Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 9.473
Filter
1.
Commun Biol ; 7(1): 718, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38862747

ABSTRACT

Premature brain aging is associated with poorer cognitive reserve and lower resilience to injury. When there are focal brain lesions, brain regions may age at different rates within the same individual. Therefore, we hypothesize that reduced gray matter volume within specific brain systems commonly associated with language recovery may be important for long-term aphasia severity. Here we show that individuals with stroke aphasia have a premature brain aging in intact regions of the lesioned hemisphere. In left domain-general regions, premature brain aging, gray matter volume, lesion volume and age were all significant predictors of aphasia severity. Increased brain age following a stroke is driven by the lesioned hemisphere. The relationship between brain age in left domain-general regions and aphasia severity suggests that degradation is possible to specific brain regions and isolated aging matters for behavior.


Subject(s)
Aphasia , Brain , Humans , Aphasia/physiopathology , Aphasia/pathology , Aphasia/etiology , Female , Male , Middle Aged , Aged , Brain/pathology , Brain/physiopathology , Aging, Premature/physiopathology , Aging, Premature/pathology , Magnetic Resonance Imaging , Stroke/physiopathology , Stroke/complications , Stroke/pathology , Aging/pathology , Severity of Illness Index , Gray Matter/pathology , Gray Matter/diagnostic imaging , Adult
2.
Exp Neurol ; 378: 114843, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38823675

ABSTRACT

Poststroke neuroinflammation exacerbates disease progression. [11C]PK11195-positron emission tomography (PET) imaging has been used to visualize neuroinflammation; however, its short half-life of 20 min limits its clinical use. [123I]CLINDE has a longer half-life (13h); therefore, [123I]CLINDE-single-photon emission computed tomography (SPECT) imaging is potentially more practical than [11C]PK11195-PET imaging in clinical settings. The objectives of this study were to 1) validate neuroinflammation imaging using [123I]CLINDE and 2) investigate the mechanisms underlying stroke in association with neuroinflammation using multimodal techniques, including magnetic resonance imaging (MRI), gas-PET, and histological analysis, in a rat model of ischemic stroke, that is, permanent middle cerebral artery occlusion (pMCAo). At 6 days post-pMCAo, [123I]CLINDE-SPECT considerably corresponded to the immunohistochemical images stained with the CD68 antibody (a marker for microglia/microphages), comparable to the level observed in [11C]PK11195-PET images. In addition, the [123I]CLINDE-SPECT images corresponded well with autoradiography images. Rats with severe infarcts, as defined by MRI, exhibited marked neuroinflammation in the peri-infarct area and less neuroinflammation in the ischemic core, accompanied by a substantial reduction in the cerebral metabolic rate of oxygen (CMRO2) in 15O-gas-PET. Rats with moderate-to-mild infarcts exhibited neuroinflammation in the ischemic core, where CMRO2 levels were mildly reduced. This study demonstrates that [123I]CLINDE-SPECT imaging is suitable for neuroinflammation imaging and that the distribution of neuroinflammation varies depending on the severity of infarction.


Subject(s)
Disease Models, Animal , Tomography, Emission-Computed, Single-Photon , Animals , Rats , Tomography, Emission-Computed, Single-Photon/methods , Male , Rats, Sprague-Dawley , Neuroinflammatory Diseases/diagnostic imaging , Neuroinflammatory Diseases/pathology , Neuroinflammatory Diseases/metabolism , Magnetic Resonance Imaging/methods , Stroke/diagnostic imaging , Stroke/pathology , Stroke/metabolism , Infarction, Middle Cerebral Artery/diagnostic imaging , Infarction, Middle Cerebral Artery/pathology , Infarction, Middle Cerebral Artery/metabolism , Positron-Emission Tomography/methods , Brain/diagnostic imaging , Brain/metabolism , Brain/pathology
3.
Biochem Biophys Res Commun ; 724: 150216, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-38851140

ABSTRACT

Death-associated protein kinase (DAPK) 1 is a critical mediator for neuronal cell death in cerebral ischemia, but its role in blood-brain barrier (BBB) disruption is incompletely understood. Here, we found that endothelial-specific deletion of Dapk1 using Tie2 Cre protected the brain of Dapk1fl/fl mice against middle cerebral artery occlusion (MCAO), characterized by mitigated Evans blue dye (EBD) extravasation, reduced infarct size and improved behavior. In vitro experiments also indicated that DAPK1 deletion inhibited oxygen-glucose deprivation (OGD)-induced tight junction alteration between cerebral endothelial cells (CECs). Mechanistically, we revealed that DAPK1-DAPK3 interaction activated cytosolic phospholipase A2 (cPLA2) in OGD-stimulated CECs. Our results thus suggest that inhibition of endothelial DAPK1 specifically prevents BBB damage after stroke.


Subject(s)
Blood-Brain Barrier , Death-Associated Protein Kinases , Endothelial Cells , Animals , Death-Associated Protein Kinases/metabolism , Death-Associated Protein Kinases/genetics , Death-Associated Protein Kinases/deficiency , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/pathology , Mice , Endothelial Cells/metabolism , Endothelial Cells/pathology , Male , Gene Deletion , Stroke/metabolism , Stroke/pathology , Stroke/genetics , Infarction, Middle Cerebral Artery/metabolism , Infarction, Middle Cerebral Artery/pathology , Infarction, Middle Cerebral Artery/genetics , Mice, Inbred C57BL , Mice, Knockout , Glucose/metabolism , Glucose/deficiency , Tight Junctions/metabolism
4.
Neuroimage ; 295: 120664, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38825217

ABSTRACT

BACKGROUND: Stroke often damages the basal ganglia, leading to atypical and transient aphasia, indicating that post-stroke basal ganglia aphasia (PSBGA) may be related to different anatomical structural damage and functional remodeling rehabilitation mechanisms. The basal ganglia contain dense white matter tracts (WMTs). Hence, damage to the functional tract may be an essential anatomical structural basis for the development of PSBGA. METHODS: We first analyzed the clinical characteristics of PSBGA in 28 patients and 15 healthy controls (HCs) using the Western Aphasia Battery and neuropsychological test batteries. Moreover, we investigated white matter injury during the acute stage using diffusion magnetic resonance imaging scans for differential tractography. Finally, we used multiple regression models in correlation tractography to analyze the relationship between various language functions and quantitative anisotropy (QA) of WMTs. RESULTS: Compared with HCs, patients with PSBGA showed lower scores for fluency, comprehension (auditory word recognition and sequential commands), naming (object naming and word fluency), reading comprehension of sentences, Mini-Mental State Examination, and Montreal Cognitive Assessment, along with increased scores in Hamilton Anxiety Scale-17 and Hamilton Depression Scale-17 within 7 days after stroke onset (P < 0.05). Differential tractography revealed that patients with PSBGA had damaged fibers, including in the body fibers of the corpus callosum, left cingulum bundles, left parietal aslant tracts, bilateral superior longitudinal fasciculus II, bilateral thalamic radiation tracts, left fornix, corpus callosum tapetum, and forceps major, compared with HCs (FDR < 0.02). Correlation tractography highlighted that better comprehension was correlated with a higher QA of the left inferior fronto-occipital fasciculus (IFOF), corpus callosum forceps minor, and left extreme capsule (FDR < 0.0083). Naming was positively associated with the QA of the left IFOF, forceps minor, left arcuate fasciculus, and uncinate fasciculus (UF) (FDR < 0.0083). Word fluency of naming was also positively associated with the QA of the forceps minor, left IFOF, and thalamic radiation tracts (FDR < 0.0083). Furthermore, reading was positively correlated with the QA of the forceps minor, left IFOF, and UF (FDR < 0.0083). CONCLUSION: PSBGA is primarily characterized by significantly impaired word fluency of naming and preserved repetition abilities, as well as emotional and cognitive dysfunction. Damaged limbic pathways, dorsally located tracts in the left hemisphere, and left basal ganglia pathways are involved in PSBGA pathogenesis. The results of connectometry analysis further refine the current functional localization model of higher-order neural networks associated with language functions.


Subject(s)
Aphasia , Basal Ganglia , Diffusion Tensor Imaging , Stroke , White Matter , Humans , Male , Female , White Matter/diagnostic imaging , White Matter/pathology , Middle Aged , Aged , Diffusion Tensor Imaging/methods , Basal Ganglia/diagnostic imaging , Basal Ganglia/pathology , Stroke/complications , Stroke/diagnostic imaging , Stroke/pathology , Aphasia/diagnostic imaging , Aphasia/etiology , Aphasia/physiopathology , Aphasia/pathology , Language , Adult , Diffusion Magnetic Resonance Imaging
5.
Neurosci Biobehav Rev ; 162: 105720, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38754714

ABSTRACT

Limb apraxia is a motor disorder frequently observed following a stroke. Apraxic deficits are classically assessed with four tasks: tool use, pantomime of tool use, imitation, and gesture understanding. These tasks are supported by several cognitive processes represented in a left-lateralized brain network including inferior frontal gyrus, inferior parietal lobe (IPL), and lateral occipito-temporal cortex (LOTC). For the past twenty years, voxel-wise lesion symptom mapping (VLSM) studies have been used to unravel the neural correlates associated with apraxia, but none of them has proposed a comprehensive view of the topic. In the present work, we proposed to fill this gap by performing a systematic Anatomic Likelihood Estimation meta-analysis of VLSM studies which included tasks traditionally used to assess apraxia. We found that the IPL was crucial for all the tasks. Moreover, lesions within the LOTC were more associated with imitation deficits than tool use or pantomime, confirming its important role in higher visual processing. Our results questioned traditional neurocognitive models on apraxia and may have important clinical implications.


Subject(s)
Apraxias , Humans , Apraxias/physiopathology , Apraxias/diagnostic imaging , Apraxias/etiology , Apraxias/pathology , Brain Mapping , Brain/physiopathology , Brain/diagnostic imaging , Brain/pathology , Likelihood Functions , Brain Injuries/physiopathology , Brain Injuries/pathology , Brain Injuries/diagnostic imaging , Stroke/physiopathology , Stroke/diagnostic imaging , Stroke/pathology , Stroke/complications
6.
Brain ; 147(6): 2203-2213, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38797521

ABSTRACT

Stuttering affects approximately 1 in 100 adults and can result in significant communication problems and social anxiety. It most often occurs as a developmental disorder but can also be caused by focal brain damage. These latter cases may lend unique insight into the brain regions causing stuttering. Here, we investigated the neuroanatomical substrate of stuttering using three independent datasets: (i) case reports from the published literature of acquired neurogenic stuttering following stroke (n = 20, 14 males/six females, 16-77 years); (ii) a clinical single study cohort with acquired neurogenic stuttering following stroke (n = 20, 13 males/seven females, 45-87 years); and (iii) adults with persistent developmental stuttering (n = 20, 14 males/six females, 18-43 years). We used the first two datasets and lesion network mapping to test whether lesions causing acquired stuttering map to a common brain network. We then used the third dataset to test whether this lesion-based network was relevant to developmental stuttering. In our literature dataset, we found that lesions causing stuttering occurred in multiple heterogeneous brain regions, but these lesion locations were all functionally connected to a common network centred around the left putamen, including the claustrum, amygdalostriatal transition area and other adjacent areas. This finding was shown to be specific for stuttering (PFWE < 0.05) and reproducible in our independent clinical cohort of patients with stroke-induced stuttering (PFWE < 0.05), resulting in a common acquired stuttering network across both stroke datasets. Within the common acquired stuttering network, we found a significant association between grey matter volume and stuttering impact for adults with persistent developmental stuttering in the left posteroventral putamen, extending into the adjacent claustrum and amygdalostriatal transition area (PFWE < 0.05). We conclude that lesions causing acquired neurogenic stuttering map to a common brain network, centred to the left putamen, claustrum and amygdalostriatal transition area. The association of this lesion-based network with symptom severity in developmental stuttering suggests a shared neuroanatomy across aetiologies.


Subject(s)
Brain , Stroke , Stuttering , Humans , Stuttering/pathology , Stuttering/etiology , Male , Female , Middle Aged , Adult , Adolescent , Aged , Aged, 80 and over , Young Adult , Brain/pathology , Brain/diagnostic imaging , Stroke/complications , Stroke/pathology , Magnetic Resonance Imaging , Brain Mapping/methods
7.
Neuroimage Clin ; 42: 103612, 2024.
Article in English | MEDLINE | ID: mdl-38692208

ABSTRACT

BACKGROUND: Subcortical stroke may significantly alter the cerebral cortical structure and affect attention function, but the details of this process remain unclear. The study aimed to investigate the neural substrates underlying attention impairment in patients with subcortical stroke. MATERIALS AND METHODS: In this prospective observational study, two distinct datasets were acquired to identify imaging biomarkers underlying attention deficit. The first dataset consisted of 86 patients with subcortical stroke, providing a cross-sectional perspective, whereas the second comprised 108 patients with stroke, offering longitudinal insights. All statistical analyses were subjected to false discovery rate correction upon P < 0.05. RESULTS: In the chronic-stage data, the stroke group exhibited significantly poorer attention function compared with that of the control group. The cortical structure analysis showed that patients with stroke exhibited decreased cortical thickness of the precentral gyrus and surface area of the cuneus, along with an increase in various frontal, occipital, and parietal cortices regions. The declined attention function positively correlated with the superior frontal gyrus cortical thickness and supramarginal gyrus surface area. In the longitudinal dataset, patients with stroke showed gradually increasing cortical thickness and surface area within regions of obvious structural reorganization. Furthermore, deficient attention positively correlated with supramarginal gyrus surface area both at the subacute and chronic stages post-stroke. CONCLUSIONS: Subcortical stroke can elicit dynamic reorganization of cortical areas associated with attention impairment. Moreover, the altered surface area of the supramarginal gyrus is a potential neuroimaging biomarker for attention deficits.


Subject(s)
Cerebral Cortex , Magnetic Resonance Imaging , Stroke , Humans , Male , Female , Middle Aged , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/pathology , Cerebral Cortex/physiopathology , Stroke/physiopathology , Stroke/pathology , Stroke/diagnostic imaging , Aged , Magnetic Resonance Imaging/methods , Prospective Studies , Cross-Sectional Studies , Adult , Longitudinal Studies , Attention/physiology
8.
Neurology ; 102(10): e209387, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38701386

ABSTRACT

BACKGROUND AND OBJECTIVES: Motor outcomes after stroke relate to corticospinal tract (CST) damage. The brain leverages surviving neural pathways to compensate for CST damage and mediate motor recovery. Thus, concurrent age-related damage from white matter hyperintensities (WMHs) might affect neurologic capacity for recovery after CST injury. The role of WMHs in post-stroke motor outcomes is unclear. In this study, we evaluated whether WMHs modulate the relationship between CST damage and post-stroke motor outcomes. METHODS: We used data from the multisite ENIGMA Stroke Recovery Working Group with T1 and T2/fluid-attenuated inversion recovery imaging. CST damage was indexed with weighted CST lesion load (CST-LL). WMH volumes were extracted with Freesurfer's SAMSEG. Mixed-effects beta-regression models were fit to test the impact of CST-LL, WMH volume, and their interaction on motor impairment, controlling for age, days after stroke, and stroke volume. RESULTS: A total of 223 individuals were included. WMH volume related to motor impairment above and beyond CST-LL (ß = 0.178, 95% CI 0.025-0.331, p = 0.022). Relationships varied by WMH severity (mild vs moderate-severe). In individuals with mild WMHs, motor impairment related to CST-LL (ß = 0.888, 95% CI 0.604-1.172, p < 0.001) with a CST-LL × WMH interaction (ß = -0.211, 95% CI -0.340 to -0.026, p = 0.026). In individuals with moderate-severe WMHs, motor impairment related to WMH volume (ß = 0.299, 95% CI 0.008-0.590, p = 0.044), but did not significantly relate to CST-LL or a CST-LL × WMH interaction. DISCUSSION: WMHs relate to motor outcomes after stroke and modify relationships between motor impairment and CST damage. WMH-related damage may be under-recognized in stroke research as a factor contributing to variability in motor outcomes. Our findings emphasize the importance of brain structural reserve in motor outcomes after brain injury.


Subject(s)
Pyramidal Tracts , Stroke , White Matter , Humans , Pyramidal Tracts/diagnostic imaging , Pyramidal Tracts/pathology , Male , Female , Aged , White Matter/diagnostic imaging , White Matter/pathology , Stroke/diagnostic imaging , Stroke/pathology , Stroke/complications , Stroke/physiopathology , Middle Aged , Magnetic Resonance Imaging , Recovery of Function/physiology , Aged, 80 and over
9.
Cell Rep ; 43(5): 114193, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38709635

ABSTRACT

Astrocytes play vital roles in blood-brain barrier (BBB) maintenance, yet how they support BBB integrity under normal or pathological conditions remains poorly defined. Recent evidence suggests that ion homeostasis is a cellular mechanism important for BBB integrity. In the current study, we investigated the function of an astrocyte-specific pH regulator, Slc4a4, in BBB maintenance and repair. We show that astrocytic Slc4a4 is required for normal astrocyte morphological complexity and BBB function. Multi-omics analyses identified increased astrocytic secretion of CCL2 coupled with dysregulated arginine-NO metabolism after Slc4a4 deletion. Using a model of ischemic stroke, we found that loss of Slc4a4 exacerbates BBB disruption, which was rescued by pharmacological or genetic inhibition of the CCL2-CCR2 pathway in vivo. Together, our study identifies the astrocytic Slc4a4-CCL2 and endothelial CCR2 axis as a mechanism controlling BBB integrity and repair, while providing insights for a therapeutic approach against BBB-related CNS disorders.


Subject(s)
Astrocytes , Blood-Brain Barrier , Chemokine CCL2 , Receptors, CCR2 , Stroke , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/pathology , Astrocytes/metabolism , Astrocytes/pathology , Receptors, CCR2/metabolism , Animals , Chemokine CCL2/metabolism , Stroke/metabolism , Stroke/pathology , Mice , Signal Transduction , Male , Humans , Mice, Inbred C57BL , Brain/metabolism , Brain/pathology
10.
Cell Biochem Funct ; 42(4): e4059, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38773900

ABSTRACT

Cerebral ischemic stroke remains a leading cause of mortality and morbidity worldwide. Toll-like receptor 4 (TLR4) has been implicated in neuroinflammatory responses poststroke, particularly in the infiltration of immune cells and polarization of macrophages. This study aimed to elucidate the impact of TLR4 deficiency on neutrophil infiltration and subsequent macrophage polarization after middle cerebral artery occlusion (MCAO), exploring its role in stroke prognosis. The objective was to investigate how TLR4 deficiency influences neutrophil behavior poststroke, its role in macrophage polarization, and its impact on stroke prognosis using murine models. Wild-type and TLR4-deficient adult male mice underwent MCAO induction, followed by various analyses, including flow cytometry to assess immune cell populations, bone marrow transplantation experiments to evaluate TLR4-deficient neutrophil behaviors, and enzyme-linked immunosorbent assay and Western blot analysis for cytokine and protein expression profiling. Neurobehavioral tests and infarct volume analysis were performed to assess the functional and anatomical prognosis poststroke. TLR4-deficient mice exhibited reduced infarct volumes, increased neutrophil infiltration, and reduced M1-type macrophage polarization post-MCAO compared to wild-type mice. Moreover, the depletion of neutrophils reversed the neuroprotective effects observed in TLR4-deficient mice, suggesting the involvement of neutrophils in mediating TLR4's protective role. Additionally, N1-type neutrophils were found to promote M1 macrophage polarization via neutrophil gelatinase-associated lipocalin (NGAL) secretion, a process blocked by TLR4 deficiency. The study underscores the protective role of TLR4 deficiency in ischemic stroke, delineating its association with increased N2-type neutrophil infiltration, diminished M1 macrophage polarization, and reduced neuroinflammatory responses. Understanding the interplay between TLR4, neutrophils, and macrophages sheds light on potential therapeutic targets for stroke management, highlighting TLR4 as a promising avenue for intervention in stroke-associated neuroinflammation and tissue damage.


Subject(s)
Macrophages , Mice, Inbred C57BL , Mice, Knockout , Neutrophil Infiltration , Toll-Like Receptor 4 , Animals , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 4/deficiency , Mice , Male , Macrophages/metabolism , Macrophages/immunology , Prognosis , Stroke/metabolism , Stroke/pathology , Disease Models, Animal , Infarction, Middle Cerebral Artery/metabolism , Infarction, Middle Cerebral Artery/pathology , Neutrophils/metabolism , Neutrophils/immunology
11.
CNS Neurosci Ther ; 30(5): e14744, 2024 05.
Article in English | MEDLINE | ID: mdl-38727249

ABSTRACT

BACKGROUND: Stroke is an acute cerebrovascular disease in which brain tissue is damaged due to sudden obstruction of blood flow to the brain or the rupture of blood vessels in the brain, which can prompt ischemic or hemorrhagic stroke. After stroke onset, ischemia, hypoxia, infiltration of blood components into the brain parenchyma, and lysed cell fragments, among other factors, invariably increase blood-brain barrier (BBB) permeability, the inflammatory response, and brain edema. These changes lead to neuronal cell death and synaptic dysfunction, the latter of which poses a significant challenge to stroke treatment. RESULTS: Synaptic dysfunction occurs in various ways after stroke and includes the following: damage to neuronal structures, accumulation of pathologic proteins in the cell body, decreased fluidity and release of synaptic vesicles, disruption of mitochondrial transport in synapses, activation of synaptic phagocytosis by microglia/macrophages and astrocytes, and a reduction in synapse formation. CONCLUSIONS: This review summarizes the cellular and molecular mechanisms related to synapses and the protective effects of drugs or compounds and rehabilitation therapy on synapses in stroke according to recent research. Such an exploration will help to elucidate the relationship between stroke and synaptic damage and provide new insights into protecting synapses and restoring neurologic function.


Subject(s)
Stroke , Synapses , Humans , Animals , Synapses/pathology , Synapses/metabolism , Stroke/metabolism , Stroke/pathology , Stroke/complications , Stroke/physiopathology
12.
Cell Rep ; 43(5): 114250, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38762882

ABSTRACT

Acute stroke triggers extensive changes to myeloid immune cell populations in the brain that may be targets for limiting brain damage and enhancing repair. Immunomodulatory approaches will be most effective with precise manipulation of discrete myeloid cell phenotypes in time and space. Here, we investigate how stroke alters mononuclear myeloid cell composition and phenotypes at single-cell resolution and key spatial patterns. Our results show that multiple reactive microglial states and monocyte-derived populations contribute to an extensive myeloid cell repertoire in post-stroke brains. We identify important overlaps and distinctions among different cell types/states that involve ontogeny- and spatial-related properties. Notably, brain connectivity with infarcted tissue underpins the pattern of local and remote altered cell accumulation and reactivity. Our discoveries suggest a global but anatomically governed brain myeloid cell response to stroke that comprises diverse phenotypes arising through intrinsic cell ontogeny factors interacting with exposure to spatially organized brain damage and neuro-axonal cues.


Subject(s)
Brain , Microglia , Myeloid Cells , Phenotype , Stroke , Animals , Brain/pathology , Stroke/pathology , Myeloid Cells/metabolism , Microglia/pathology , Microglia/metabolism , Male , Mice , Mice, Inbred C57BL , Monocytes/metabolism , Monocytes/pathology
13.
Cell Mol Life Sci ; 81(1): 224, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38769196

ABSTRACT

Synaptic loss is an early event in the penumbra area after an ischemic stroke. Promoting synaptic preservation in this area would likely improve functional neurological recovery. We aimed to detect proteins involved in endogenous protection mechanisms of synapses in the penumbra after stroke and to analyse potential beneficial effects of these candidates for a prospective stroke treatment. For this, we performed Liquid Chromatography coupled to Mass Spectrometry (LC-MS)-based proteomics of synaptosomes isolated from the ipsilateral hemispheres of mice subjected to experimental stroke at different time points (24 h, 4 and 7 days) and compared them to sham-operated mice. Proteomic analyses indicated that, among the differentially expressed proteins between the two groups, cystatin C (CysC) was significantly increased at 24 h and 4 days following stroke, before returning to steady-state levels at 7 days, thus indicating a potential transient and intrinsic rescue mechanism attempt of neurons. When CysC was applied to primary neuronal cultures subjected to an in vitro model of ischemic damage, this treatment significantly improved the preservation of synaptic structures. Notably, similar effects were observed when CysC was loaded into brain-derived extracellular vesicles (BDEVs). Finally, when CysC contained in BDEVs was administered intracerebroventricularly to stroked mice, it significantly increased the expression of synaptic markers such as SNAP25, Homer-1, and NCAM in the penumbra area compared to the group supplied with empty BDEVs. Thus, we show that CysC-loaded BDEVs promote synaptic protection after ischemic damage in vitro and in vivo, opening the possibility of a therapeutic use in stroke patients.


Subject(s)
Brain Ischemia , Brain , Cystatin C , Extracellular Vesicles , Mice, Inbred C57BL , Synapses , Animals , Extracellular Vesicles/metabolism , Extracellular Vesicles/transplantation , Cystatin C/metabolism , Synapses/metabolism , Mice , Male , Brain Ischemia/metabolism , Brain Ischemia/pathology , Brain/metabolism , Brain/pathology , Proteomics/methods , Synaptosomes/metabolism , Neurons/metabolism , Stroke/metabolism , Stroke/pathology , Stroke/therapy , Cells, Cultured , Disease Models, Animal
14.
Bull Exp Biol Med ; 176(5): 649-657, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38733482

ABSTRACT

In translational animal study aimed at evaluation of the effectiveness of innovative methods for treating cerebral stroke, including regenerative cell technologies, of particular importance is evaluation of the dynamics of changes in the volume of the cerebral infarction in response to therapy. Among the methods for assessing the focus of infarction, MRI is the most effective and convenient tool for use in preclinical studies. This review provides a description of MR pulse sequences used to visualize cerebral ischemia at various stages of its development, and a detailed description of the MR semiotics of cerebral infarction. A comparison of various methods for morphometric analysis of the focus of a cerebral infarction, including systems based on artificial intelligence for a more objective measurement of the volume of the lesion, is also presented.


Subject(s)
Magnetic Resonance Imaging , Magnetic Resonance Imaging/methods , Animals , Stroke/diagnostic imaging , Stroke/pathology , Brain Ischemia/diagnostic imaging , Brain Ischemia/pathology , Disease Models, Animal , Cerebral Infarction/diagnostic imaging , Cerebral Infarction/pathology , Ischemic Stroke/diagnostic imaging , Ischemic Stroke/pathology , Artificial Intelligence
15.
Cells ; 13(10)2024 May 18.
Article in English | MEDLINE | ID: mdl-38786094

ABSTRACT

Post-stroke cognitive impairment (PSCI) remains the most common consequence of ischemic stroke. In this study, we aimed to investigate the role and mechanisms of melatonin (MT) in improving cognitive dysfunction in stroke mice. We used CoCl2-induced hypoxia-injured SH-SY5Y cells as a cellular model of stroke and photothrombotic-induced ischemic stroke mice as an animal model. We found that the stroke-induced upregulation of mitophagy, apoptosis, and neuronal synaptic plasticity was impaired both in vivo and in vitro. The results of the novel object recognition test and Y-maze showed significant cognitive deficits in the stroke mice, and Nissl staining showed a loss of neurons in the stroke mice. In contrast, MT inhibited excessive mitophagy both in vivo and in vitro and decreased the levels of mitophagy proteins PINK1 and Parkin, and immunofluorescence staining showed reduced co-localization of Tom20 and LC3. A significant inhibition of mitophagy levels could be directly observed under transmission electron microscopy. Furthermore, behavioral experiments and Nissl staining showed that MT ameliorated cognitive deficits and reduced neuronal loss in mice following a stroke. Our results demonstrated that MT inhibits excessive mitophagy and improves PSCI. These findings highlight the potential of MT as a preventive drug for PSCI, offering promising therapeutic implications.


Subject(s)
Cognitive Dysfunction , Melatonin , Mitophagy , Stroke , Animals , Melatonin/pharmacology , Melatonin/therapeutic use , Mitophagy/drug effects , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/pathology , Cognitive Dysfunction/etiology , Mice , Stroke/complications , Stroke/drug therapy , Stroke/pathology , Male , Humans , Disease Models, Animal , Mice, Inbred C57BL , Apoptosis/drug effects , Neurons/drug effects , Neurons/metabolism , Neurons/pathology , Neuronal Plasticity/drug effects , Cell Line, Tumor , Protein Kinases , Ubiquitin-Protein Ligases
16.
Eur Radiol Exp ; 8(1): 52, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38575701

ABSTRACT

BACKGROUND: Nowadays, there is no method to quantitatively characterize the material composition of acute ischemic stroke thrombi prior to intervention, but dual-energy CT (DE-CT) offers imaging-based multimaterial decomposition. We retrospectively investigated the material composition of thrombi ex vivo using DE-CT with histological analysis as a reference. METHODS: Clots of 70 patients with acute ischemic stroke were extracted by mechanical thrombectomy and scanned ex vivo in formalin-filled tubes with DE-CT. Multimaterial decomposition in the three components, i.e., red blood cells (RBC), white blood cells (WBC), and fibrin/platelets (F/P), was performed and compared to histology (hematoxylin/eosin staining) as reference. Attenuation and effective Z values were assessed, and histological composition was compared to stroke etiology according to the Trial of ORG 10172 in Acute Stroke Treatment (TOAST) criteria. RESULTS: Histological and imaging analysis showed the following correlation coefficients for RBC (r = 0.527, p < 0.001), WBC (r = 0.305, p = 0.020), and F/P (r = 0.525, p < 0.001). RBC-rich thrombi presented higher clot attenuation in Hounsfield units than F/P-rich thrombi (51 HU versus 42 HU, p < 0.01). In histological analysis, cardioembolic clots showed less RBC (40% versus 56%, p = 0.053) and more F/P (53% versus 36%, p = 0.024), similar to cryptogenic clots containing less RBC (34% versus 56%, p = 0.006) and more F/P (58% versus 36%, p = 0.003) than non-cardioembolic strokes. No difference was assessed for the mean WBC portions in all TOAST groups. CONCLUSIONS: DE-CT has the potential to quantitatively characterize the material composition of ischemic stroke thrombi. RELEVANCE STATEMENT: Using DE-CT, the composition of ischemic stroke thrombi can be determined. Knowledge of histological composition prior to intervention offers the opportunity to define personalized treatment strategies for each patient to accomplish faster recanalization and better clinical outcomes. KEY POINTS: • Acute ischemic stroke clots present different recanalization success according to histological composition. • Currently, no method can determine clot composition prior to intervention. • DE-CT allows quantitative material decomposition of thrombi ex vivo in red blood cells, white blood cells, and fibrin/platelets. • Histological clot composition differs between stroke etiology. • Insights into the histological composition in situ offer personalized treatment strategies.


Subject(s)
Ischemic Stroke , Stroke , Thrombosis , Humans , Fibrin/analysis , Retrospective Studies , Stroke/diagnostic imaging , Stroke/pathology , Stroke/therapy , Thrombosis/diagnostic imaging , Thrombosis/pathology , Thrombosis/therapy , Tomography, X-Ray Computed/methods
17.
Eur J Neurosci ; 59(11): 3009-3029, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38576159

ABSTRACT

Metabolic disorders are risk factors for stroke exacerbating subsequent complications. Rapidly after brain injury, a glial scar forms, preventing excessive inflammation and limiting axonal regeneration. Despite the growing interest in wound healing following brain injury, the formation of a glial scar in the context of metabolic disorders is poorly documented. In this study, we used db/db mice to investigate the impact of metabolic perturbations on brain repair mechanisms, with a focus on glial scarring. First, we confirmed the development of obesity, poor glucose regulation, hyperglycaemia and liver steatosis in these mice. Then, we observed that 3 days after a 30-min middle cerebral artery occlusion (MCAO), db/db mice had larger infarct area compared with their control counterparts. We next investigated reactive gliosis and glial scar formation in db/+ and db/db mice. We demonstrated that astrogliosis and microgliosis were exacerbated 3 days after stroke in db/db mice. Furthermore, we also showed that the synthesis of extracellular matrix (ECM) proteins (i.e., chondroitin sulphate proteoglycan, collagen IV and tenascin C) was increased in db/db mice. Consequently, we demonstrated for the first time that metabolic disorders impair reactive gliosis post-stroke and increase ECM deposition. Given that the damage size is known to influence glial scar, this study now raises the question of the direct impact of hyperglycaemia/obesity on reactive gliosis and glia scar. It paves the way to promote the development of new therapies targeting glial scar formation to improve functional recovery after stroke in the context of metabolic disorders.


Subject(s)
Cicatrix , Gliosis , Infarction, Middle Cerebral Artery , Animals , Gliosis/metabolism , Gliosis/pathology , Mice , Cicatrix/metabolism , Cicatrix/pathology , Infarction, Middle Cerebral Artery/metabolism , Neuroglia/metabolism , Neuroglia/pathology , Male , Mice, Inbred C57BL , Metabolic Diseases/metabolism , Metabolic Diseases/etiology , Stroke/metabolism , Stroke/pathology , Obesity/metabolism , Obesity/complications , Extracellular Matrix Proteins/metabolism , Hyperglycemia/metabolism
18.
Cells ; 13(8)2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38667286

ABSTRACT

Ischemic stroke is a major cerebrovascular disease with high morbidity and mortality rates; however, effective treatments for ischemic stroke-related neurological dysfunction have yet to be developed. In this study, we generated neural progenitor cells from human leukocyte antigen major loci gene-homozygous-induced pluripotent stem cells (hiPSC-NPCs) and evaluated their therapeutic effects against ischemic stroke. hiPSC-NPCs were intracerebrally transplanted into rat ischemic brains produced by transient middle cerebral artery occlusion at either the subacute or acute stage, and their in vivo survival, differentiation, and efficacy for functional improvement in neurological dysfunction were evaluated. hiPSC-NPCs were histologically identified in host brain tissues and showed neuronal differentiation into vGLUT-positive glutamatergic neurons, extended neurites into both the ipsilateral infarct and contralateral healthy hemispheres, and synaptic structures formed 12 weeks after both acute and subacute stage transplantation. They also improved neurological function when transplanted at the subacute stage with γ-secretase inhibitor pretreatment. However, their effects were modest and not significant and showed a possible risk of cells remaining in their undifferentiated and immature status in acute-stage transplantation. These results suggest that hiPSC-NPCs show cell replacement effects in ischemic stroke-damaged neural tissues, but their efficacy is insufficient for neurological functional improvement after acute or subacute transplantation. Further optimization of cell preparation methods and the timing of transplantation is required to balance the efficacy and safety of hiPSC-NPC transplantation.


Subject(s)
Cell Differentiation , Induced Pluripotent Stem Cells , Ischemic Stroke , Neural Stem Cells , Synapses , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/cytology , Humans , Animals , Neural Stem Cells/metabolism , Neural Stem Cells/transplantation , Neural Stem Cells/cytology , Ischemic Stroke/pathology , Ischemic Stroke/therapy , Rats , Synapses/metabolism , Male , Neurites/metabolism , Brain/pathology , Brain Ischemia/therapy , Brain Ischemia/pathology , Neurons/metabolism , Neurons/pathology , Rats, Sprague-Dawley , Stroke/therapy , Stroke/pathology
19.
J Clin Neurosci ; 124: 54-59, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38643652

ABSTRACT

BACKGROUND: There is conflicting data on whether clot retrieved from mechanical thrombectomy can predict stroke etiology or the success of recanalization. We aimed to analyse the relation between thrombus histology and stroke aetiology as well as recanalization. METHODOLOGY: Histopathological analysis of clots retrieved from patients with acute ischemic stroke and large vessel occlusion was done. Quantification of the amount of fibrin, red blood cells(RBC), platelets and white blood cells (WBC) in the clots were done. The clinical, imaging data and recanalization parameters were collected. The correlation between clot composition and stroke etiology as well as recanalization were analysed. RESULTS: Of the 77 patients, the mean age was 58. 67 ± 12.96 years. The stroke etiology were cardioembolism 44(57.1 %), large artery atherosclerosis 13(16.8 %), other determined aetiology 4(5.1 %) and undetermined in 16(20.7 %) patients. There was no significant correlation between the proportions of RBC-rich, platelet-rich and fibrin-rich thrombi and the stroke etiology. The susceptibility vessel sign was associated with RBC-rich clot(92.3 % vs 7.7 %, p = .03). All RBC-rich clots(100 %) had good recanalization(p = .05). Platelet-rich clots needed less number of passes(64.7 % vs 35.3 %, p = .006) and reduced groin puncture to recanalization time(87.9 % vs 12.1 %, p = .033). WBC-rich clots required lesser number of passes(57.5 % vs 42.5 %, P = .044). In multivariate analysis, WBC-rich clots (OR 0.230, CI 0.07-0.78, p = .018) showed an independent association with reduced recanalization attempts, while platelet-rich clots showed reduced recanalization time(OR 0.09, CI 0.01-0.63, p = .016). CONCLUSION: There was no correlation between thrombus histology and the etiological stroke subtype. However, clot composition predicted the degree of recanalization and number of passes.


Subject(s)
Ischemic Stroke , Humans , Middle Aged , Female , Male , Aged , Ischemic Stroke/etiology , Ischemic Stroke/pathology , Thrombectomy/methods , Adult , Stroke/etiology , Stroke/pathology , Thrombosis/etiology , Thrombosis/pathology , Treatment Outcome , Fibrin/metabolism , Blood Platelets/pathology
20.
Biomed Pharmacother ; 174: 116560, 2024 May.
Article in English | MEDLINE | ID: mdl-38583338

ABSTRACT

Neuronal ferroptosis and autophagy are crucial in the pathogenesis of cerebral ischemia-reperfusion injury (CIRI). Mastoparan M (Mast-M), extracted from the crude venom of Vespa magnifica (Smith), comprises 14 amino acid residues. Previous studies suggested that Mast-M reduces neuronal damage following global CIRI, but its protective mechanisms remain unclear. The present study examined the effect of Mast-M on middle cerebral artery occlusion/reperfusion (MCAO/R) induced neurological deficits using Grip, Rotarod, Longa test, and TTC staining, followed by treating the mice for three days with Mast-M (20, 40, and 80 µg/kg, subcutaneously). The results demonstrate that Mast-M promotes functional recovery in mice post-ischemic stroke, evidenced by improved neurological impairment, reduced infarct volume and neuronal damage. Meanwhile, the level of iron (Fe2+) and malonyldialdehyde was decreased in the ischemic hemisphere of MCAO/R mice at 24 hours or 48 hours by Mast-M (80 µg/kg) treatment, while the expression of NRF2, x-CT, GPX4, and LC3B protein was increased. Furthermore, these findings were validated in three models-oxygen-glucose deprivation/ reoxygenation, H2O2-induced peroxidation, and erastin-induced ferroptosis-in hippocampal neuron HT22 cells or primary neurons. These data suggested that Mast-M activates autophagy as well as inhibits ferroptosis. Finally, autophagy inhibitors were introduced to determine the relationship between the autophagy and ferroptosis, indicating that Mast-M alleviates ferroptosis by activating autophagy. Taken together, this study described that Mast-M alleviates cerebral infarction, neurologic impairment, and neuronal damage by activating autophagy and inhibiting ferroptosis, presenting a potential therapeutic approach for CIRI.


Subject(s)
Autophagy , Ferroptosis , Infarction, Middle Cerebral Artery , Recovery of Function , Animals , Autophagy/drug effects , Ferroptosis/drug effects , Male , Mice , Recovery of Function/drug effects , Infarction, Middle Cerebral Artery/drug therapy , Infarction, Middle Cerebral Artery/pathology , Infarction, Middle Cerebral Artery/metabolism , Mice, Inbred C57BL , Wasp Venoms/pharmacology , Neuroprotective Agents/pharmacology , Reperfusion Injury/drug therapy , Reperfusion Injury/metabolism , Reperfusion Injury/pathology , Neurons/drug effects , Neurons/metabolism , Neurons/pathology , Disease Models, Animal , Stroke/drug therapy , Stroke/metabolism , Stroke/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...