638, 2024.
Article in English | MEDLINE | ID: mdl-38715601

ABSTRACT

Recovery from respiratory pneumococcal infections generates lung-localized protection against heterotypic bacteria, mediated by resident memory lymphocytes. Optimal protection in mice requires re-exposure to pneumococcus within days of initial infection. Serial surface marker phenotyping of B cell populations in a model of pneumococcal heterotypic immunity revealed that bacterial re-exposure stimulates the immediate accumulation of dynamic and heterogeneous populations of B cells in the lung, and is essential for the establishment of lung resident memory B (BRM) cells. The B cells in the early wave were activated, proliferating locally, and associated with both CD4+ T cells and CXCL13. Antagonist- and antibody-mediated interventions were implemented during this early timeframe to demonstrate that lymphocyte recirculation, CD4+ cells, and CD40 ligand (CD40L) signaling were all needed for lung BRM cell establishment, whereas CXCL13 signaling was not. While most prominent as aggregates in the loose connective tissue of bronchovascular bundles, morphometry and live lung imaging analyses showed that lung BRM cells were equally numerous as single cells dispersed throughout the alveolar septae. We propose that CD40L signaling from antigen-stimulated CD4+ T cells in the infected lung is critical to establishment of local BRM cells, which subsequently protect the airways and parenchyma against future potential infections.


Subject(s)
CD4-Positive T-Lymphocytes , CD40 Ligand , Lung , Memory B Cells , Streptococcus pneumoniae , Animals , Mice , CD4-Positive T-Lymphocytes/immunology , CD40 Ligand/metabolism , CD40 Ligand/immunology , Chemokine CXCL13/metabolism , Disease Models, Animal , Immunologic Memory , Lung/immunology , Memory B Cells/immunology , Memory B Cells/metabolism , Mice, Inbred C57BL , Pneumococcal Infections/immunology , Signal Transduction , Streptococcus pneumoniae/immunology
9.
Emerg Infect Dis ; 30(6): 1164-1172, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38781925

ABSTRACT

As a follow-up to a previous study, we investigated vaccine effectiveness (VE) of 23-valent pneumococcal polysaccharide vaccine (PPSV23) against invasive pneumococcal disease (IPD) among 1,254,498 persons >65 years of age as part of a vaccination program in Denmark during April 2020-January 2023. We assessed VE by using a Cox regression model and adjusted for age, sex, and underlying conditions. Using nationwide data, we estimated a VE of PPSV23 against all-type IPD of 32% and against PPSV23-serotype IPD of 41%. Because this follow-up study had more statistical power than the original study, we also estimated VE against IPD caused by PPSV23-serotypes excluding serotype 3; serotype 3; serotype 8; serotype 22F; PPSV23 non-PCV15 serotypes; PPSV23 non-PCV20 serotypes; and IPD over time. Our findings suggest PPSV23 vaccination can protect persons >65 years of age against IPD caused by all serotypes or serotype groupings, except serotype 3.


Subject(s)
Pneumococcal Infections , Pneumococcal Vaccines , Serogroup , Streptococcus pneumoniae , Humans , Pneumococcal Vaccines/immunology , Pneumococcal Vaccines/administration & dosage , Pneumococcal Infections/prevention & control , Pneumococcal Infections/epidemiology , Pneumococcal Infections/microbiology , Pneumococcal Infections/immunology , Denmark/epidemiology , Female , Aged , Male , Streptococcus pneumoniae/immunology , Streptococcus pneumoniae/classification , Follow-Up Studies , Aged, 80 and over , Vaccine Efficacy , Vaccination
10.
Vaccine ; 42(13): 3239-3246, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38609806

ABSTRACT

OBJECTIVE: To assess the health and economic outcomes of a PCV13 or PCV15 age-based (65 years-and-above) vaccination program in Switzerland. INTERVENTIONS: The three vaccination strategies examined were:Target population: All adults aged 65 years-and-above. Perspective(s): Switzerland health care payer. TIME HORIZON: 35 years. Discount rate: 3.0%. Costing year: 2023 Swiss Francs (CHF). STUDY DESIGN: A static Markov state-transition model. DATA SOURCES: Published literature and publicly available databases or reports. OUTCOME MEASURES: Pneumococcal diseases (PD) i.e., invasive pneumococcal diseases (IPD) and non-bacteremic pneumococcal pneumonia (NBPP); total quality-adjusted life-years (QALYs), total costs and incremental cost-effectiveness ratios (CHF/QALY gained). RESULTS: Using an assumed coverage of 60%, the PCV15 strategy prevented a substantially higher number of cases/deaths than the PCV13 strategy when compared to the No vaccination strategy (1,078 IPD; 21,155 NBPP; 493 deaths). The overall total QALYs were 10,364,620 (PCV15), 10,364,070 (PCV13), and 10,362,490 (no vaccination). The associated overall total costs were CHF 741,949,814 (PCV15), CHF 756,051,954 (PCV13) and CHF 698,329,579 (no vaccination). Thus, the PCV13 strategy was strongly dominated by the PCV15 strategy. The ICER of the PCV15 strategy (vs. no vaccination) was CHF 20,479/QALY gained. In two scenario analyses where the vaccine effectiveness for serotype 3 were reduced (75% to 39.3% for IPD; 45% to 23.6% for NBPP) and NBPP incidence was increased (from 1,346 to 1,636/100,000), the resulting ICERs were CHF 29,432 and CHF 13,700/QALY gained, respectively. The deterministic and probabilistic sensitivity analyses demonstrated the robustness of the qualitative results-the estimated ICERs for the PCV15 strategy (vs. No vaccination) were all below CHF 30,000/QALYs gained. CONCLUSIONS: These results demonstrate that using PCV15 among adults aged 65 years-and-above can prevent a substantial number of PD cases and deaths while remaining cost-effective over a range of inputs and scenarios.


Subject(s)
Cost-Benefit Analysis , Immunization Programs , Pneumococcal Infections , Pneumococcal Vaccines , Quality-Adjusted Life Years , Humans , Switzerland/epidemiology , Pneumococcal Vaccines/economics , Pneumococcal Vaccines/administration & dosage , Aged , Pneumococcal Infections/prevention & control , Pneumococcal Infections/economics , Pneumococcal Infections/epidemiology , Aged, 80 and over , Immunization Programs/economics , Male , Female , Vaccination/economics , Markov Chains , Streptococcus pneumoniae/immunology , Vaccines, Conjugate/economics , Vaccines, Conjugate/administration & dosage , Vaccines, Conjugate/immunology , Pneumonia, Pneumococcal/prevention & control , Pneumonia, Pneumococcal/economics
11.
Vaccine ; 42(13): 3257-3262, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38641493

ABSTRACT

BACKGROUND: Vaccination against pneumococci is currently the most effective method of protection against pneumococcal infections. The aim of the study was to analyse changes in hospitalisations and in-hospital deaths due to pneumonia before (2009-2016) and after (2017-2020) the introduction of PCV 10 vaccinations in the National Immunisation Programme in Poland. METHODS: Data on hospitalisations related to community acquired pneumonia (CAP) in the years 2009-2020 were obtained from the Nationwide General Hospital Morbidity Study. Analyses were made in the age groups: <2, 2-3, 4-5, 6-19, 20-59, 60+ years in 2009-2016 and 2017-2020. RESULTS: Overall, there were 1,503,105 CAP-related hospitalisations in 2009-2020, 0.7% of which were caused by Streptococcus pneumoniae infections. Children <2 years of age were the most frequently hospitalised for CAP per 100,000 population, followed by patients aged 2-3, 4-5 and 60+ years. In the years 2009-2016, the percentage of CAP hospital admissions increased significantly, and after the year 2017, it decreased significantly in each of the age groups (p<0.001). In the years 2009-2016, a significant increase in hospitalisations for Streptococcus pneumoniae infections was observed in the age groups <2, 2-3 and 4-5 years (p<0.05). A significant reduction in hospitalisations was observed in the age groups <2, 20-59 and 60+ in 2017-2020 (p<0.05). In the years 2009-2020, there were 84,367 in-hospital deaths due to CAP, 423 (0.5%) of which due to Streptococcus pneumoniae, with patients mainly aged 60+. CONCLUSIONS: Implementation of the PCV vaccination programme has effectively decreased the incidence of CAP hospitalisations, including children <2 years of age. The group that is most at risk of death are persons aged 60+. The results of our study can be useful in evaluating the vaccine efficacy and benefits, and they can be an essential part of public health policy. Effective prevention strategies for CAP should be implemented in different age groups.


Subject(s)
Community-Acquired Infections , Hospitalization , Immunization Programs , Pneumococcal Vaccines , Pneumonia, Pneumococcal , Vaccination , Humans , Pneumococcal Vaccines/administration & dosage , Pneumococcal Vaccines/immunology , Community-Acquired Infections/prevention & control , Community-Acquired Infections/epidemiology , Community-Acquired Infections/mortality , Hospitalization/statistics & numerical data , Child, Preschool , Poland/epidemiology , Middle Aged , Adult , Male , Female , Infant , Young Adult , Child , Pneumonia, Pneumococcal/prevention & control , Pneumonia, Pneumococcal/epidemiology , Pneumonia, Pneumococcal/mortality , Adolescent , Aged , Vaccination/statistics & numerical data , Follow-Up Studies , Streptococcus pneumoniae/immunology , Aged, 80 and over , Pneumococcal Infections/prevention & control , Pneumococcal Infections/epidemiology , Pneumococcal Infections/mortality
12.
Vaccine ; 42(13): 3157-3165, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38637211

ABSTRACT

BACKGROUND: Introduction of pneumococcal conjugate vaccines (PCVs) reduced the number of cases of pneumococcal disease (PD). However, there is an increase in clinical and economic burden of PD from serotypes that are not part of the existing pneumococcal vaccines, particularly impacting pediatric and elder population. In addition, the regions where the PCV is not available, the disease burden remains high. In this study, immunogenicity and safety of the BE's 14-valent PCV (PNEUBEVAX 14™; BE-PCV-14) containing two additional epidemiologically important serotypes (22F and 33F) was evaluated in infants in comparison to licensed vaccine, Prevenar-13 (PCV-13). METHODS: This is a pivotal phase-3 single blind randomized active-controlled study conducted at 12 sites across India in 6-8 weeks old healthy infants at 6-10-14 weeks dosing schedule to assess immunogenic non-inferiority and safety of a candidate BE-PCV-14. In total, 1290 infants were equally randomized to receive either BE-PCV-14 or PCV-13. Solicited local reactions and systemic events, adverse events (AEs), serious AEs (SAEs), and medically attended AEs (MAAEs) were recorded. Immunogenicity was assessed by measuring anti-PnCPS (anti-pneumococcal capsular polysaccharide) IgG concentration and functional antibody titers through opsonophagocytic activity (OPA), one month after completing three dose schedule. Cross protection to serotype 6A offered by serotype 6B was also assessed in this study. FINDINGS: The safety profile of BE-PCV-14 was comparable to PCV-13 vaccine. Majority of reported AEs were mild in nature. No severe or serious AEs were reported in both the treatment groups. For the twelve common serotypes and for the additional serotypes (22F and 33F) in BE-PCV-14, NI criteria was demonstrated as defined by WHO TRS-977. Primary immunogenicity endpoint was met in terms of IgG immune responses for all 14 serotypesof BE-PCV-14. Moreover, a significant proportion of subjects (69%) seroconverted against serotype 6A, even though this antigen was not present in BE-PCV-14. This indicates that serotype 6B of BE-PCV-14 cross protects serotype 6A. BE-PCV-14 also elicited comparable serotype specific functional OPA immune responses to all the serotypes common to PCV-13. INTERPRETATIONS: BE-PCV-14 was found to be safe and induced robust and functional serotype specific immune responses to all 14 serotypes. It also elicited cross protective immune response against serotype 6B.These findings suggest that BE-PCV-14 can be safely administered to infants and achieve protection against pneumococcal disease caused by serotypes covered in the vaccine. The study was prospectively registered with clinical trial registry of India - CTRI/2020/02/023129.


Subject(s)
Antibodies, Bacterial , Pneumococcal Infections , Pneumococcal Vaccines , Streptococcus pneumoniae , Vaccines, Conjugate , Humans , Pneumococcal Vaccines/immunology , Pneumococcal Vaccines/adverse effects , Pneumococcal Vaccines/administration & dosage , Infant , India , Antibodies, Bacterial/blood , Male , Vaccines, Conjugate/immunology , Vaccines, Conjugate/adverse effects , Vaccines, Conjugate/administration & dosage , Female , Pneumococcal Infections/prevention & control , Pneumococcal Infections/immunology , Single-Blind Method , Streptococcus pneumoniae/immunology , Immunogenicity, Vaccine , Serogroup , Immunoglobulin G/blood
13.
Viruses ; 16(4)2024 04 01.
Article in English | MEDLINE | ID: mdl-38675895

ABSTRACT

Macrophages play multiple roles in innate immunity including phagocytosing pathogens, modulating the inflammatory response, presenting antigens, and recruiting other immune cells. Tissue-resident macrophages (TRMs) adapt to the local microenvironment and can exhibit different immune responses upon encountering distinct pathogens. In this study, we generated induced macrophages (iMACs) derived from human pluripotent stem cells (hPSCs) to investigate the interactions between the macrophages and various human pathogens, including the hepatitis C virus (HCV), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and Streptococcus pneumoniae. iMACs can engulf all three pathogens. A comparison of the RNA-seq data of the iMACs encountering these pathogens revealed that the pathogens activated distinct gene networks related to viral response and inflammation in iMACs. Interestingly, in the presence of both HCV and host cells, iMACs upregulated different sets of genes involved in immune cell migration and chemotaxis. Finally, we constructed an image-based high-content analysis system consisting of iMACs, recombinant GFP-HCV, and hepatic cells to evaluate the effect of a chemical inhibitor on HCV infection. In summary, we developed a human cell-based in vitro model to study the macrophage response to human viral and bacterial infections; the results of the transcriptome analysis indicated that the iMACs were a useful resource for modeling pathogen-macrophage-tissue microenvironment interactions.


Subject(s)
Hepacivirus , Macrophages , Pluripotent Stem Cells , SARS-CoV-2 , Humans , Macrophages/immunology , Macrophages/virology , Hepacivirus/immunology , Hepacivirus/physiology , SARS-CoV-2/immunology , Pluripotent Stem Cells/immunology , Streptococcus pneumoniae/immunology , COVID-19/immunology , COVID-19/virology , Hepatitis C/immunology , Hepatitis C/virology , Phagocytosis , Virus Diseases/immunology , Immunity, Innate
14.
Clin Immunol ; 263: 110226, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38663493

ABSTRACT

Antibiotic resistance and the surge of infectious diseases during the pandemic present significant threats to human health. Trained immunity emerges as a promising and innovative approach to address these infections. Synthetic or natural fungal, parasitic and viral components have been reported to induce trained immunity. However, it is not clear whether bacterial virulence proteins can induce protective trained immunity. Our research demonstrates Streptococcus pneumoniae virulence protein PepO, is a highly potent trained immunity inducer for combating broad-spectrum infection. Our findings showcase that rPepO training confers robust protection to mice against various pathogenic infections by enhancing macrophage functionality. rPepO effectively re-programs macrophages, re-configures their epigenetic modifications and bolsters their immunological responses, which is independent of T or B lymphocytes. In vivo and in vitro experiments confirm that trained macrophage-secreted complement C3 activates peritoneal B lymphocyte and enhances its bactericidal capacity. In addition, we provide the first evidence that granulocyte colony-stimulating factor (G-CSF) derived from trained macrophages plays a pivotal role in shaping central-trained immunity. In summation, our research demonstrates the capability of rPepO to induce both peripheral and central trained immunity in mice, underscoring its potential application in broad-spectrum anti-infection therapy. Our research provides a new molecule and some new target options for infectious disease prevention.


Subject(s)
Macrophages , Mice, Inbred C57BL , Streptococcus pneumoniae , Animals , Streptococcus pneumoniae/immunology , Mice , Macrophages/immunology , Pneumococcal Infections/immunology , Pneumococcal Infections/prevention & control , Bacterial Proteins/immunology , B-Lymphocytes/immunology , Female , Trained Immunity
15.
Infect Immun ; 92(5): e0044723, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38629841

ABSTRACT

Streptococcus pneumoniae, a common colonizer of the upper respiratory tract, invades nasopharyngeal epithelial cells without causing disease in healthy participants of controlled human infection studies. We hypothesized that surface expression of pneumococcal lipoproteins, recognized by the innate immune receptor TLR2, mediates epithelial microinvasion. Mutation of lgt in serotype 4 (TIGR4) and serotype 6B (BHN418) pneumococcal strains abolishes the ability of the mutants to activate TLR2 signaling. Loss of lgt also led to the concomitant decrease in interferon signaling triggered by the bacterium. However, only BHN418 lgt::cm but not TIGR4 lgt::cm was significantly attenuated in epithelial adherence and microinvasion compared to their respective wild-type strains. To test the hypothesis that differential lipoprotein repertoires in TIGR4 and BHN418 lead to the intraspecies variation in epithelial microinvasion, we employed a motif-based genome analysis and identified an additional 525 a.a. lipoprotein (pneumococcal accessory lipoprotein A; palA) encoded by BHN418 that is absent in TIGR4. The gene encoding palA sits within a putative genetic island present in ~10% of global pneumococcal isolates. While palA was enriched in the carriage and otitis media pneumococcal strains, neither mutation nor overexpression of the gene encoding this lipoprotein significantly changed microinvasion patterns. In conclusion, mutation of lgt attenuates epithelial inflammatory responses during pneumococcal-epithelial interactions, with intraspecies variation in the effect on microinvasion. Differential lipoprotein repertoires encoded by the different strains do not explain these differences in microinvasion. Rather, we postulate that post-translational modifications of lipoproteins may account for the differences in microinvasion.IMPORTANCEStreptococcus pneumoniae (pneumococcus) is an important mucosal pathogen, estimated to cause over 500,000 deaths annually. Nasopharyngeal colonization is considered a necessary prerequisite for disease, yet many people are transiently and asymptomatically colonized by pneumococci without becoming unwell. It is therefore important to better understand how the colonization process is controlled at the epithelial surface. Controlled human infection studies revealed the presence of pneumococci within the epithelium of healthy volunteers (microinvasion). In this study, we focused on the regulation of epithelial microinvasion by pneumococcal lipoproteins. We found that pneumococcal lipoproteins induce epithelial inflammation but that differing lipoprotein repertoires do not significantly impact the magnitude of microinvasion. Targeting mucosal innate immunity and epithelial microinvasion alongside the induction of an adaptive immune response may be effective in preventing pneumococcal colonization and disease.


Subject(s)
Epithelial Cells , Lipoproteins , Pneumococcal Infections , Streptococcus pneumoniae , Streptococcus pneumoniae/immunology , Streptococcus pneumoniae/genetics , Streptococcus pneumoniae/pathogenicity , Humans , Lipoproteins/genetics , Lipoproteins/metabolism , Lipoproteins/immunology , Epithelial Cells/microbiology , Epithelial Cells/immunology , Pneumococcal Infections/immunology , Pneumococcal Infections/microbiology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Toll-Like Receptor 2/metabolism , Toll-Like Receptor 2/genetics , Toll-Like Receptor 2/immunology , Nasopharynx/microbiology , Mutation , Bacterial Adhesion
16.
J Clin Invest ; 134(11)2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38573824

ABSTRACT

Individuals with clonal hematopoiesis of indeterminate potential (CHIP) are at increased risk of aging related health conditions and all-cause mortality, but whether CHIP affects risk of infection is much less clear. Using UK Biobank data, we revealed a positive association between CHIP and incident pneumonia in 438,421 individuals. We show that inflammation enhanced pneumonia risk, as CHIP carriers with a hypomorphic IL6 receptor polymorphism were protected. To better characterize the pathways of susceptibility, we challenged hematopoietic Tet Methylcytosine Dioxygenase 2-knockout (Tet2-/-) and floxed control mice (Tet2fl/fl) with Streptococcus pneumoniae. As with human CHIP carriers, Tet2-/- mice had hematopoietic abnormalities resulting in the expansion of inflammatory monocytes and neutrophils in peripheral blood. Yet, these cells were insufficient in defending against S. pneumoniae and resulted in increased pathology, impaired bacterial clearance, and higher mortality in Tet2-/- mice. We delineated the transcriptional landscape of Tet2-/- neutrophils and found that, while inflammation-related pathways were upregulated in Tet2-/- neutrophils, migration and motility pathways were compromised. Using live-imaging techniques, we demonstrated impairments in motility, pathogen uptake, and neutrophil extracellular trap (NET) formation by Tet2-/- neutrophils. Collectively, we show that CHIP is a risk factor for bacterial pneumonia related to innate immune impairments.


Subject(s)
DNA-Binding Proteins , Dioxygenases , Immunity, Innate , Mice, Knockout , Neutrophils , Proto-Oncogene Proteins , Streptococcus pneumoniae , Animals , Dioxygenases/genetics , Neutrophils/immunology , DNA-Binding Proteins/genetics , DNA-Binding Proteins/immunology , Mice , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/immunology , Proto-Oncogene Proteins/metabolism , Humans , Streptococcus pneumoniae/immunology , Pneumonia, Bacterial/immunology , Pneumonia, Bacterial/pathology , Pneumonia, Bacterial/genetics , Pneumonia, Bacterial/microbiology , Male , Female
17.
JCI Insight ; 9(8)2024 04 22.
Article in English | MEDLINE | ID: mdl-38646937

ABSTRACT

Sepsis is a leading cause of mortality worldwide, and pneumonia is the most common cause of sepsis in humans. Low levels of high-density lipoprotein cholesterol (HDL-C) levels are associated with an increased risk of death from sepsis, and increasing levels of HDL-C by inhibition of cholesteryl ester transfer protein (CETP) decreases mortality from intraabdominal polymicrobial sepsis in APOE*3-Leiden.CETP mice. Here, we show that treatment with the CETP inhibitor (CETPi) anacetrapib reduced mortality from Streptococcus pneumoniae-induced sepsis in APOE*3-Leiden.CETP and APOA1.CETP mice. Mechanistically, CETP inhibition reduced the host proinflammatory response via attenuation of proinflammatory cytokine transcription and release. This effect was dependent on the presence of HDL, leading to attenuation of immune-mediated organ damage. In addition, CETP inhibition promoted monocyte activation in the blood prior to the onset of sepsis, resulting in accelerated macrophage recruitment to the lung and liver. In vitro experiments demonstrated that CETP inhibition significantly promoted the activation of proinflammatory signaling in peripheral blood mononuclear cells and THP1 cells in the absence of HDL; this may represent a mechanism responsible for improved bacterial clearance during sepsis. These findings provide evidence that CETP inhibition represents a potential approach to reduce mortality from pneumosepsis.


Subject(s)
Cholesterol Ester Transfer Proteins , Monocytes , Streptococcus pneumoniae , Animals , Female , Humans , Mice , Apolipoprotein E3/metabolism , Cholesterol Ester Transfer Proteins/antagonists & inhibitors , Cholesterol Ester Transfer Proteins/metabolism , Cholesterol, HDL/blood , Cholesterol, HDL/metabolism , Disease Models, Animal , Macrophages/immunology , Macrophages/metabolism , Monocytes/immunology , Monocytes/metabolism , Pneumonia, Pneumococcal/immunology , Pneumonia, Pneumococcal/mortality , Pneumonia, Pneumococcal/metabolism , Pneumonia, Pneumococcal/microbiology , Sepsis/immunology , Sepsis/mortality , Sepsis/microbiology , Sepsis/metabolism , Streptococcus pneumoniae/immunology , THP-1 Cells
18.
Enferm. infecc. microbiol. clín. (Ed. impr.) ; 42(4): 172-178, Abr. 2024. tab, graf
Article in Spanish | IBECS | ID: ibc-232171

ABSTRACT

Introducción: El programa de vacunación universal con la vacuna antineumocócica conjugada 13-valente (VNC13) se implantó en Andalucía en diciembre de 2016. Métodos: Estudio transversal de colonización nasofaríngea por Streptococcus pneumoniae. Se seleccionó a 397 niños sanos en centros de atención primaria de Sevilla durante los periodos 1/4/2018-28/2/2020 y 1/11/2021-28/2/2022 (periodo VNC13). Se utilizó una colección histórica de un estudio de colonización desarrollado en niños sanos y con infección respiratoria superior entre el 1/01/2006 y el 30/06/2008 (periodo VNC7) para comparar las distribuciones de serotipos/genotipos y las tasas de resistencias antibióticas. Resultados: Un total de 76 (19%) niños estaban colonizados con S. pneumoniae en el periodo VNC13 y se dispuso de 154 aislamientos del periodo VNC7. La colonización por serotipos incluidos en VNC13 disminuyó significativamente entre los periodos VNC13 y VNC7 (11 vs. 38%; p=0,0001); los serotipos 19F (8%), 3 (1%) y 6B (1%) fueron los únicos serotipos vacunales circulantes. Los serotipos 15B/C y 11A fueron los serotipos no VNC13 más prevalentes durante el periodo VNC13 (14% y 11%, respectivamente); este último se incrementó de forma significativa entre periodos de tiempo (p=0,04). El serotipo 11A solo se asoció en el periodo VNC13 con variantes resistentes a la ampicilina del clon Spain9V-ST156 (ST6521 y genéticamente relacionado ST14698), no detectados en el periodo anterior. Conclusiones: Hubo una circulación muy residual de los serotipos vacunales durante el periodo VNC13, con excepción del serotipo19F. El serotipo 11A se incrementó de forma significativa entre los periodos VNC13 y VNC7 por expansión clonal del genotipo resistente a la ampicilina ST6521.(AU)


Background: The 13-valent pneumococcal conjugate vaccine (PCV13) universal vaccination program was introduced in December 2016 in Andalusia. Methods: A cross-sectional study was conducted on the molecular epidemiology of pneumococcal nasopharyngeal colonization. A total of 397 healthy children were recruited from primary healthcare centres in Seville for the periods 1/4/2018 to 28/2/2020 and 1/11/2021 to 28/2/2022 (PCV13 period). Data from a previous carriage study conducted among healthy and sick children from 1/01/2006 to 30/06/2008 (PCV7 period) were used for comparison of serotype/genotype distributions and antibiotic resistance rates. Results: Overall, 76 (19%) children were colonized with S. pneumoniae during the PCV13 period and there were information available from 154 isolates collected during the PCV7 period. Colonization with PCV13 serotypes declined significantly in the PCV13 period compared with historical controls (11 vs. 38%, P=0.0001), being serotypes 19F (8%), 3 (1%) and 6B (1%) the only circulating vaccine types. Serotypes 15B/C and 11A were the most frequently identified non-PCV13 serotypes during the PCV13 period (14% and 11%, respectively); the later one increased significantly between time periods (P=0.04). Serotype 11A was exclusively associated in the PCV13 period with ampicillin-resistant variants of the Spain9V-ST156 clone (ST6521 and genetically related ST14698), not detected in the preceding period. Conclusions: There was a residual circulation of vaccine types following PCV13 introduction, apart from serotype 19F. Serotype 11A increased between PCV13 and PCV7 periods due to emergence and clonal expansion of ampicillin-resistant genotype ST6521.(AU)


Subject(s)
Humans , Male , Female , Child , Molecular Epidemiology , Immunization Programs , Streptococcus pneumoniae/immunology , Streptococcus pneumoniae/genetics , Pneumococcal Infections , Ampicillin , Spain , Cross-Sectional Studies , Carrier State
19.
Pediatr Infect Dis J ; 43(6): 574-581, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38502894

ABSTRACT

BACKGROUND: A 20-valent pneumococcal conjugate vaccine (PCV20), containing 13-valent PCV (PCV13) components and 7 additional polysaccharide conjugates, was developed to extend protection for pneumococcal disease. This phase 3 study assessed the safety and immunogenicity of PCV20 in children. METHODS: In this single-arm study, children (≥15 months-<18 years of age) received 1 dose of PCV20. Children <5 years of age had ≥3 prior doses of PCV13; children ≥5 years were recruited regardless of previous PCV receipt. Serotype-specific IgG concentrations and opsonophagocytic activity (OPA) titers were measured before and 1 month after PCV20. Local reactions and systemic events, adverse events (AEs), serious AEs, and newly diagnosed chronic medical conditions were collected. RESULTS: Of 839 enrolled participants, 831 (>99%) were vaccinated, and 819 (>97%) completed all study visits. Local reactions and systemic events were mostly mild to moderate in severity. No serious AEs were considered PCV20-related. IgG geometric mean fold rises (GMFRs) from before to 1 month after PCV20 ranged from 27.9-1847.7 (7 additional serotypes) and 2.9-44.9 (PCV13 serotypes) in children <5 years of age, and 10.5-187.7 (7 additional serotypes) and 4.3-127.9 (PCV13 serotypes) in children ≥5 years old. OPA GMFRs from before to 1 month after PCV20 ranged from 12.4-983.6 to 2.8-52.9 in children <5 years of age and from 11.5-499.0 to 5.3-147.9 in children ≥5 years of age. CONCLUSIONS: Among children ≥15 months through <18 years of age, PCV20 was well tolerated and induced robust responses to all 20 serotypes, supporting the use of PCV20 in children.


Subject(s)
Antibodies, Bacterial , Immunoglobulin G , Pneumococcal Infections , Pneumococcal Vaccines , Vaccines, Conjugate , Humans , Pneumococcal Vaccines/immunology , Pneumococcal Vaccines/adverse effects , Pneumococcal Vaccines/administration & dosage , Infant , Female , Male , Child, Preschool , Antibodies, Bacterial/blood , Adolescent , Child , Vaccines, Conjugate/immunology , Vaccines, Conjugate/adverse effects , Vaccines, Conjugate/administration & dosage , Pneumococcal Infections/prevention & control , Pneumococcal Infections/immunology , Immunoglobulin G/blood , Immunogenicity, Vaccine , Streptococcus pneumoniae/immunology , Serogroup
20.
Pediatr Infect Dis J ; 43(6): 587-595, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38456705

ABSTRACT

BACKGROUND: Global pediatric immunization programs with pneumococcal conjugate vaccines (PCVs) have reduced vaccine-type pneumococcal disease, but a substantial disease burden of non-PCV serotypes remains. METHODS: This phase 3, randomized (1:1), double-blind study evaluated safety and immunogenicity of 20-valent PCV (PCV20) relative to 13-valent PCV (PCV13) in healthy infants. Participants received 2 infant doses and a toddler dose of PCV20 or PCV13, with diphtheria-tetanus-acellular pertussis combination vaccine at all doses and measles, mumps, rubella and varicella vaccines at the toddler dose. Primary pneumococcal immunogenicity objectives were to demonstrate noninferiority (NI) of PCV20 to PCV13 for immunoglobulin G geometric mean concentrations after infant and toddler doses and percentages of participants with predefined serotype-specific immunoglobulin G concentrations after infant doses. Safety endpoints included local reactions, systemic events and adverse events. RESULTS: Overall, 1204 participants were vaccinated (PCV20, n = 601; PCV13, n = 603). One month after the toddler dose, 19/20 serotypes met NI for immunoglobulin G geometric mean concentrations; serotype 6B narrowly missed NI [PCV20/PCV13 geometric mean ratio: 0.57 (2-sided 95% confidence interval: 0.48-0.67); NI criterion: lower 2-sided 95% confidence interval >0.5]. Sixteen/twenty serotypes met NI for ≥1 primary objective after 2 infant doses. PCV20 induced robust opsonophagocytic activity, and boosting responses were observed for all vaccine serotypes, including those missing statistical NI. The safety/tolerability profile of PCV20 was like that of PCV13. CONCLUSIONS: PCV20 3-dose series in infants was safe and elicited robust immune responses. Based on these results and PCV13 experience, PCV20 3-dose series is expected to be protective for all 20 vaccine serotypes. NCT04546425.


Subject(s)
Antibodies, Bacterial , Pneumococcal Vaccines , Vaccines, Conjugate , Humans , Pneumococcal Vaccines/immunology , Pneumococcal Vaccines/administration & dosage , Pneumococcal Vaccines/adverse effects , Infant , Double-Blind Method , Male , Female , Antibodies, Bacterial/blood , Vaccines, Conjugate/immunology , Vaccines, Conjugate/administration & dosage , Vaccines, Conjugate/adverse effects , Immunogenicity, Vaccine , Measles-Mumps-Rubella Vaccine/immunology , Measles-Mumps-Rubella Vaccine/administration & dosage , Measles-Mumps-Rubella Vaccine/adverse effects , Pneumococcal Infections/prevention & control , Pneumococcal Infections/immunology , Immunoglobulin G/blood , Chickenpox Vaccine/immunology , Chickenpox Vaccine/adverse effects , Chickenpox Vaccine/administration & dosage , Immunization Schedule , Streptococcus pneumoniae/immunology , Child, Preschool , Diphtheria-Tetanus-acellular Pertussis Vaccines/immunology , Diphtheria-Tetanus-acellular Pertussis Vaccines/administration & dosage , Diphtheria-Tetanus-acellular Pertussis Vaccines/adverse effects , Vaccines, Combined
SELECTION OF CITATIONS
SEARCH DETAIL
...