Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.630
Filter
2.
Trop Biomed ; 41(1): 97-108, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38852139

ABSTRACT

Streptococcus suis is a bacterium of clinical importance in diverse animal hosts including companion animals and humans. Companion animals are closely associated in the living environment of humans and are potential reservoirs for zoonotic pathogens. Given the zoonotic potential of S. suis, it is crucial to determine whether this bacterium is present among the companion animal population. This study aimed to detect Streptococcus suis in companion animals namely cats and dogs of the central west coast of Peninsular Malaysia and further characterize the positive isolates via molecular and genomic approach. The detection of S. suis was done via bacterial isolation and polymerase chain reaction assay of gdh and recN gene from oral swabs. Characterization was done by multiplex PCR serotyping, as well as muti-locus sequence typing, AMR gene prediction, MGE identification and phylogenomic analysis on whole genome sequence acquired from Illumina and Oxford Nanopore sequencing. Among the 115 samples, PCR assay detected 2/59 of the cats were positive for S. suis serotype 8 while all screened dog samples were negative. This study further described the first complete whole genome of S. suis strain SS/UPM/MY/F001 isolated from the oral cavity of a companion cat. Genomic analysis revealed a novel strain of S. suis having a unique MLST profile and antimicrobial resistance genes of mefA, msrD, patA, patB and vanY. Mobile genetic elements were described, and pathogenic determinants matched to human and swine strains were identified. Phylogenetic tree analysis on the core genome alignment revealed strain SS/UPM/MY/F001 was distinct from other S. suis strains. This study provided insight into the detection and genomic features of the S. suis isolate of a companion cat and highlighted its potential for antimicrobial resistance and pathogenicity.


Subject(s)
Cat Diseases , Dog Diseases , Phylogeny , Streptococcal Infections , Streptococcus suis , Whole Genome Sequencing , Cats , Animals , Streptococcus suis/genetics , Streptococcus suis/isolation & purification , Streptococcal Infections/veterinary , Streptococcal Infections/microbiology , Streptococcal Infections/transmission , Cat Diseases/microbiology , Dogs , Dog Diseases/microbiology , Malaysia , Pets/microbiology , Drug Resistance, Bacterial/genetics , Zoonoses/microbiology , Zoonoses/transmission , Multilocus Sequence Typing , Genome, Bacterial , Anti-Bacterial Agents/pharmacology , Humans , Bacterial Zoonoses/microbiology , Bacterial Zoonoses/transmission
3.
Methods Mol Biol ; 2815: 23-35, 2024.
Article in English | MEDLINE | ID: mdl-38884908

ABSTRACT

Establishing a biofilm infection model in vivo allows a better understanding of the underlying infection mechanisms of bacteria. Here we describe a method for constructing an in vivo biofilm model of Streptococcus suis. The animal modeled is a piglet, which is the natural reservoir of S. suis, and the mode of clinical infection is simulated by intranasal inoculation of S. suis. This model is in line with clinical practice, easy to operate, and has good repeated stability.


Subject(s)
Biofilms , Streptococcus suis , Biofilms/growth & development , Animals , Streptococcus suis/physiology , Swine , Streptococcal Infections/microbiology , Streptococcal Infections/veterinary , Disease Models, Animal
4.
Methods Mol Biol ; 2815: 1-13, 2024.
Article in English | MEDLINE | ID: mdl-38884906

ABSTRACT

This chapter addresses the cultivation, identification, and characterization of Streptococcus suis. Here, we describe in detail the most used methodologies and expected results.


Subject(s)
Streptococcus suis , Streptococcus suis/growth & development , Streptococcus suis/isolation & purification , Humans , Streptococcal Infections/microbiology , Streptococcal Infections/diagnosis , Bacteriological Techniques/methods , Animals
5.
Methods Mol Biol ; 2815: 15-21, 2024.
Article in English | MEDLINE | ID: mdl-38884907

ABSTRACT

Streptococcus suis is an important zoonotic pathogen causing severe infections in pigs and humans. Serotyping of S. suis strains is crucial for epidemiological surveillance, outbreak investigations, and understanding the pathogenesis of this bacterium. Here, we describe a step-by-step approach that enhances a previously developed pipeline by utilizing a computational script for efficient and accurate typing of S. suis strains. The pipeline is implemented in Perl programming language and leverages the Short Read Sequence Typing for Bacterial Pathogens (SRST2) tool. It integrates various bioinformatics techniques and utilizes multiple databases, including a serotype database, cpsH confirmation database, multi-locus sequence typing (MLST) database, recN species-specific gene database, and virulence gene database. These databases contain comprehensive information on S. suis serotypes, genetic markers, and virulence factors. The script can utilize paired-end or single-end fastq files as input and first confirms the species by sequence read data aligning to the recN gene, ensuring the accurate identification of S. suis strains. The pipeline next performs MLST typing and virulence factor identification using SRST2 while in a parallel processes it performs in silico serotyping of the strains. The pipeline offers a streamlined and semiautomated approach to serotyping S. suis strains, facilitating large-scale studies and reducing the manual effort required for data analysis.


Subject(s)
Computational Biology , Multilocus Sequence Typing , Software , Streptococcus suis , Streptococcus suis/genetics , Streptococcus suis/classification , Streptococcus suis/pathogenicity , Streptococcus suis/isolation & purification , Multilocus Sequence Typing/methods , Computational Biology/methods , Animals , Virulence Factors/genetics , Humans , Swine , Serotyping/methods , Bacterial Typing Techniques/methods , Computer Simulation , Databases, Genetic , Streptococcal Infections/microbiology
6.
Methods Mol Biol ; 2815: 51-71, 2024.
Article in English | MEDLINE | ID: mdl-38884910

ABSTRACT

Here were described the main three methods being used for analysis of antibiotic susceptibility or resistance of Streptococcus suis clinical isolates to antimicrobial agents: the Kirby-Bauer disk diffusion, the epsilometer test (E test), and the broth microdilution test. In each case, procedures, results, and interpretation are described, as well as their advantages or limitations when proceeds.


Subject(s)
Drug Resistance, Bacterial , Microbial Sensitivity Tests , Microbial Sensitivity Tests/methods , Humans , Anti-Bacterial Agents/pharmacology , Streptococcus suis/drug effects , Disk Diffusion Antimicrobial Tests
7.
Methods Mol Biol ; 2815: 121-129, 2024.
Article in English | MEDLINE | ID: mdl-38884915

ABSTRACT

The economic impact of Streptococcus suis-associated disease at farm level is well known by the producers, but the cost in a region or a country is more difficult to evaluate due to the lack of a centralized data system, the different incidences, and the control measures applied by each producer. In this chapter, we describe a method based on the information gathered through interviews with veterinary practitioners. A comprehensive questionnaire created specifically for the disease can help to conduct the interviews. The questions include information about the proportions of farms, batches and animals clinically affected, mortality, metaphylactic and therapeutic treatments, use of vaccines, and proportion of cases that are diagnosed at the laboratory. As the questionnaire is quite complex, the best option to obtain the data is send the questionnaire to the selected veterinarians to allow them to collect some data and make an interview with them some days later. The information allows to estimate the costs due to mortality, antimicrobial treatments, the use of autogenous vaccines, and analyses performed. Initially they are calculated per animal in each affected production phase, and later it can be extrapolated to estimate the annual cost per affected production unit and per country. The model does not consider indirect costs such as the cost as a zoonosis, the revenues forgone, or an increase of labor.


Subject(s)
Streptococcal Infections , Streptococcus suis , Animals , Streptococcal Infections/microbiology , Streptococcal Infections/economics , Swine , Surveys and Questionnaires , Swine Diseases/microbiology , Swine Diseases/economics , Humans
8.
Methods Mol Biol ; 2815: 79-91, 2024.
Article in English | MEDLINE | ID: mdl-38884912

ABSTRACT

Multidrug resistance, due to acquired antimicrobial resistance genes, is increasingly reported in the zoonotic pathogen Streptococcus suis. Most of these resistance genes are carried by chromosomal Mobile Genetic Elements (MGEs), in particular, Integrative and Conjugative Elements (ICEs) and Integrative and Mobilizable Elements (IMEs). ICEs and IMEs frequently form tandems or nested composite elements, which make their identification difficult. To evaluate their mobility, it is necessary to (i) select the suitable donor-recipient pairs for mating assays, (ii) do PCR excision tests to confirm that the genetic element is able to excise from the chromosome as a circular intermediate, and (iii) evaluate the transfer of the genetic element by conjugation by doing mating assays. In addition to a dissemination of resistance genes between S. suis strains, MGEs can lead to a spreading of resistance genes in the environment and toward pathogenic bacteria. This propagation had to be considered in a One Health perspective.


Subject(s)
Conjugation, Genetic , Interspersed Repetitive Sequences , Interspersed Repetitive Sequences/genetics , Gene Transfer, Horizontal , Streptococcus suis/genetics , Streptococcus suis/drug effects , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial/genetics , Polymerase Chain Reaction/methods , Genes, Bacterial
9.
Methods Mol Biol ; 2815: 115-119, 2024.
Article in English | MEDLINE | ID: mdl-38884914

ABSTRACT

Streptococcus suis is a swine bacterial pathogen that predominantly causes disease in weaned piglets characterized by swelling of joints, arthritis, septicemia, meningitis, and sudden death. Intravenous, intramuscular, intraperitoneal, and intranasal infection models were developed to study the bacterial pathogenicity and efficacy of vaccines and various therapeutics. The selection of the appropriate infection model is a critical step in any study, as it may impact the outcomes of the study. Here we describe a method for infecting weaned piglets with S. suis using intraperitoneal route as a reliable, consistent, and reproducible animal model to evaluate vaccine protection against systemic bacterial infection.


Subject(s)
Disease Models, Animal , Streptococcal Infections , Streptococcus suis , Swine Diseases , Animals , Swine , Streptococcus suis/pathogenicity , Streptococcal Infections/veterinary , Streptococcal Infections/microbiology , Streptococcal Infections/immunology , Swine Diseases/microbiology , Swine Diseases/immunology , Injections, Intraperitoneal
10.
Methods Mol Biol ; 2815: 131-142, 2024.
Article in English | MEDLINE | ID: mdl-38884916

ABSTRACT

Streptococcus suis is a bacterial pathogen that can cause significant economic losses in the swine industry due to high morbidity and mortality rates in infected animals. Vaccination with bacterins, which consist of inactivated bacteria and adjuvants to enhance the pig's immune response, is an effective approach to control S. suis infections in piglets. Here we provide a description of S. suis bacterins and the methods for vaccine preparation. Moreover, this chapter also describes the addition of recombinant Sao (rSao-L) protein to the S. suis bacterin, aiming to enhance the efficacy of the bacterins against S. suis in piglets. Furthermore, the methods for evaluating the immune response elicited by the bacterins are also covered in this chapter.


Subject(s)
Streptococcus suis , Animals , Swine , Streptococcus suis/immunology , Streptococcal Infections/immunology , Streptococcal Infections/microbiology , Streptococcal Infections/prevention & control , Streptococcal Infections/veterinary , Swine Diseases/microbiology , Swine Diseases/prevention & control , Swine Diseases/immunology , Vaccination/methods , Bacterial Vaccines/immunology , Adjuvants, Immunologic/pharmacology , Antibodies, Bacterial/immunology , Recombinant Proteins/immunology , Recombinant Proteins/genetics , Streptococcal Vaccines/immunology , Streptococcal Vaccines/administration & dosage
11.
Can Vet J ; 65(5): 429-436, 2024 May.
Article in English | MEDLINE | ID: mdl-38694742

ABSTRACT

Objective: Streptococcus suis is a major agent of disease in modern swine operations, linked to increased mortality, treatment costs, and secondary infections. Although it is ubiquitous in swine, only a fraction of pigs develop clinical disease. The goals of this study were to profile isolates obtained from diseased pigs in western Canada and to investigate potential associations with disease severity. Procedure: Isolates of S. suis (n = 128) from 75 diagnostic submission and 63 premises were paired with epidemiological surveys completed by submitting practitioners (n = 22). Whole-genome sequencing was used to type isolates. Results: The most prevalent serotypes identified were 1/2 (7.8%, 10/128), 2 (9.3%, 12/128), 3 (9.3%, 12/128), and 7 (7.8%, 10/128); and sequence types 28 (17%, 23/128) and 839 (14%, 19/128). There was no association between serotype or sequence type and organ source or barn location. Approximately 74% (14/19) of the premises had diseased animals colonized by > 1 S. suis serotype, but only 1 pig was simultaneously infected with multiple serotypes and sequence types. Serotype distribution from diseased pigs in western Canada differed from that of those in other geographic regions. Conclusion: Infection of diseased pigs by multiple serotypes should be considered when disease control strategies are implemented. No association between S. suis type and isolation organ was identified.


Le profil moléculaire et les caractéristiques épidémiologiques de Streptococcus suis isolés de porcs malades dans l'ouest du Canada révèlent une infection à sérotypes multiples : implications pour la maitrise de la maladie. Objectif: Streptococcus suis est un agent pathogène majeur dans les exploitations porcines modernes, lié à une mortalité accrue, aux coûts de traitement et aux infections secondaires. Bien qu'elle soit omniprésente chez le porc, seule une fraction des porcs développe une maladie clinique. Les objectifs de cette étude étaient de dresser le profil des isolats obtenus à partir de porcs malades dans l'ouest du Canada et d'étudier les associations potentielles avec la gravité de la maladie. Procédure: Des isolats de S. suis (n = 128) provenant de 75 soumissions pour diagnostic et de 63 sites ont été associés à des enquêtes épidémiologiques réalisées auprès des praticiens soumettant les échantillons (n = 22). Le séquençage du génome entier a été utilisé pour typer les isolats. Résultats: Les sérotypes les plus répandus identifiés étaient 1/2 (7,8 %, 10/128), 2 (9,3 %, 12/128), 3 (9,3 %, 12/128) et 7 (7,8 %, 10/128); et les types de séquence 28 (17 %, 23/128) et 839 (14 %, 19/128). Il n'y avait aucune association entre le sérotype ou le type de séquence et la source d'organes ou l'emplacement de la ferme. Environ 74 % (14/19) des exploitations abritaient des animaux malades colonisés par > 1 sérotype de S. suis, mais 1 seul porc était infecté simultanément par plusieurs sérotypes et types de séquences. La répartition des sérotypes chez les porcs malades de l'ouest du Canada différait de celle des porcs d'autres régions géographiques. Conclusion: L'infection des porcs malades par plusieurs sérotypes doit être envisagée lors de la mise en oeuvre de stratégies de maitrise de la maladie. Aucune association entre le type de S. suis et l'organe d'isolement n'a été identifiée.(Traduit par Dr Serge Messier).


Subject(s)
Serogroup , Streptococcal Infections , Streptococcus suis , Swine Diseases , Animals , Streptococcus suis/genetics , Streptococcus suis/isolation & purification , Swine , Swine Diseases/microbiology , Swine Diseases/epidemiology , Streptococcal Infections/veterinary , Streptococcal Infections/epidemiology , Streptococcal Infections/microbiology , Canada/epidemiology
12.
Vet Res ; 55(1): 57, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38715138

ABSTRACT

Streptococcus suis is a bacterial pathogen that causes important economic losses to the swine industry worldwide. Since there are no current commercial vaccines, the use of autogenous vaccines applied to gilts/sows to enhance transfer of passive immunity is an attractive alternative to protect weaned piglets. However, there is no universal standardization in the production of autogenous vaccines and the vaccine formulation may be highly different among licenced manufacturing laboratories. In the present study, an autogenous vaccine that included S. suis serotypes 2, 1/2, 5, 7 and 14 was prepared by a licensed laboratory and administrated to gilts using a three-dose program prior to farrowing. The antibody response in gilts as well as the passive transfer of antibodies to piglets was then evaluated. In divergence with previously published data with an autogenous vaccine produced by a different company, the increased response seen in gilts was sufficient to improve maternal antibody transfer to piglets up to 5 weeks of age. However, piglets would still remain susceptible to S. suis disease which often appears during the second part of the nursery period. Vaccination did not affect the shedding of S. suis (as well as that of the specific S. suis serotypes included in the vaccine) by either gilts or piglets. Although all antibiotic treatments were absent during the trial, the clinical protective effect of the vaccination program with the autogenous vaccine could not be evaluated, since limited S. suis cases were present during the trial, confirming the need for a complete evaluation of the clinical protection that must include laboratory confirmation of the aetiological agent involved in the presence of S. suis-associated clinical signs. Further studies to evaluate the usefulness of gilt/sow vaccination with autogenous vaccines to protect nursery piglets should be done.


Subject(s)
Autovaccines , Streptococcal Infections , Streptococcus suis , Swine Diseases , Animals , Streptococcus suis/immunology , Swine , Swine Diseases/prevention & control , Swine Diseases/microbiology , Swine Diseases/immunology , Streptococcal Infections/veterinary , Streptococcal Infections/prevention & control , Streptococcal Infections/immunology , Female , Immunity, Maternally-Acquired , Streptococcal Vaccines/immunology , Streptococcal Vaccines/administration & dosage , Serogroup , Vaccination/veterinary
13.
Front Immunol ; 15: 1392456, 2024.
Article in English | MEDLINE | ID: mdl-38779673

ABSTRACT

In response to the global threat posed by bacterial pathogens, which are the second leading cause of death worldwide, vaccine development is challenged by the diversity of bacterial serotypes and the lack of immunoprotection across serotypes. To address this, we introduce BacScan, a novel genome-wide technology for the rapid discovery of conserved highly immunogenic proteins (HIPs) across serotypes. Using bacterial-specific serum, BacScan combines phage display, immunoprecipitation, and next-generation sequencing to comprehensively identify all the HIPs in a single assay, thereby paving the way for the development of universally protective vaccines. Our validation of this technique with Streptococcus suis, a major pathogenic threat, led to the identification of 19 HIPs, eight of which conferred 20-100% protection against S. suis challenge in animal models. Remarkably, HIP 8455 induced complete immunity, making it an exemplary vaccine target. BacScan's adaptability to any bacterial pathogen positions it as a revolutionary tool that can expedite the development of vaccines with broad efficacy, thus playing a critical role in curbing bacterial transmission and slowing the march of antimicrobial resistance.


Subject(s)
Bacterial Proteins , Animals , Mice , Bacterial Proteins/immunology , Bacterial Proteins/genetics , Streptococcal Infections/immunology , Streptococcal Infections/prevention & control , Streptococcus suis/immunology , Streptococcus suis/genetics , Genome, Bacterial , High-Throughput Nucleotide Sequencing , Female , Antigens, Bacterial/immunology , Antigens, Bacterial/genetics , Humans , Bacterial Vaccines/immunology
14.
Emerg Microbes Infect ; 13(1): 2352435, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38703011

ABSTRACT

Streptococcus suis is a major bacterial pathogen in pigs and an emerging zoonotic pathogen. Different S. suis serotypes exhibit diverse characteristics in population structure and pathogenicity. Surveillance data highlight the significance of S. suis serotype 4 (SS4) in swine streptococcusis, a pathotype causing human infections. However, except for a few epidemiologic studies, the information on SS4 remains limited. In this study, we investigated the population structure, pathogenicity, and antimicrobial characteristics of SS4 based on 126 isolates, including one from a patient with septicemia. We discovered significant diversities within this population, clustering into six minimum core genome (MCG) groups (1, 2, 3, 4, 7-2, and 7-3) and five lineages. Two main clonal complexes (CCs), CC17 and CC94, belong to MCG groups 1 and 3, respectively. Numerous important putative virulence-associated genes are present in these two MCG groups, and 35.00% (7/20) of pig isolates from CC17, CC94, and CC839 (also belonging to MCG group 3) were highly virulent (mortality rate ≥ 80%) in zebrafish and mice, similar to the human isolate ID36054. Cytotoxicity assays showed that the human and pig isolates of SS4 strains exhibit significant cytotoxicity to human cells. Antimicrobial susceptibility testing showed that 95.83% of strains isolated from our labs were classified as multidrug-resistant. Prophages were identified as the primary vehicle for antibiotic resistance genes. Our study demonstrates the public health threat posed by SS4, expanding the understanding of SS4 population structure and pathogenicity characteristics and providing valuable information for its surveillance and prevention.


Subject(s)
Serogroup , Streptococcal Infections , Streptococcus suis , Swine Diseases , Streptococcus suis/pathogenicity , Streptococcus suis/genetics , Streptococcus suis/classification , Streptococcus suis/drug effects , Streptococcus suis/isolation & purification , Animals , Swine , Humans , Streptococcal Infections/microbiology , Streptococcal Infections/veterinary , Swine Diseases/microbiology , Virulence , Mice , Genome, Bacterial , Zebrafish , Anti-Bacterial Agents/pharmacology , Phylogeny , Microbial Sensitivity Tests , Virulence Factors/genetics
15.
Front Public Health ; 12: 1369703, 2024.
Article in English | MEDLINE | ID: mdl-38808002

ABSTRACT

Introduction: Streptococcus suis is one of the porcine pathogens that have recently emerged as a pathogen capable of causing zoonoses in some humans. Patients infected with S. suis can present with sepsis, meningitis, or arthritis. Compared to common pathogens, such as Meningococcus, Streptococcus pneumoniae, and Haemophilus influenzae, S. suis infections in humans have been reported only rarely. Methods: This case report described a 57-year-old man who presented with impaired consciousness and fever following several days of backache. He was a butcher who worked in an abattoir and had wounded his hands 2 weeks prior. The patient was dependent on alcohol for almost 40 years. S. suis was detected in the cerebrospinal fluid by metagenomic next-generation sequencing. Although he received adequate meropenem and low-dose steroid therapy, the patient suffered from bilateral sudden deafness after 5 days of the infection. The final diagnosis was S. suis meningitis and sepsis. Results: The patient survived with hearing loss in both ears and dizziness at the 60-day follow-up. Discussion: We reported a case of S. suis infection manifested as purulent meningitis and sepsis. Based on literature published worldwide, human S. suis meningitis shows an acute onset and rapid progression in the nervous system. Similar to bacterial meningitis, effective antibiotics, and low-dose steroids play important roles in the treatment of human S. suis meningitis.


Subject(s)
Meningitis, Bacterial , Streptococcal Infections , Streptococcus suis , Humans , Streptococcus suis/isolation & purification , Male , Middle Aged , Streptococcal Infections/drug therapy , China , Meningitis, Bacterial/drug therapy , Meningitis, Bacterial/diagnosis , Anti-Bacterial Agents/therapeutic use , Sepsis/drug therapy , Hearing Loss, Sudden/etiology , Hearing Loss, Sudden/drug therapy
16.
J Infect Dev Ctries ; 18(4): 645-650, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38728637

ABSTRACT

INTRODUCTION: Streptococcus suis (S. suis) disease is a zoonotic infection caused by invasive S. suis and can lead to meningitis, septic shock, arthritis, and endocarditis. Early treatment is the key to reducing mortality. However, clinical manifestations of most cases are atypical, severely limiting rapid diagnosis and treatment. CASE REPORT: Here, we report a 74-year-old female patient diagnosed with S. suis infection. The main symptoms were hearing loss, lumbago, and scattered ecchymosis of the lower extremities and trunk. Blood non-specific infection indexes were significantly increased and platelets were significantly decreased; however, no pathogens were obtained from routine blood culture. Finally, the S. suis infection was confirmed by metagenomic next-generation sequencing (mNGS) of blood and cerebrospinal fluid. After antibiotic treatment, the limb and trunk scattered ecchymosis and lumbago symptoms were significantly relieved, but the hearing did not recover. CONCLUSIONS: Human infection with S. suis is rare in central cities, and it is easy to misdiagnose, especially in cases with atypical early symptoms. mNGS technology, combined with clinical observation, is helpful to clarify the direction of diagnosis and treatment, which is conducive to patient recovery.


Subject(s)
High-Throughput Nucleotide Sequencing , Metagenomics , Streptococcal Infections , Streptococcus suis , Humans , Streptococcus suis/genetics , Streptococcus suis/isolation & purification , Female , Aged , Streptococcal Infections/diagnosis , Streptococcal Infections/microbiology , Streptococcal Infections/drug therapy , Metagenomics/methods , Anti-Bacterial Agents/therapeutic use
17.
Rev Soc Bras Med Trop ; 57: e00805, 2024.
Article in English | MEDLINE | ID: mdl-38597526

ABSTRACT

Streptococcus suis has been widely reported as a pathogen in animals, especially pigs. In terms of human health implications, it has been characterized as a zoonosis associated with the consumption of pork products and occupational exposure, particularly in Southeast Asian countries. Here, we present a rare case of human S. suis infection in Brazil, diagnosed in an older adult swine farmer, a small rural producer residing in the semi-arid region of Bahia, Brazil.


Subject(s)
Meningitis, Bacterial , Streptococcal Infections , Streptococcus suis , Animals , Humans , Swine , Brazil/epidemiology , Zoonoses , Streptococcal Infections/diagnosis , Meningitis, Bacterial/diagnosis
18.
PLoS One ; 19(4): e0299905, 2024.
Article in English | MEDLINE | ID: mdl-38635508

ABSTRACT

Streptococcus suis (S. suis) infections in weaned pigs are common and responsible for a high consumption of antimicrobials, and their presence is assumed to be multi-factorial. A specific evidence-based veterinary guideline to support the control of S. suis in weaned pigs was developed for veterinary practitioners in the Netherlands in 2014. Adherence to the S. suis clinical practice guideline helps veterinary practitioners to prevent and control the disease in a systematical approach and thereby improve antimicrobial stewardship and contribute to the prevention of antimicrobial resistance in animals and humans. The impact of such a clinical practice guideline on (animal) disease management depends not only on its content, but also largely on the extent to which practitioners adhere to the clinical guideline in practice. When the S. suis guideline was published, no specific activities were undertaken to support veterinarians' uptake and implementation, thereby contributing to suboptimal adherence in clinical practice. As the S. suis guideline was comprehensively written by veterinary experts following an evidence-based approach, our aim was not to judge the (scientific) quality of the guideline but to study the possibility to improve the currently low adherence of this guideline in veterinary practice. This paper describes the systematic development, using Implementation Mapping, of a theory-based intervention program to support swine veterinarians' adherence to the S. suis guideline. The knowledge, skills, beliefs about capabilities, and beliefs about consequences domains are addressed in the program, which includes seven evidence-based methods (modelling, tailoring, feedback, discussion, persuasive communication, active learning, and self-monitoring) for use in program activities such as a peer-learning meeting and an e-learning module. The intervention program has been developed for practicing swine veterinarians, lasts eight months, and is evaluated through a stepped-wedge design. The Implementation Mapping approach ensured that all relevant adopters and implementers were involved, and that outcomes, determinants (influencing factors), and objectives were systematically discussed.


Subject(s)
Animal Diseases , Anti-Infective Agents , Streptococcal Infections , Streptococcus suis , Swine Diseases , Veterinarians , Animals , Humans , Swine , Streptococcal Infections/prevention & control , Streptococcal Infections/veterinary , Swine Diseases/prevention & control
19.
Emerg Microbes Infect ; 13(1): 2339946, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38578304

ABSTRACT

Streptococcus suis is a significant and emerging zoonotic pathogen. ST1 and ST7 strains are the primary agents responsible for S. suis human infections in China, including the Guangxi Zhuang Autonomous Region (GX). To enhance our understanding of S. suis ST1 population characteristics, we conducted an investigation into the phylogenetic structure, genomic features, and virulence levels of 73 S. suis ST1 human strains from GX between 2005 and 2020. The ST1 GX strains were categorized into three lineages in phylogenetic analysis. Sub-lineage 3-1a exhibited a closer phylogenetic relationship with the ST7 epidemic strain SC84. The strains from lineage 3 predominantly harboured 89K-like pathogenicity islands (PAIs) which were categorized into four clades based on sequence alignment. The acquirement of 89K-like PAIs increased the antibiotic resistance and pathogenicity of corresponding transconjugants. We observed significant diversity in virulence levels among the 37 representative ST1 GX strains, that were classified as follows: epidemic (E)/highly virulent (HV) (32.4%, 12/37), virulent plus (V+) (29.7%, 11/37), virulent (V) (18.9%, 7/37), and lowly virulent (LV) (18.9%, 7/37) strains based on survival curves and mortality rates at different time points in C57BL/6 mice following infection. The E/HV strains were characterized by the overproduction of tumour necrosis factor (TNF)-α in serum and promptly established infection at the early phase of infection. Our research offers novel insights into the population structure, evolution, genomic features, and pathogenicity of ST1 strains. Our data also indicates the importance of establishing a scheme for characterizing and subtyping the virulence levels of S. suis strains.


Subject(s)
Genome, Bacterial , Genomic Islands , Phylogeny , Streptococcal Infections , Streptococcus suis , Streptococcus suis/genetics , Streptococcus suis/pathogenicity , Streptococcus suis/classification , Streptococcus suis/isolation & purification , Streptococcal Infections/microbiology , Streptococcal Infections/veterinary , Streptococcal Infections/epidemiology , China/epidemiology , Humans , Virulence , Animals , Mice , Female , Genomics , Virulence Factors/genetics
20.
Medicina (B Aires) ; 84(2): 329-332, 2024.
Article in Spanish | MEDLINE | ID: mdl-38683518

ABSTRACT

Streptococcus suis (S. suis) is a globally prevalent swine pathogen, capable of generating infections in humans who were in contact with the animal or its raw meat. Clinical manifestations range from asymptomatic cases to systemic involvement, with low mortality, but with the possibility of leaving definitive sequelae such as ataxia and hearing loss. There are few case reports, due to lack of knowledge of the disease and its atypical presentation. The objective of this article is to report the case of a man with an occupational history of contact with pigs, who was admitted for meningitis and in whom the isolation of S. suis was obtained in cerebrospinal fluid and paired blood cultures; He completed antibiotic treatment adjusted to bacterial sensitivity, and was left with mild hearing loss as a consequence.


Streptococcus suis (S. suis) es un patógeno porcino prevalente a nivel mundial, capaz de generar infecciones en humanos que estuvieron en contacto con el animal o la carne cruda del mismo. Las manifestaciones clínicas comprenden desde casos asintomáticos hasta compromiso sistémico, con una baja mortalidad, pero con la posibilidad de dejar secuelas definitivas como la ataxia e hipoacusia. Son pocos los reportes de casos, debido al desconocimiento de la enfermedad y a su forma atípica de presentación. El objetivo de este artículo es relatar el caso de un varón con antecedentes ocupacionales de contacto con porcinos, que ingresó por meningitis y en el cual se obtuvo el aislamiento de S. suis en líquido cefalorraquídeo y hemocultivos pareados; completó tratamiento antibiótico ajustado a la sensibilidad bacteriana, quedó con hipoacusia leve como secuela.


Subject(s)
Meningitis, Bacterial , Streptococcal Infections , Streptococcus suis , Streptococcus suis/isolation & purification , Humans , Male , Meningitis, Bacterial/microbiology , Meningitis, Bacterial/diagnosis , Meningitis, Bacterial/drug therapy , Meningitis, Bacterial/cerebrospinal fluid , Streptococcal Infections/drug therapy , Streptococcal Infections/microbiology , Streptococcal Infections/diagnosis , Animals , Swine , Anti-Bacterial Agents/therapeutic use , Adult , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL
...