Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.301
Filter
1.
Mol Biol Rep ; 51(1): 649, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38733445

ABSTRACT

Molecular pathways involved in cerebral stroke are diverse. The major pathophysiological events that are observed in stroke comprises of excitotoxicity, oxidative stress, mitochondrial damage, endoplasmic reticulum stress, cellular acidosis, blood-brain barrier disruption, neuronal swelling and neuronal network mutilation. Various biomolecules are involved in these pathways and several major proteins are upregulated and/or suppressed following stroke. Different types of receptors, ion channels and transporters are activated. Fluctuations in levels of various ions and neurotransmitters have been observed. Cells involved in immune responses and various mediators involved in neuro-inflammation get upregulated progressing the pathogenesis of the disease. Despite of enormity of the problem, there is not a single therapy that can limit infarction and neurological disability due to stroke. This is because of poor understanding of the complex interplay between these pathophysiological processes. This review focuses upon the past to present research on pathophysiological events that are involved in stroke and various factors that are leading to neuronal death following cerebral stroke. This will pave a way to researchers for developing new potent therapeutics that can aid in the treatment of cerebral stroke.


Subject(s)
Oxidative Stress , Stroke , Humans , Stroke/metabolism , Stroke/physiopathology , Animals , Endoplasmic Reticulum Stress , Neurons/metabolism , Neurons/pathology , Blood-Brain Barrier/metabolism , Mitochondria/metabolism
2.
Neuropharmacology ; 253: 109986, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38705569

ABSTRACT

Stroke, the leading cause of disability and cognitive impairment, is also the second leading cause of death worldwide. The drugs with multi-targeted brain cytoprotective effects are increasingly being advocated for the treatment of stroke. Irisin, a newly discovered myokine produced by cleavage of fibronectin type III domain 5, has been shown to regulate glucose metabolism, mitochondrial energy, and fat browning. A large amount of evidence indicated that irisin could exert anti-inflammatory, anti-apoptotic, and antioxidant properties in a variety of diseases such as myocardial infarction, inflammatory bowel disease, lung injury, and kidney or liver disease. Studies have found that irisin is widely distributed in multiple brain regions and also plays an important regulatory role in the central nervous system. The most common cause of a stroke is a sudden blockage of an artery (ischemic stroke), and in some circumstances, a blood vessel rupture can also result in a stroke (hemorrhagic stroke). After a stroke, complicated pathophysiological processes lead to serious brain injury and neurological dysfunction. According to recent investigations, irisin may protect elements of the neurovascular unit by acting on multiple pathological processes in stroke. This review aims to outline the currently recognized effects of irisin on stroke and propose possible directions for future research.


Subject(s)
Fibronectins , Neuroprotective Agents , Stroke , Fibronectins/metabolism , Humans , Animals , Neuroprotective Agents/therapeutic use , Neuroprotective Agents/pharmacology , Stroke/drug therapy , Stroke/metabolism , Brain/metabolism , Brain/drug effects
3.
Sci Rep ; 14(1): 11222, 2024 05 16.
Article in English | MEDLINE | ID: mdl-38755170

ABSTRACT

Homocysteine (Hcy) and Hcy-thiolactone (HTL) affect fibrin clot properties and are linked to cardiovascular disease. Factors that influence fibrin clot properties and stroke are not fully understood. To study sulfur-containing amino acid metabolites, fibrin clot lysis time (CLT) and maximum absorbance (Absmax) in relation to stroke, we analyzed plasma and urine from 191 stroke patients (45.0% women, age 68 ± 12 years) and 291 healthy individuals (59.7% women, age 50 ± 17 years). Plasma and urinary levels of sulfur-containing amino acid metabolites and fibrin clot properties were significantly different in stroke patients compared to healthy individuals. Fibrin CLT correlated with fibrin Absmax in healthy males (R2 = 0.439, P = 0.000), females (R2 = 0.245, P = 0.000), female stroke patients (R2 = 0.187, P = 0.000), but not in male stroke patients (R2 = 0.008, P = ns). Fibrin CLT correlated with age in healthy females but not males while fibrin Absmax correlated with age in both sexes; these correlations were absent in stroke patients. In multiple regression analysis in stroke patients, plasma (p)CysGly, pMet, and MTHFR A1298C polymorphism were associated with fibrin Absmax, while urinary (u)HTL, uCysGly, and pCysGly were significantly associated with fibrin CLT. In healthy individuals, uHTL and uGSH were significantly associated with fibrin Absmax, while pGSH, and CBS T833C 844ins68 polymorphism were associated with fibrin CLT. In logistic regression, uHTL, uHcy, pCysGly, pGSH, MTHFR C677T polymorphism, and Absmax were independently associated with stroke. Our findings suggest that HTL and other sulfur-containing amino acid metabolites influence fibrin clot properties and the risk of stroke.


Subject(s)
Fibrin , Homocysteine , Ischemic Stroke , Humans , Male , Female , Homocysteine/blood , Homocysteine/analogs & derivatives , Homocysteine/metabolism , Homocysteine/urine , Aged , Middle Aged , Fibrin/metabolism , Ischemic Stroke/blood , Ischemic Stroke/metabolism , Ischemic Stroke/urine , Adult , Fibrin Clot Lysis Time , Risk Factors , Amino Acids, Sulfur/blood , Amino Acids, Sulfur/metabolism , Amino Acids, Sulfur/urine , Amino Acids/urine , Amino Acids/blood , Amino Acids/metabolism , Methylenetetrahydrofolate Reductase (NADPH2)/genetics , Methylenetetrahydrofolate Reductase (NADPH2)/metabolism , Case-Control Studies , Aged, 80 and over , Stroke/metabolism , Stroke/blood , Stroke/urine
4.
Cell Biochem Funct ; 42(4): e4059, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38773900

ABSTRACT

Cerebral ischemic stroke remains a leading cause of mortality and morbidity worldwide. Toll-like receptor 4 (TLR4) has been implicated in neuroinflammatory responses poststroke, particularly in the infiltration of immune cells and polarization of macrophages. This study aimed to elucidate the impact of TLR4 deficiency on neutrophil infiltration and subsequent macrophage polarization after middle cerebral artery occlusion (MCAO), exploring its role in stroke prognosis. The objective was to investigate how TLR4 deficiency influences neutrophil behavior poststroke, its role in macrophage polarization, and its impact on stroke prognosis using murine models. Wild-type and TLR4-deficient adult male mice underwent MCAO induction, followed by various analyses, including flow cytometry to assess immune cell populations, bone marrow transplantation experiments to evaluate TLR4-deficient neutrophil behaviors, and enzyme-linked immunosorbent assay and Western blot analysis for cytokine and protein expression profiling. Neurobehavioral tests and infarct volume analysis were performed to assess the functional and anatomical prognosis poststroke. TLR4-deficient mice exhibited reduced infarct volumes, increased neutrophil infiltration, and reduced M1-type macrophage polarization post-MCAO compared to wild-type mice. Moreover, the depletion of neutrophils reversed the neuroprotective effects observed in TLR4-deficient mice, suggesting the involvement of neutrophils in mediating TLR4's protective role. Additionally, N1-type neutrophils were found to promote M1 macrophage polarization via neutrophil gelatinase-associated lipocalin (NGAL) secretion, a process blocked by TLR4 deficiency. The study underscores the protective role of TLR4 deficiency in ischemic stroke, delineating its association with increased N2-type neutrophil infiltration, diminished M1 macrophage polarization, and reduced neuroinflammatory responses. Understanding the interplay between TLR4, neutrophils, and macrophages sheds light on potential therapeutic targets for stroke management, highlighting TLR4 as a promising avenue for intervention in stroke-associated neuroinflammation and tissue damage.


Subject(s)
Macrophages , Mice, Inbred C57BL , Mice, Knockout , Neutrophil Infiltration , Toll-Like Receptor 4 , Animals , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 4/deficiency , Mice , Male , Macrophages/metabolism , Macrophages/immunology , Prognosis , Stroke/metabolism , Stroke/pathology , Disease Models, Animal , Infarction, Middle Cerebral Artery/metabolism , Infarction, Middle Cerebral Artery/pathology , Neutrophils/metabolism , Neutrophils/immunology
5.
CNS Neurosci Ther ; 30(5): e14744, 2024 05.
Article in English | MEDLINE | ID: mdl-38727249

ABSTRACT

BACKGROUND: Stroke is an acute cerebrovascular disease in which brain tissue is damaged due to sudden obstruction of blood flow to the brain or the rupture of blood vessels in the brain, which can prompt ischemic or hemorrhagic stroke. After stroke onset, ischemia, hypoxia, infiltration of blood components into the brain parenchyma, and lysed cell fragments, among other factors, invariably increase blood-brain barrier (BBB) permeability, the inflammatory response, and brain edema. These changes lead to neuronal cell death and synaptic dysfunction, the latter of which poses a significant challenge to stroke treatment. RESULTS: Synaptic dysfunction occurs in various ways after stroke and includes the following: damage to neuronal structures, accumulation of pathologic proteins in the cell body, decreased fluidity and release of synaptic vesicles, disruption of mitochondrial transport in synapses, activation of synaptic phagocytosis by microglia/macrophages and astrocytes, and a reduction in synapse formation. CONCLUSIONS: This review summarizes the cellular and molecular mechanisms related to synapses and the protective effects of drugs or compounds and rehabilitation therapy on synapses in stroke according to recent research. Such an exploration will help to elucidate the relationship between stroke and synaptic damage and provide new insights into protecting synapses and restoring neurologic function.


Subject(s)
Stroke , Synapses , Humans , Animals , Synapses/pathology , Synapses/metabolism , Stroke/metabolism , Stroke/pathology , Stroke/complications , Stroke/physiopathology
6.
Int J Mol Sci ; 25(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38732147

ABSTRACT

Both high serum insulin-like growth factor-binding protein-1 (s-IGFBP-1) and insulin resistance (IR) are associated with poor functional outcome poststroke, whereas overweight body mass index (BMI; 25-30) is related to fewer deaths and favorable functional outcome in a phenomenon labeled "the obesity paradox". Furthermore, IGFBP-1 is inversely related to BMI, in contrast to the linear relation between IR and BMI. Here, we investigated s-IGFBP-1 and IR concerning BMI and 7-year poststroke functional outcome. We included 451 stroke patients from the Sahlgrenska Study on Ischemic Stroke (SAHLSIS) with baseline measurements of s-IGFBP1, homeostasis model assessment of IR (HOMA-IR), BMI (categories: normal-weight (8.5-25), overweight (25-30), and obesity (>30)), and high-sensitivity C-reactive protein (hs-CRP) as a measure of general inflammation. Associations with poor functional outcome (modified Rankin scale [mRS] score: 3-6) after 7 years were evaluated using multivariable binary logistic regression, with overweight as reference due to the nonlinear relationship. Both normal-weight (odds-ratio [OR] 2.32, 95% confidence interval [CI] 1.30-4.14) and obese (OR 2.25, 95% CI 1.08-4.71) patients had an increased risk of poor functional outcome, driven by deaths only in the normal-weight. In normal-weight, s-IGFBP-1 modestly attenuated (8.3%) this association. In the obese, the association was instead attenuated by HOMA-IR (22.4%) and hs-CRP (10.4%). Thus, a nonlinear relation between BMI and poor 7-year functional outcome was differently attenuated in the normal-weight and the obese.


Subject(s)
Body Mass Index , Inflammation , Insulin Resistance , Insulin-Like Growth Factor Binding Protein 1 , Humans , Female , Male , Aged , Insulin-Like Growth Factor Binding Protein 1/blood , Insulin-Like Growth Factor Binding Protein 1/metabolism , Inflammation/metabolism , Inflammation/blood , Middle Aged , Obesity/metabolism , Obesity/complications , Obesity/blood , Stroke/metabolism , C-Reactive Protein/metabolism , Biomarkers/blood , Overweight/metabolism , Overweight/blood , Insulin-Like Peptides
7.
Neuroreport ; 35(10): 664-672, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38813905

ABSTRACT

Traditional Chinese medicine (TCM) has long been used to treat various diseases, including cerebral ischemia. The specific molecular mechanism of TCM in the treatment of cerebral ischemia, however, is still unclear. This study investigated the effects of gastrodin, electroacupuncture and their combination on cerebral ischemic rats. We used Nissl staining, immunohistochemical staining and immunoblotting to detect the expression changes of brain-derived neurotrophic factor (BDNF) and interleukin-6 (IL-6) in the frontal cortex. The results showed that the combination therapy of gastrodin and electroacupuncture significantly increased the number of Nissl-positive neurons and improved cell morphology compared with other groups. Mechanistically, we found that the combination of gastrodin and electroacupuncture treatment group can restore the abnormal morphology of neuronal cells caused by cerebral ischemia by rebalancing the expression levels of BDNF and IL-6. Our research indicates that gastrodin combined with electroacupuncture has a significant protective effect on cerebral ischemic injury in rats, possibly by regulating the expression of BDNF and IL-6. This combination therapy is superior to single-drug or electroacupuncture therapy.


Subject(s)
Benzyl Alcohols , Brain Ischemia , Brain-Derived Neurotrophic Factor , Disease Models, Animal , Electroacupuncture , Glucosides , Interleukin-6 , Rats, Sprague-Dawley , Animals , Electroacupuncture/methods , Benzyl Alcohols/pharmacology , Glucosides/pharmacology , Glucosides/therapeutic use , Brain-Derived Neurotrophic Factor/metabolism , Interleukin-6/metabolism , Male , Brain Ischemia/metabolism , Brain Ischemia/prevention & control , Rats , Combined Modality Therapy/methods , Stroke/metabolism , Neurons/drug effects , Neurons/metabolism
8.
Biochem Biophys Res Commun ; 720: 150079, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-38759300

ABSTRACT

Stroke and major depression disorder are common neurological diseases, and a large number of clinical studies have shown that there is a close relationship between the two diseases, but whether the two diseases are linked at the genetic level needs to be further explored. The purpose of this study was to explore the comorbidity mechanism of stroke and major depression by using bioinformatics technology and animal experiments. From the GEO database, we gathered transcriptome data of stroke and depression mice (GSE104036, GSE131712, GSE81672, and GSE146845) and identified comorbid gene set through edgR and WGCNA analyses. Further analysis revealed that these genes were enriched in pathways associated with cell death. Programmed cell death gene sets (PCDGs) are generated from genes related to apoptosis, necroptosis, pyroptosis and autophagy. The intersection of PCDGs and comorbid gene set resulted in two hub genes, Mlkl and Nlrp3. Single-cell sequencing analysis indicated that Mlkl and Nlrp3 are mainly influential on endothelial cells and microglia, suggesting that the impairment of these two cell types may be a factor in the relationship between stroke and major depression. This was experimentally confirmed by RT-PCR and immunofluorescence staining. Our research revealed that two specific genes, namely, Mlkl and Nlrp3, play crucial roles in the complex mechanism that links stroke and major depression. Additionally, we have predicted six possible therapeutic agents and the outcomes of docking simulations of target proteins and drug molecules.


Subject(s)
Depressive Disorder, Major , Stroke , Animals , Depressive Disorder, Major/genetics , Depressive Disorder, Major/metabolism , Stroke/genetics , Stroke/metabolism , Mice , Mice, Inbred C57BL , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Male , Transcriptome , Computational Biology/methods , Apoptosis/genetics
9.
Mol Med Rep ; 30(1)2024 Jul.
Article in English | MEDLINE | ID: mdl-38785160

ABSTRACT

Stroke is a severe neurological disease that is associated with high rates of morbidity and mortality, and the underlying pathological processes are complex. Ferroptosis fulfills a significant role in the progression and treatment of stroke. It is well established that ferroptosis is a type of programmed cell death that is distinct from other forms or types of cell death. The process of ferroptosis involves multiple signaling pathways and regulatory mechanisms that interact with mechanisms inherent to stroke development. Inducers and inhibitors of ferroptosis have been shown to exert a role in the onset of this cell death process. Furthermore, it has been shown that interfering with ferroptosis affects the occurrence of stroke, indicating that targeting ferroptosis may offer a promising therapeutic approach for treating patients of stroke. Hence, the present review aimed to summarize the latest progress that has been made in terms of using therapeutic interventions for ferroptosis as treatment targets in cases of stroke. It provides an overview of the relevant pathways and molecular mechanisms that have been investigated in recent years, highlighting the roles of inducers and inhibitors of ferroptosis in stroke. Additionally, the intervention potential of various types of Traditional Chinese Medicine is also summarized. In conclusion, the present review provides a comprehensive overview of the potential therapeutic targets afforded by ferroptosis­associated pathways in stroke, offering new insights into how ferroptosis may be exploited in the treatment of stroke.


Subject(s)
Ferroptosis , Signal Transduction , Stroke , Ferroptosis/drug effects , Humans , Stroke/metabolism , Stroke/drug therapy , Signal Transduction/drug effects , Animals , Molecular Targeted Therapy , Medicine, Chinese Traditional/methods
10.
Cell Rep ; 43(5): 114193, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38709635

ABSTRACT

Astrocytes play vital roles in blood-brain barrier (BBB) maintenance, yet how they support BBB integrity under normal or pathological conditions remains poorly defined. Recent evidence suggests that ion homeostasis is a cellular mechanism important for BBB integrity. In the current study, we investigated the function of an astrocyte-specific pH regulator, Slc4a4, in BBB maintenance and repair. We show that astrocytic Slc4a4 is required for normal astrocyte morphological complexity and BBB function. Multi-omics analyses identified increased astrocytic secretion of CCL2 coupled with dysregulated arginine-NO metabolism after Slc4a4 deletion. Using a model of ischemic stroke, we found that loss of Slc4a4 exacerbates BBB disruption, which was rescued by pharmacological or genetic inhibition of the CCL2-CCR2 pathway in vivo. Together, our study identifies the astrocytic Slc4a4-CCL2 and endothelial CCR2 axis as a mechanism controlling BBB integrity and repair, while providing insights for a therapeutic approach against BBB-related CNS disorders.


Subject(s)
Astrocytes , Blood-Brain Barrier , Chemokine CCL2 , Receptors, CCR2 , Stroke , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/pathology , Astrocytes/metabolism , Astrocytes/pathology , Receptors, CCR2/metabolism , Animals , Chemokine CCL2/metabolism , Stroke/metabolism , Stroke/pathology , Mice , Signal Transduction , Male , Humans , Mice, Inbred C57BL , Brain/metabolism , Brain/pathology
11.
Exp Gerontol ; 192: 112453, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38723916

ABSTRACT

Social isolation (SI) after stroke reduces recovery. The aim of this study was to evaluate the effects of SI on corticosterone release and recovery after stroke in aged rats. A total of 64 male Wistar rats (aged 24 months) were used in the present study. All rats were housed in pairs for two weeks. After two weeks, rats were randomly assigned to one of four groups: (1) rats underwent sham surgery and kept socially isolated (control/social isolated (CO/SI) group); (2) rats underwent sham surgery and kept pair housed (control/pair housed (CO/PH) group); (3) rats underwent middle cerebral artery occlusion (MCAO) surgery and kept socially isolated (stroke/isolated (ST/SI) group); (4) rats underwent MCAO surgery and kept pair housed (stroke/pair housed (ST/PH)) group. Behaviors were assessed using the adhesive removal test, rotarod test and social interaction test at 1st, 7th, 14th and 21st days after stroke. Serum biochemical analysis was also performed on the behavioral testing days. Results showed THAT serum corticosterone and MDA levels in CO/PH group were significantly lower than CO/SI group. Serum BDNF levels in CO/PH group was significantly higher than CO/SI group. Serum corticosterone and MDA levels in ST/PH group were lower than ST/SI group. In ST/PH group, serum Total antioxidant capacity (TAC) and BDNF levels were significantly higher than ST/SI group. Biochemical analysis of certain regions of the brain (hippocampus, striatum and cerebral cortex) was performed on 21st day after stroke. In the hippocampus of CO/PH group, BDNF and TAC levels were significantly higher than CO/SI group. The hippocampal MDA level of CO/PH group were significantly lower than CO/SI group. BDNF and TAC levels in the hippocampus, striatum and cerebral cortex of ST/PH group were significantly higher and MDA level was significantly lower as compared with ST/SI group. Both ischemic groups showed sensorimotor recovery over a 21-day period, but recovery of ST/PH group was significantly greater than ST/SI group. Total social interaction time in ST/PH group was significantly longer than ST/SI group. Based on the results of this study, social interaction after stroke enhances histologic and sensorimotor recovery through reduction of HPA activity and corticosterone release, leading to increased TAC and BDNF levels.


Subject(s)
Behavior, Animal , Brain-Derived Neurotrophic Factor , Corticosterone , Infarction, Middle Cerebral Artery , Rats, Wistar , Social Isolation , Animals , Social Isolation/psychology , Corticosterone/blood , Male , Brain-Derived Neurotrophic Factor/metabolism , Brain-Derived Neurotrophic Factor/blood , Infarction, Middle Cerebral Artery/metabolism , Rats , Recovery of Function , Stroke/metabolism , Stroke/psychology , Malondialdehyde/metabolism , Disease Models, Animal , Aging/physiology , Aging/metabolism , Oxidative Stress
12.
Int J Mol Sci ; 25(10)2024 May 20.
Article in English | MEDLINE | ID: mdl-38791605

ABSTRACT

MicroRNAs (miRNAs) are small non-coding RNA molecules that regulate gene expression by binding to target messenger RNAs (mRNAs). miRNAs have been implicated in a variety of cardiovascular and neurological diseases, such as myocardial infarction, cardiomyopathies of various geneses, rhythmological diseases, neurodegenerative illnesses and strokes. Numerous studies have focused on the expression of miRNA patterns with respect to atrial fibrillation (AF) or acute ischemic stroke (AIS) However, only a few studies have addressed the expression pattern of miRNAs in patients with AF and AIS in order to provide not only preventive information but also to identify therapeutic potentials. Therefore, the aim of this review is to summarize 18 existing manuscripts that have dealt with this combined topic of AF and associated AIS in detail and to shed light on the most frequently mentioned miRNAs-1, -19, -21, -145 and -146 with regard to their molecular mechanisms and targets on both the heart and the brain. From this, possible diagnostic and therapeutic consequences for the future could be derived.


Subject(s)
Atrial Fibrillation , Biomarkers , MicroRNAs , Stroke , Humans , Atrial Fibrillation/genetics , Atrial Fibrillation/therapy , Atrial Fibrillation/metabolism , MicroRNAs/genetics , Stroke/genetics , Stroke/metabolism , Stroke/therapy , Gene Expression Regulation , Animals
13.
Cell Mol Life Sci ; 81(1): 224, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38769196

ABSTRACT

Synaptic loss is an early event in the penumbra area after an ischemic stroke. Promoting synaptic preservation in this area would likely improve functional neurological recovery. We aimed to detect proteins involved in endogenous protection mechanisms of synapses in the penumbra after stroke and to analyse potential beneficial effects of these candidates for a prospective stroke treatment. For this, we performed Liquid Chromatography coupled to Mass Spectrometry (LC-MS)-based proteomics of synaptosomes isolated from the ipsilateral hemispheres of mice subjected to experimental stroke at different time points (24 h, 4 and 7 days) and compared them to sham-operated mice. Proteomic analyses indicated that, among the differentially expressed proteins between the two groups, cystatin C (CysC) was significantly increased at 24 h and 4 days following stroke, before returning to steady-state levels at 7 days, thus indicating a potential transient and intrinsic rescue mechanism attempt of neurons. When CysC was applied to primary neuronal cultures subjected to an in vitro model of ischemic damage, this treatment significantly improved the preservation of synaptic structures. Notably, similar effects were observed when CysC was loaded into brain-derived extracellular vesicles (BDEVs). Finally, when CysC contained in BDEVs was administered intracerebroventricularly to stroked mice, it significantly increased the expression of synaptic markers such as SNAP25, Homer-1, and NCAM in the penumbra area compared to the group supplied with empty BDEVs. Thus, we show that CysC-loaded BDEVs promote synaptic protection after ischemic damage in vitro and in vivo, opening the possibility of a therapeutic use in stroke patients.


Subject(s)
Brain Ischemia , Brain , Cystatin C , Extracellular Vesicles , Mice, Inbred C57BL , Synapses , Animals , Extracellular Vesicles/metabolism , Extracellular Vesicles/transplantation , Cystatin C/metabolism , Synapses/metabolism , Mice , Male , Brain Ischemia/metabolism , Brain Ischemia/pathology , Brain/metabolism , Brain/pathology , Proteomics/methods , Synaptosomes/metabolism , Neurons/metabolism , Stroke/metabolism , Stroke/pathology , Stroke/therapy , Cells, Cultured , Disease Models, Animal
14.
J Neuroinflammation ; 21(1): 86, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38584255

ABSTRACT

Ischemic stroke is the leading cause of adult disability. Ischemia leads to progressive neuronal death and synapse loss. The engulfment of stressed synapses by microglia further contributes to the disruption of the surviving neuronal network and related brain function. Unfortunately, there is currently no effective target for suppressing the microglia-mediated synapse engulfment. Stimulator of interferon genes (STING) is an important participant in innate immune response. In the brain, microglia are the primary cell type that mediate immune response after brain insult. The intimate relationship between STING and microglia-mediated neuroinflammation has been gradually established. However, whether STING affects other functions of microglia remains elusive. In this study, we found that STING regulated microglial phagocytosis of synapses after photothrombotic stroke. The treatment of STING inhibitor H151 significantly improved the behavioral performance of injured mice in grid-walking test, cylinder test, and adhesive removal test after stroke. Moreover, the puncta number of engulfed SYP or PSD95 in microglia was reduced after consecutive H151 administration. Further analysis showed that the mRNA levels of several complement components and phagocytotic receptors were decreased after STING inhibition. Transcriptional factor STAT1 is known for regulating most of the decreased molecules. After STING inhibition, the nucleus translocation of phosphorylated STAT1 was also suppressed in microglia. Our data uncovered the novel regulatory effects of STING in microglial phagocytosis after stroke, and further emphasized STING as a potential drug-able target for post-stroke functional recovery.


Subject(s)
Brain Ischemia , Stroke , Animals , Humans , Mice , Brain Ischemia/metabolism , Microglia/metabolism , Phagocytosis , Stroke/complications , Stroke/metabolism , Synapses/metabolism
15.
Biomed Pharmacother ; 174: 116560, 2024 May.
Article in English | MEDLINE | ID: mdl-38583338

ABSTRACT

Neuronal ferroptosis and autophagy are crucial in the pathogenesis of cerebral ischemia-reperfusion injury (CIRI). Mastoparan M (Mast-M), extracted from the crude venom of Vespa magnifica (Smith), comprises 14 amino acid residues. Previous studies suggested that Mast-M reduces neuronal damage following global CIRI, but its protective mechanisms remain unclear. The present study examined the effect of Mast-M on middle cerebral artery occlusion/reperfusion (MCAO/R) induced neurological deficits using Grip, Rotarod, Longa test, and TTC staining, followed by treating the mice for three days with Mast-M (20, 40, and 80 µg/kg, subcutaneously). The results demonstrate that Mast-M promotes functional recovery in mice post-ischemic stroke, evidenced by improved neurological impairment, reduced infarct volume and neuronal damage. Meanwhile, the level of iron (Fe2+) and malonyldialdehyde was decreased in the ischemic hemisphere of MCAO/R mice at 24 hours or 48 hours by Mast-M (80 µg/kg) treatment, while the expression of NRF2, x-CT, GPX4, and LC3B protein was increased. Furthermore, these findings were validated in three models-oxygen-glucose deprivation/ reoxygenation, H2O2-induced peroxidation, and erastin-induced ferroptosis-in hippocampal neuron HT22 cells or primary neurons. These data suggested that Mast-M activates autophagy as well as inhibits ferroptosis. Finally, autophagy inhibitors were introduced to determine the relationship between the autophagy and ferroptosis, indicating that Mast-M alleviates ferroptosis by activating autophagy. Taken together, this study described that Mast-M alleviates cerebral infarction, neurologic impairment, and neuronal damage by activating autophagy and inhibiting ferroptosis, presenting a potential therapeutic approach for CIRI.


Subject(s)
Autophagy , Ferroptosis , Infarction, Middle Cerebral Artery , Recovery of Function , Animals , Autophagy/drug effects , Ferroptosis/drug effects , Male , Mice , Recovery of Function/drug effects , Infarction, Middle Cerebral Artery/drug therapy , Infarction, Middle Cerebral Artery/pathology , Infarction, Middle Cerebral Artery/metabolism , Mice, Inbred C57BL , Wasp Venoms/pharmacology , Neuroprotective Agents/pharmacology , Reperfusion Injury/drug therapy , Reperfusion Injury/metabolism , Reperfusion Injury/pathology , Neurons/drug effects , Neurons/metabolism , Neurons/pathology , Disease Models, Animal , Stroke/drug therapy , Stroke/metabolism , Stroke/pathology
17.
Pharmacol Rep ; 76(3): 463-474, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38632185

ABSTRACT

Obesity, a prominent risk factor for the development of heart attacks and several cardiovascular ailments. Obesity ranks as the second most significant avoidable contributor to mortality, whereas stroke stands as the second leading cause of death on a global scale. While changes in lifestyle have been demonstrated to have significant impacts on weight management, the long-term weight loss remains challenging, and the global prevalence of obesity continues to rise. The pathophysiology of obesity has been extensively studied during the last few decades, and an increasing number of signal transduction pathways have been linked to obesity preclinically. This review is focused on signaling pathways, and their respective functions in regulating the consumption of fatty food as well as accumulation of adipose tissue, and the resulting morphological and cognitive changes in the brain of individuals with obesity. We have also emphasized the recent progress in the mechanisms behind the emergence of obesity, as elucidated by both experimental and clinical investigations. The mounting understanding of signaling transduction may shed light on the future course of obesity research as we move into a new era of precision medicine.


Subject(s)
Obesity , Signal Transduction , Stroke , Humans , Obesity/metabolism , Obesity/complications , Obesity/physiopathology , Animals , Stroke/metabolism , Stroke/physiopathology , Adipose Tissue/metabolism , Brain/metabolism , Brain/pathology , Brain/physiopathology
18.
Fluids Barriers CNS ; 21(1): 35, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38622710

ABSTRACT

Early breach of the blood-brain barrier (BBB) and consequently extravasation of blood-borne substances into the brain parenchyma is a common hallmark of ischemic stroke. Although BBB breakdown is associated with an increased risk of cerebral hemorrhage and poor clinical prognosis, the cause and mechanism of this process are largely unknown. The aim of this study was to establish an imaging and analysis protocol which enables investigation of the dynamics of BBB breach in relation to hemodynamic properties along the arteriovenous axis. Using longitudinal intravital two-photon imaging following photothrombotic induction of ischemic stroke through a cranial window, we were able to study the response of the cerebral vasculature to ischemia, from the early critical hours to the days/weeks after the infarct. We demonstrate that disruption of the BBB and hemodynamic parameters, including perturbed blood flow, can be studied at single-vessel resolution in the three-dimensional space as early as 30 min after vessel occlusion. Further, we show that this protocol permits longitudinal studies on the response of individual blood vessels to ischemia over time, thus enabling detection of (maladaptive) vascular remodeling such as intussusception, angiogenic sprouting and entanglement of vessel networks. Taken together, this in vivo two-photon imaging and analysis protocol will be useful in future studies investigating the molecular and cellular mechanisms, and the spatial contribution, of BBB breach to disease progression which might ultimately aid the development of new and more precise treatment strategies for ischemic stroke.


Subject(s)
Brain Ischemia , Ischemic Stroke , Stroke , Humans , Blood-Brain Barrier/metabolism , Stroke/metabolism , Brain Ischemia/diagnostic imaging , Brain Ischemia/metabolism , Ischemia/metabolism
19.
Eur J Neurosci ; 59(11): 3009-3029, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38576159

ABSTRACT

Metabolic disorders are risk factors for stroke exacerbating subsequent complications. Rapidly after brain injury, a glial scar forms, preventing excessive inflammation and limiting axonal regeneration. Despite the growing interest in wound healing following brain injury, the formation of a glial scar in the context of metabolic disorders is poorly documented. In this study, we used db/db mice to investigate the impact of metabolic perturbations on brain repair mechanisms, with a focus on glial scarring. First, we confirmed the development of obesity, poor glucose regulation, hyperglycaemia and liver steatosis in these mice. Then, we observed that 3 days after a 30-min middle cerebral artery occlusion (MCAO), db/db mice had larger infarct area compared with their control counterparts. We next investigated reactive gliosis and glial scar formation in db/+ and db/db mice. We demonstrated that astrogliosis and microgliosis were exacerbated 3 days after stroke in db/db mice. Furthermore, we also showed that the synthesis of extracellular matrix (ECM) proteins (i.e., chondroitin sulphate proteoglycan, collagen IV and tenascin C) was increased in db/db mice. Consequently, we demonstrated for the first time that metabolic disorders impair reactive gliosis post-stroke and increase ECM deposition. Given that the damage size is known to influence glial scar, this study now raises the question of the direct impact of hyperglycaemia/obesity on reactive gliosis and glia scar. It paves the way to promote the development of new therapies targeting glial scar formation to improve functional recovery after stroke in the context of metabolic disorders.


Subject(s)
Cicatrix , Gliosis , Infarction, Middle Cerebral Artery , Animals , Gliosis/metabolism , Gliosis/pathology , Mice , Cicatrix/metabolism , Cicatrix/pathology , Infarction, Middle Cerebral Artery/metabolism , Neuroglia/metabolism , Neuroglia/pathology , Male , Mice, Inbred C57BL , Metabolic Diseases/metabolism , Metabolic Diseases/etiology , Stroke/metabolism , Stroke/pathology , Obesity/metabolism , Obesity/complications , Extracellular Matrix Proteins/metabolism , Hyperglycemia/metabolism
20.
Brain Res Bull ; 212: 110967, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38670470

ABSTRACT

PURPOSE: Post-stroke cognitive impairment (PSCI) is a common complication of ischemic stroke episodes. Memory impairment is an important component of the poststroke cognitive syndrome. Microglial activation plays a critical role in stroke-induced neuroinflammation. Previous studies have reported that electroacupuncture (EA) provides neuroprotective effects by reducing the expression levels of the Purinergic receptor P2X ligand-gated ion channel 7 (P2X7) and inhibiting neuroinflammation in rat model of ischemic stroke. Further understanding of the role and connections between P2X7R and microglial activation in EA-induced anti-inflammatory can reveal novel targets for post-stroke memory impairment treatment. METHODS: A Middle cerebral artery occlusion and reperfusion (MCAO/R) model was established. We used 2'(3')-O-(4-benzoyl) benzoyl ATP (BzATP) as a P2X7R agonist. Following MCAO/R injury, the rats underwent EA therapy at the Baihui (DU20) and Shenting (DU24) acupoints for seven consecutive days. The Barnes maze test was used to evaluate memory function. Following intervention, a T2 weighted images (T2WI) scan was performed to identify changes in cerebral infarction volume in MCAO/R rats. The levels of Interleukin-1ß (IL-1ß), Interleukin-6 (IL-6) and Interleukin-4 (IL-4), Interleukin-10 (IL-10) in the peri-infarct hippocampal were examined by ELISA. Immunofluorescence was employed to evaluate Iba-1+ / P2X7R+, Iba-1+/ iNOS+ and Iba-1+/ Arg-1+ cell populations in the peri-infarct hippocampal DG area. The protein expression of P2X7R, Nuclear factor E2-related factor 2 (Nrf2), Recombinant nlr family, pyrin domain containing protein 3 (NLRP3), Inducible nitric oxide synthase (iNOS) and Arginase-1 (Arg-1) in the peri-infarct hippocampal were investigated using western blot assays. Besides, we also measured the levels of reactive oxygen species (ROS), superoxide dismutase (SOD) and malondialdehyde (MDA). RESULTS: We found EA treatment reduced inflammation and oxidative stress, which is consistent with a decrease in P2X7R expression and improved learning and memory functions. In contrast, we found BzATP enhanced inflammation and oxidative stress. Moreover, our results showed EA treatment up-regulated Nrf2, down-regulated NLRP3, and promoted microglia M2 polarization. Finally, EA-mediated positive effects were reversed by intracerebroventricular injection of BzATP, which is consistent with an increase in P2X7R expression. CONCLUSION: EA ameliorates memory impairment in a rat model of ischemic stroke by reducing inflammation and ROS through the inhibition of P2X7R expression. In turn, this mechanism regulates Nrf2 and NLRP3 expression, suggesting EA is beneficial for ischemic stroke treatment using P2X7R as target.


Subject(s)
Electroacupuncture , Memory Disorders , Microglia , Neuroinflammatory Diseases , Rats, Sprague-Dawley , Receptors, Purinergic P2X7 , Stroke , Animals , Electroacupuncture/methods , Receptors, Purinergic P2X7/metabolism , Microglia/metabolism , Male , Memory Disorders/therapy , Memory Disorders/etiology , Memory Disorders/metabolism , Rats , Stroke/metabolism , Stroke/complications , Stroke/therapy , Neuroinflammatory Diseases/metabolism , Infarction, Middle Cerebral Artery/complications , Infarction, Middle Cerebral Artery/therapy , Infarction, Middle Cerebral Artery/metabolism , Disease Models, Animal , Hippocampus/metabolism , Ischemic Stroke/metabolism , Ischemic Stroke/complications
SELECTION OF CITATIONS
SEARCH DETAIL
...