Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 530
Filter
1.
J Neuroeng Rehabil ; 21(1): 100, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38867287

ABSTRACT

BACKGROUND: In-home rehabilitation systems are a promising, potential alternative to conventional therapy for stroke survivors. Unfortunately, physiological differences between participants and sensor displacement in wearable sensors pose a significant challenge to classifier performance, particularly for people with stroke who may encounter difficulties repeatedly performing trials. This makes it challenging to create reliable in-home rehabilitation systems that can accurately classify gestures. METHODS: Twenty individuals who suffered a stroke performed seven different gestures (mass flexion, mass extension, wrist volar flexion, wrist dorsiflexion, forearm pronation, forearm supination, and rest) related to activities of daily living. They performed these gestures while wearing EMG sensors on the forearm, as well as FMG sensors and an IMU on the wrist. We developed a model based on prototypical networks for one-shot transfer learning, K-Best feature selection, and increased window size to improve model accuracy. Our model was evaluated against conventional transfer learning with neural networks, as well as subject-dependent and subject-independent classifiers: neural networks, LGBM, LDA, and SVM. RESULTS: Our proposed model achieved 82.2% hand-gesture classification accuracy, which was better (P<0.05) than one-shot transfer learning with neural networks (63.17%), neural networks (59.72%), LGBM (65.09%), LDA (63.35%), and SVM (54.5%). In addition, our model performed similarly to subject-dependent classifiers, slightly lower than SVM (83.84%) but higher than neural networks (81.62%), LGBM (80.79%), and LDA (74.89%). Using K-Best features improved the accuracy in 3 of the 6 classifiers used for evaluation, while not affecting the accuracy in the other classifiers. Increasing the window size improved the accuracy of all the classifiers by an average of 4.28%. CONCLUSION: Our proposed model showed significant improvements in hand-gesture recognition accuracy in individuals who have had a stroke as compared with conventional transfer learning, neural networks and traditional machine learning approaches. In addition, K-Best feature selection and increased window size can further improve the accuracy. This approach could help to alleviate the impact of physiological differences and create a subject-independent model for stroke survivors that improves the classification accuracy of wearable sensors. TRIAL REGISTRATION NUMBER: The study was registered in Chinese Clinical Trial Registry with registration number CHiCTR1800017568 in 2018/08/04.


Subject(s)
Gestures , Hand , Neural Networks, Computer , Stroke Rehabilitation , Humans , Stroke Rehabilitation/methods , Stroke Rehabilitation/instrumentation , Hand/physiopathology , Male , Female , Middle Aged , Stroke/complications , Stroke/physiopathology , Aged , Machine Learning , Transfer, Psychology/physiology , Adult , Electromyography , Wearable Electronic Devices
2.
Sensors (Basel) ; 24(11)2024 May 31.
Article in English | MEDLINE | ID: mdl-38894337

ABSTRACT

Stroke is the second most common cause of death worldwide, and it greatly impacts the quality of life for survivors by causing impairments in their upper limbs. Due to the difficulties in accessing rehabilitation services, immersive virtual reality (IVR) is an interesting approach to improve the availability of rehabilitation services. This systematic review evaluates the technological characteristics of IVR systems used in the rehabilitation of upper limb stroke patients. Twenty-five publications were included. Various technical aspects such as game engines, programming languages, headsets, platforms, game genres, and technical evaluation were extracted from these papers. Unity 3D and C# are the primary tools for creating IVR apps, while the Oculus Quest (Meta Platforms Technologies, Menlo Park, CA, USA) is the most often used headset. The majority of systems are created specifically for rehabilitation purposes rather than being readily available for purchase (i.e., commercial games). The analysis also highlights key areas for future research, such as game assessment, the combination of hardware and software, and the potential integration incorporation of biofeedback sensors. The study highlights the significance of technological progress in improving the effectiveness and user-friendliness of IVR. It calls for additional research to fully exploit IVR's potential in enhancing stroke rehabilitation results.


Subject(s)
Stroke Rehabilitation , Upper Extremity , Virtual Reality , Humans , Quality of Life , Stroke/physiopathology , Stroke Rehabilitation/methods , Stroke Rehabilitation/instrumentation , Upper Extremity/physiopathology , Video Games
3.
JMIR Hum Factors ; 11: e56357, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38904991

ABSTRACT

BACKGROUND: Strokes pose a substantial health burden, impacting 1 in 6 people globally. One-tenth of patients will endure a second, often more severe, stroke within a year. Alarmingly, a younger demographic is being affected due to recent lifestyle changes. As fine motor and cognitive issues arise, patient disability as well as the strain on caregivers and health care resources is exacerbated. Contemporary occupational therapy assesses manual dexterity and cognitive functions through object manipulation and pen-and-paper recordings. However, these assessments are typically isolated, which makes it challenging for therapists to comprehensively evaluate specific patient conditions. Furthermore, the reliance on one-on-one training and assessment approaches on manual documentation is inefficient and prone to transcription errors. OBJECTIVE: This study examines the feasibility of using an interactive electronic pegboard for stroke rehabilitation in clinical settings. METHODS: A total of 10 patients with a history of stroke and 10 healthy older individuals were recruited. With a limit of 10 minutes, both groups of participants underwent a series of challenges involving tasks related to manual operation, shape recognition, and color discrimination. All participants underwent the Box and Block Test and the Purdue Pegboard Test to assess manual dexterity, as well as an array of cognitive assessments, including the Trail Making Test and the Mini-Mental Status Examination, which served as a basis to quantify participants' attention, executive functioning, and cognitive abilities. RESULTS: The findings validate the potential application of an interactive electronic pegboard for stroke rehabilitation in clinical contexts. Significant statistical differences (P<.01) were observed across all assessed variables, including age, Box and Block Test results, Purdue Pegboard Test outcomes, Trail Making Test-A scores, and Mini-Mental Status Examination performance, between patients with a history of stroke and their healthy older counterparts. Functional and task testing, along with questionnaire interviews, revealed that patients with a history of stroke demonstrated prolonged completion times and slightly inferior performance. Nonetheless, most patients perceived the prototype as user-friendly and engaging. Thus, in the context of patient rehabilitation interventions or the evaluation of patient cognition, physical functioning, or manual dexterity assessments, the developed pegboard could potentially serve as a valuable tool for hand function, attention, and cognitive rehabilitation, thereby mitigating the burden on health care professionals. CONCLUSIONS: Health care professionals can use digital electronic pegboards not only as a precise one-on-one training tool but also as a flexible system that can be configured for online or offline, single-player or multiplayer use. Through data analysis, a more informed examination of patients' cognitive and functional issues can be conducted. Importantly, patient records will be fully retained throughout practices, exercises, or tests, and by leveraging the characteristics of big data, patients can receive the most accurate rehabilitation prescriptions, thereby assisting them in obtaining optimal care.


Subject(s)
Stroke Rehabilitation , Humans , Male , Female , Aged , Middle Aged , Stroke Rehabilitation/methods , Stroke Rehabilitation/instrumentation , Cognition/physiology , Motor Skills/physiology , User-Computer Interface , Occupational Therapy/methods , Occupational Therapy/instrumentation , Feasibility Studies
4.
J Neuroeng Rehabil ; 21(1): 98, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38851703

ABSTRACT

PURPOSE: This pilot study aimed to investigate the effects of REX exoskeleton rehabilitation robot training on the balance and lower limb function in patients with sub-acute stroke. METHODS: This was a pilot, single-blind, randomized controlled trial. Twenty-four patients with sub-acute stroke (with the course of disease ranging from 3 weeks to 3 months) were randomized into two groups, including a robot group and a control group. Patients in control group received upright bed rehabilitation (n = 12) and those in robot group received exoskeleton rehabilitation robot training (n = 12). The frequency of training in both groups was once a day (60 min each) for 5 days a week for a total of 4 weeks. Besides, the two groups were evaluated before, 2 weeks after and 4 weeks after the intervention, respectively. The primary assessment index was the Berg Balance Scale (BBS), whereas the secondary assessment indexes included the Fugl-Meyer Lower Extremity Motor Function Scale (FMA-LE), the Posture Assessment Scale for Stroke Patients (PASS), the Activities of Daily Living Scale (Modified Barthel Index, MBI), the Tecnobody Balance Tester, and lower extremity muscle surface electromyography (sEMG). RESULTS: The robot group showed significant improvements (P < 0.05) in the primary efficacy index BBS, as well as the secondary efficacy indexes PASS, FMA-LE, MBI, Tecnobody Balance Tester, and sEMG of the lower limb muscles. Besides, there were a significant differences in BBS, PASS, static eye-opening area or dynamic stability limit evaluation indexes between the robotic and control groups (P < 0.05). CONCLUSIONS: This is the first study to investigate the effectiveness of the REX exoskeleton rehabilitation robot in the rehabilitation of patients with stroke. According to our results, the REX exoskeleton rehabilitation robot demonstrated superior potential efficacy in promoting the early recovery of balance and motor functions in patients with sub-acute stroke. Future large-scale randomized controlled studies and follow-up assessments are needed to validate the current findings. CLINICAL TRIALS REGISTRATION: URL: https://www.chictr.org.cn/index.html.Unique identifier: ChiCTR2300068398.


Subject(s)
Exoskeleton Device , Lower Extremity , Postural Balance , Robotics , Stroke Rehabilitation , Humans , Stroke Rehabilitation/instrumentation , Stroke Rehabilitation/methods , Male , Pilot Projects , Female , Middle Aged , Lower Extremity/physiopathology , Postural Balance/physiology , Single-Blind Method , Robotics/instrumentation , Aged , Adult , Stroke/physiopathology , Electromyography , Treatment Outcome , Recovery of Function
5.
Codas ; 36(3): e20230153, 2024.
Article in Portuguese, English | MEDLINE | ID: mdl-38836824

ABSTRACT

PURPOSE: To verify the efficacy of using athletic tape associated with myofunctional therapy in the speech-language-hearing treatment of facial palsy after stroke in the acute phase. METHOD: Randomized controlled clinical study with 88 patients with facial palsy in the acute phase of stroke. The sample was allocated in: Group 1: rehabilitation with orofacial myofunctional therapy and use of athletic tape on the paralyzed zygomaticus major and minor muscles; Group 2: rehabilitation alone with orofacial myofunctional therapy on the paralyzed face; Group 3: no speech-language-hearing intervention for facial paralysis. In the evaluation, facial expression movements were requested, and the degree of impairment was determined according to the House and Brackmann scale. Movement incompetence was obtained from measurements of the face with a digital caliper. After the evaluation, the intervention was carried out as determined for groups 1 and 2. The participants of the three groups were reassessed after 15 days. The statistical analysis used was the generalized equations. RESULTS: The groups were homogeneous in terms of age, measure of disability and functioning, severity of neurological impairment and pre-intervention facial paralysis. Group 1 had a significant improvement in the measure from the lateral canthus to the corner of the mouth, with better results than groups 2 and 3. CONCLUSION: The athletic tape associated with orofacial myofunctional therapy had better results in the treatment of facial paralysis after stroke in the place where it was applied.


OBJETIVO: Verificar a eficácia do uso da bandagem elástica funcional associada à terapia miofuncional no tratamento fonoaudiológico da paralisia facial pós-acidente vascular cerebral na fase aguda. MÉTODO: Estudo clínico controlado randomizado com 88 pacientes com paralisia facial na fase aguda do acidente vascular cerebral. A amostra foi alocada em: Grupo 1: reabilitação com terapia miofuncional orofacial e utilização da bandagem elástica funcional nos músculos zigomáticos maior e menor paralisados; Grupo 2: reabilitação apenas com terapia miofuncional orofacial na face paralisada; Grupo 3: sem qualquer intervenção fonoaudiológica para paralisia facial. Na avaliação foram solicitados os movimentos de mímica facial e o grau do comprometimento foi determinado de acordo com a escala de House e Brackmann. A incompetência do movimento foi obtida a partir de medições da face com paquímetro digital. Após a avaliação, a intervenção foi realizada de acordo como determinado para os grupos 1 e 2. Os participantes dos três grupos foram reavaliados após 15 dias. A análise estatística utilizada foi das equações generalizadas. RESULTADOS: Os grupos foram homogêneos quanto à idade, medida de incapacidade e funcionalidade, gravidade do comprometimento neurológico e da paralisia facial pré-intervenção. O grupo 1 teve melhora significativa na medida canto externo do olho à comissura labial, com melhores resultados quando comparado aos grupos 2 e 3. CONCLUSÃO: A bandagem elástica funcional associada a terapia miofuncional orofacial apresentou melhor resultado no tratamento da paralisia facial após acidente vascular cerebral no local onde foi aplicado.


Subject(s)
Athletic Tape , Facial Paralysis , Myofunctional Therapy , Stroke Rehabilitation , Stroke , Humans , Facial Paralysis/rehabilitation , Female , Male , Middle Aged , Stroke/complications , Stroke Rehabilitation/methods , Stroke Rehabilitation/instrumentation , Myofunctional Therapy/instrumentation , Myofunctional Therapy/methods , Treatment Outcome , Aged , Adult
6.
Neurology ; 103(2): e209495, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38870442

ABSTRACT

BACKGROUND AND OBJECTIVES: Robot technology to support upper limb (UL) rehabilitation poststroke has rapidly developed over the past 3 decades. We aimed to assess the effects of UL-robots (UL-RTs) on recovery of UL motor functioning and capacity poststroke when compared with any non-UL-RT and to identify variables that are associated with the found effect sizes (ESs). METHODS: Randomized controlled trials (RCTs) comparing UL-RTs with any other intervention on patients with UL limitations poststroke were identified in electronic searches from PubMed, Wiley/Cochrane Libraries, Embase, Cumulative Index of Nursing and Allied Health Literature, Web of Science, SportDISCUS, Physiotherapy Evidence Database (PEDro), and Google Scholar from inception until August 1, 2022. Two reviewers independently extracted relevant data using a Microsoft Excel spreadsheet. Meta-analyses were performed for measures of UL-muscle synergism, muscle power, muscle tone, capacity, self-reported motor performance, and basic activities of daily living (ADLs). Subgroup, sensitivity, and meta-regression analyses were applied to identify factors potentially associated with found ESs. Analyses were performed using Review Manager version 5.4 or IBM SPSS statistics version 27. RESULTS: Ninety RCTs (N = 4,311) were included (median PEDro score 6 [6-7]). Meta-analyses of 86 trials (N = 4,240) showed small significant improvements in UL-muscle synergism (Fugl-Meyer Assessment of the UL [FM-UL]) (mean difference 2.23 [1.11-3.35]), muscle power (standardized mean difference [SMD] 0.39 [0.16-0.61]), motor performance (SMD 0.11 [0.00-0.21]), and basic ADLs (SMD 0.28 [0.10-0.45]). No overall effects were found for muscle tone (SMD -0.1 [-0.26 to 0.07]) or UL-capacity (SMD 0.04 [-0.10 to 0.18]), except with exoskeletons (SMD 0.27 [0.10-0.43]). Meta-regressions showed a significant positive association between baseline mean FM-UL and ESs for UL-capacity (r = 0.339; p = 0.03), in particular in the acute and early-subacute phases poststroke (r = 0.65; p = 0.01). No further significant subgroup differences or associations were found in our analyses. DISCUSSION: The small significant effects found at the level of motor impairment do not show generalization to clinically meaningful effects at the level of UL-capacity. Meta-regressions suggest that selected participants with some potential of UL-recovery may benefit most from UL-RT, especially earlier poststroke. The robustness and consistency of our findings suggest that the development of the next generation of UL-RT needs to be guided by a better mechanistic understanding about assumed underlying interaction effects between motor learning and motor recovery poststroke. TRIAL REGISTRATION INFORMATION: A prospectively registered study protocol is available in the PROSPERO database under ID CRD42020197450.


Subject(s)
Recovery of Function , Robotics , Stroke Rehabilitation , Upper Extremity , Humans , Stroke Rehabilitation/methods , Stroke Rehabilitation/instrumentation , Recovery of Function/physiology , Upper Extremity/physiopathology , Stroke/physiopathology , Stroke/complications , Randomized Controlled Trials as Topic
7.
Brain Behav ; 14(5): e3525, 2024 May.
Article in English | MEDLINE | ID: mdl-38773793

ABSTRACT

INTRODUCTION: Visual field defects (VFDs) represent a debilitating poststroke complication, characterized by unseen parts of the visual field. Visual perceptual learning (VPL), involving repetitive visual training in blind visual fields, may effectively restore visual field sensitivity in cortical blindness. This current multicenter, double-blind, randomized, controlled clinical trial investigated the efficacy and safety of VPL-based digital therapeutics (Nunap Vision [NV]) for treating poststroke VFDs. METHODS: Stroke outpatients with VFDs (>6 months after stroke onset) were randomized into NV (defective field training) or Nunap Vision-Control (NV-C, central field training) groups. Both interventions provided visual perceptual training, consisting of orientation, rotation, and depth discrimination, through a virtual reality head-mounted display device 5 days a week for 12 weeks. The two groups received VFD assessments using Humphrey visual field (HVF) tests at baseline and 12-week follow-up. The final analysis included those completed the study (NV, n = 40; NV-C, n = 35). Efficacy measures included improved visual area (sensitivity ≥6 dB) and changes in the HVF scores during the 12-week period. RESULTS: With a high compliance rate, NV and NV-C training improved the visual areas in the defective hemifield (>72 degrees2) and the whole field (>108 degrees2), which are clinically meaningful improvements despite no significant between-group differences. According to within-group analyses, mean total deviation scores in the defective hemifield improved after NV training (p = .03) but not after NV-C training (p = .12). CONCLUSIONS: The current trial suggests that VPL-based digital therapeutics may induce clinically meaningful visual improvements in patients with poststroke VFDs. Yet, between-group differences in therapeutic efficacy were not found as NV-C training exhibited unexpected improvement comparable to NV training, possibly due to learning transfer effects.


Subject(s)
Stroke Rehabilitation , Stroke , Virtual Reality , Visual Fields , Visual Perception , Humans , Double-Blind Method , Male , Female , Middle Aged , Aged , Visual Fields/physiology , Stroke/complications , Stroke/therapy , Stroke/physiopathology , Visual Perception/physiology , Stroke Rehabilitation/methods , Stroke Rehabilitation/instrumentation , Learning/physiology , Vision Disorders/etiology , Vision Disorders/rehabilitation , Vision Disorders/therapy , Vision Disorders/physiopathology
8.
J Neuroeng Rehabil ; 21(1): 92, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38816728

ABSTRACT

OBJECTIVE: Understanding the characteristics related to cardiorespiratory fitness after stroke can provide reference values for patients in clinical rehabilitation exercise. This meta- analysis aimed to investigate the effect of robot-assisted gait training in improving cardiorespiratory fitness in post-stroke patients, compared to conventional rehabilitation training. METHODS: PubMed, EMBASE, Web of Science, Cochrane Database of Systematic Reviews, CBM, CNKI and Wanfang databases were searched until March 18th, 2024. Randomized controlled trials (RCTs) comparing the effectiveness of robot-assisted gait training versus control group were included. The main outcome variable was peak oxygen uptake. 6-minute walking test, peak heart rate, peak inspiratory expiratory ratio as our secondary indicators. RevMan 5.3 software was used for statistical analysis. RESULTS: A total of 17 articles were included, involving 689 subjects. The results showed a significant effect for robot-assisted gait training to improve VO2peak (MD = 1.85; 95% CI: -0.13 to 3.57; p = 0.04) and 6WMT (MD = 19.26; 95% CI: 10.43 to 28.08; p < 0.0001). However, no significant difference favouring robot-assisted gait training were found in HRpeak (MD = 3.56; 95% CI: -1.90 to 9.02; p = 0.20) and RERpeak (MD = -0.01; 95% CI: -0.04 to 0.01; p = 0.34). CONCLUSION: These results showed that robot-assisted gait training may have a beneficial effect in improving VO2peak and 6WMT, with a moderate recommendation level according to the GRADE guidelines.


Subject(s)
Gait , Robotics , Stroke Rehabilitation , Humans , Stroke Rehabilitation/methods , Stroke Rehabilitation/instrumentation , Robotics/methods , Gait/physiology , Exercise Therapy/methods , Exercise Therapy/instrumentation , Cardiorespiratory Fitness/physiology , Stroke/physiopathology , Stroke/complications , Oxygen Consumption/physiology
9.
Sensors (Basel) ; 24(9)2024 May 03.
Article in English | MEDLINE | ID: mdl-38733031

ABSTRACT

This study aimed to propose a portable and intelligent rehabilitation evaluation system for digital stroke-patient rehabilitation assessment. Specifically, the study designed and developed a fusion device capable of emitting red, green, and infrared lights simultaneously for photoplethysmography (PPG) acquisition. Leveraging the different penetration depths and tissue reflection characteristics of these light wavelengths, the device can provide richer and more comprehensive physiological information. Furthermore, a Multi-Channel Convolutional Neural Network-Long Short-Term Memory-Attention (MCNN-LSTM-Attention) evaluation model was developed. This model, constructed based on multiple convolutional channels, facilitates the feature extraction and fusion of collected multi-modality data. Additionally, it incorporated an attention mechanism module capable of dynamically adjusting the importance weights of input information, thereby enhancing the accuracy of rehabilitation assessment. To validate the effectiveness of the proposed system, sixteen volunteers were recruited for clinical data collection and validation, comprising eight stroke patients and eight healthy subjects. Experimental results demonstrated the system's promising performance metrics (accuracy: 0.9125, precision: 0.8980, recall: 0.8970, F1 score: 0.8949, and loss function: 0.1261). This rehabilitation evaluation system holds the potential for stroke diagnosis and identification, laying a solid foundation for wearable-based stroke risk assessment and stroke rehabilitation assistance.


Subject(s)
Neural Networks, Computer , Photoplethysmography , Stroke Rehabilitation , Stroke , Humans , Stroke Rehabilitation/instrumentation , Stroke Rehabilitation/methods , Photoplethysmography/methods , Photoplethysmography/instrumentation , Stroke/physiopathology , Male , Female , Middle Aged , Adult , Plethysmography/methods , Plethysmography/instrumentation , Equipment Design , Wearable Electronic Devices , Algorithms
10.
J Neuroeng Rehabil ; 21(1): 84, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38802847

ABSTRACT

BACKGROUND: Sleep disturbance and fatigue are common in individuals undergoing inpatient rehabilitation following stroke. Understanding the relationships between sleep, fatigue, motor performance, and key biomarkers of inflammation and neuroplasticity could provide valuable insight into stroke recovery, possibly leading to personalized rehabilitation strategies. This study aimed to investigate the influence of sleep quality on motor function following stroke utilizing wearable technology to obtain objective sleep measurements. Additionally, we aimed to determine if there were relationships between sleep, fatigue, and motor function. Lastly, the study aimed to determine if salivary biomarkers of stress, inflammation, and neuroplasticity were associated with motor function or fatigue post-stroke. METHODS: Eighteen individuals who experienced a stroke and were undergoing inpatient rehabilitation participated in a cross-sectional observational study. Following consent, participants completed questionnaires to assess sleep patterns, fatigue, and quality of life. Objective sleep was measured throughout one night using the wearable Philips Actiwatch. Upper limb motor performance was assessed on the following day and saliva was collected for biomarker analysis. Correlation analyses were performed to assess the relationships between variables. RESULTS: Participants reported poor sleep quality, frequent awakenings, and difficulties falling asleep following stroke. We identified a significant negative relationship between fatigue severity and both sleep quality (r=-0.539, p = 0.021) and participants experience of awakening from sleep (r=-0.656, p = 0.003). A significant positive relationship was found between grip strength on the non-hemiplegic limb and salivary gene expression of Brain-derived Neurotrophic Factor (r = 0.606, p = 0.028), as well as a significant negative relationship between grip strength on the hemiplegic side and salivary gene expression of C-reactive Protein (r=-0.556, p = 0.048). CONCLUSION: The findings of this study emphasize the importance of considering sleep quality, fatigue, and biomarkers in stroke rehabilitation to optimize recovery and that interventions may need to be tailored to the individual. Future longitudinal studies are required to explore these relationships over time. Integrating wearable technology for sleep and biomarker analysis can enhance monitoring and prediction of outcomes following stroke, ultimately improving rehabilitation strategies and patient outcomes.


Subject(s)
Actigraphy , Biomarkers , Fatigue , Saliva , Stroke Rehabilitation , Wearable Electronic Devices , Humans , Stroke Rehabilitation/instrumentation , Stroke Rehabilitation/methods , Male , Female , Fatigue/etiology , Fatigue/diagnosis , Middle Aged , Biomarkers/analysis , Cross-Sectional Studies , Actigraphy/instrumentation , Aged , Saliva/metabolism , Saliva/chemistry , Sleep/physiology , Adult , Stroke/complications , Stroke/physiopathology , Movement/physiology
11.
Article in English | MEDLINE | ID: mdl-38801680

ABSTRACT

Stroke rehabilitation faces challenges in attaining enduring improvements in hand motor function and is frequently constrained by interventional limitations. This research aims to present an innovative approach to the integration of cognitive engagement within visual feedback incorporated into fully immersive virtual reality (VR) based games to achieve enduring improvements. These innovative aspects of interaction provide more functional advantages beyond motivation to efficiently execute repeatedly hand motor tasks. The effectiveness of virtual reality games incorporated with innovative aspects has been investigated for improvements in hand motor functions. A randomized controlled trial was conducted, a total of (n=56) subacute stroke patients were assessed for eligibility and (n=52) patients fulfilled the inclusion criteria. (n=26) patients were assigned to the experimental group and (n=26) patients were assigned to the control group. VR intervention involves four VR based games, developed based on hand movements including flexion/extension, close/open, supination/pronation and pinch. All patients got therapy of 24 sessions, lasting 4 days/week for a total of 6 weeks. Five clinical outcome measures were Fugl- Meyer Assessment-Upper Extremity, Action Research Arm Test, Box and Block Test, Modified Barthel Index, and Stroke-Specific Quality of Life were assessed to evaluate patients' performance. Results revealed that after therapy there was significant improvement between the groups (p<0.05) and within groups (p<0.05) in all assessment weeks in all clinical outcome measures however, improvement was observed significantly greater in the experimental group due to fully immersive VR-based games. Results indicated that cognitive engagement within visual feedback incorporated in VR-based hand games effectively improved hand motor functions.


Subject(s)
Hand , Stroke Rehabilitation , Video Games , Virtual Reality , Humans , Stroke Rehabilitation/methods , Stroke Rehabilitation/instrumentation , Female , Male , Middle Aged , Aged , Adult , Treatment Outcome , Feedback, Sensory , Recovery of Function , Stroke/physiopathology , Stroke/complications
12.
J Neuroeng Rehabil ; 21(1): 82, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38769565

ABSTRACT

BACKGROUND: Assessments of arm motor function are usually based on clinical examinations or self-reported rating scales. Wrist-worn accelerometers can be a good complement to measure movement patterns after stroke. Currently there is limited knowledge of how accelerometry correlate to clinically used scales. The purpose of this study was therefore to evaluate the relationship between intermittent measurements of wrist-worn accelerometers and the patient's progression of arm motor function assessed by routine clinical outcome measures during a rehabilitation period. METHODS: Patients enrolled in in-hospital rehabilitation following a stroke were invited. Included patients were asked to wear wrist accelerometers for 24 h at the start (T1) and end (T2) of their rehabilitation period. On both occasions arm motor function was assessed by the modified Motor Assessment Scale (M_MAS) and the Motor Activity Log (MAL). The recorded accelerometry was compared to M_MAS and MAL. RESULTS: 20 patients were included, of which 18 completed all measurements and were therefore included in the final analysis. The resulting Spearman's rank correlation coefficient showed a strong positive correlation between measured wrist acceleration in the affected arm and M-MAS and MAL values at T1, 0.94 (p < 0.05) for M_MAS and 0.74 (p < 0.05) for the MAL values, and a slightly weaker positive correlation at T2, 0.57 (p < 0.05) for M_MAS and 0.46 - 0.45 (p = 0.06) for the MAL values. However, no correlation was seen for the difference between the two sessions. CONCLUSIONS: The results confirm that the wrist acceleration can differentiate between the affected and non-affected arm, and that there is a positive correlation between accelerometry and clinical measures. Many of the patients did not change their M-MAS or MAL scores during the rehabilitation period, which may explain why no correlation was seen for the difference between measurements during the rehabilitation period. Further studies should include continuous accelerometry throughout the rehabilitation period to reduce the impact of day-to-day variability.


Subject(s)
Accelerometry , Arm , Stroke Rehabilitation , Humans , Accelerometry/instrumentation , Male , Female , Middle Aged , Aged , Stroke Rehabilitation/methods , Stroke Rehabilitation/instrumentation , Arm/physiopathology , Arm/physiology , Wrist/physiology , Wearable Electronic Devices , Motor Activity/physiology , Adult , Stroke/physiopathology , Stroke/diagnosis , Aged, 80 and over
13.
Medicina (Kaunas) ; 60(5)2024 May 15.
Article in English | MEDLINE | ID: mdl-38792996

ABSTRACT

Stroke often results in sensory deficits, muscular weakness, and diminished postural control, thereby restricting mobility and functional capabilities. It is important to promote neuroplasticity by implementing task-oriented exercises that induce changes in patients. Therefore, this study aimed to investigate the effects of rehabilitation robot training on physical function, functional recovery, and activities of daily living (ADLs) in patients with subacute stroke. The study participants were patients with subacute stroke receiving treatment at Hospitals A and B. They were selected as research subjects based on selection and exclusion criteria. The experimental group received rehabilitation robot training in sessions of 30 min, five times weekly, for a total of 20 sessions over four weeks. Conversely, the control group underwent standard rehabilitation equipment training with an identical frequency, duration, and number of sessions. Measurements were taken before and after the training period to assess changes in physical function, functional recovery, and activities of daily living using tools such as the MMT, BBS, FBG, FAC, FIM, and MBI. The results were as follows: in the within-group comparison, the rehabilitation robot training group showed significant differences in MMT, BBS, FBG, FAC, FIM, and MBI (p < 0.05), while the control group showed significant differences in FIM (p < 0.05). Statistically significant differences were observed in the time, group, and time × group interaction effects among the MMT, static seated FBG, dynamic seated FBG, FIM, and MBI (p < 0.05). Based on these results, rehabilitation robotic training resulted in significant improvements in physical function, functional recovery, and activities of daily living in patients with subacute stroke. Based on these findings, providing a basic protocol for a rehabilitation program that applies rehabilitation robot training to patients with subacute stroke may offer more effective treatment and outcomes in the future.


Subject(s)
Activities of Daily Living , Recovery of Function , Robotics , Stroke Rehabilitation , Humans , Stroke Rehabilitation/methods , Stroke Rehabilitation/instrumentation , Female , Male , Robotics/methods , Middle Aged , Aged , Stroke/physiopathology , Exercise Therapy/methods , Exercise Therapy/instrumentation , Treatment Outcome
14.
Sensors (Basel) ; 24(10)2024 May 09.
Article in English | MEDLINE | ID: mdl-38793850

ABSTRACT

Stroke can impair mobility, with deficits more pronounced while simultaneously performing multiple activities. In this study, common clinical tests were instrumented with wearable motion sensors to study motor-cognitive interference effects in stroke survivors (SS). A total of 21 SS and 20 healthy controls performed the Timed Up and Go (TUG), Sit-to-Stand (STS), balance, and 10-Meter Walk (10MWT) tests under single and dual-task (counting backward) conditions. Calculated measures included total time and gait measures for TUG, STS, and 10MWT. Balance tests for both open and closed eyes conditions were assessed using sway, measured using the linear acceleration of the thorax, pelvis, and thighs. SS exhibited poorer performance with slower TUG (16.15 s vs. 13.34 s, single-task p < 0.001), greater sway in the eyes open balance test (0.1 m/s2 vs. 0.08 m/s2, p = 0.035), and slower 10MWT (12.94 s vs. 10.98 s p = 0.01) compared to the controls. Dual tasking increased the TUG time (~14%, p < 0.001), balance thorax sway (~64%, p < 0.001), and 10MWT time (~17%, p < 0.001) in the SS group. Interaction effects were minimal, suggesting similar dual-task costs. The findings demonstrate exaggerated mobility deficits in SS during dual-task clinical testing. Dual-task assessments may be more effective in revealing impairments. Integrating cognitive challenges into evaluation can optimize the identification of fall risks and personalize interventions targeting identified cognitive-motor limitations post stroke.


Subject(s)
Postural Balance , Stroke , Humans , Postural Balance/physiology , Male , Female , Stroke/physiopathology , Middle Aged , Aged , Walk Test/methods , Survivors , Gait/physiology , Walking/physiology , Stroke Rehabilitation/methods , Stroke Rehabilitation/instrumentation
15.
Sensors (Basel) ; 24(10)2024 May 11.
Article in English | MEDLINE | ID: mdl-38793907

ABSTRACT

(1) Background: This study evaluates the effectiveness of low-frequency repetitive transcranial magnetic stimulation (LF-rTMS) in improving gait in post-stroke hemiplegic patients, using wearable sensor technology for objective gait analysis. (2) Methods: A total of 72 stroke patients were randomized into control, sham stimulation, and LF-rTMS groups, with all receiving standard medical treatment. The LF-rTMS group underwent stimulation on the unaffected hemisphere for 6 weeks. Key metrics including the Fugl-Meyer Assessment Lower Extremity (FMA-LE), Berg Balance Scale (BBS), Modified Barthel Index (MBI), and gait parameters were measured before and after treatment. (3) Results: The LF-rTMS group showed significant improvements in the FMA-LE, BBS, MBI, and various gait parameters compared to the control and sham groups (p < 0.05). Specifically, the FMA-LE scores improved by an average of 5 points (from 15 ± 3 to 20 ± 2), the BBS scores increased by 8 points (from 35 ± 5 to 43 ± 4), the MBI scores rose by 10 points (from 50 ± 8 to 60 ± 7), and notable enhancements in gait parameters were observed: the gait cycle time was reduced from 2.05 ± 0.51 s to 1.02 ± 0.11 s, the stride length increased from 0.56 ± 0.04 m to 0.97 ± 0.08 m, and the walking speed improved from 35.95 ± 7.14 cm/s to 75.03 ± 11.36 cm/s (all p < 0.001). No adverse events were reported. The control and sham groups exhibited improvements but were not as significant. (4) Conclusions: LF-rTMS on the unaffected hemisphere significantly enhances lower-limb function, balance, and daily living activities in subacute stroke patients, with the gait parameters showing a notable improvement. Wearable sensor technology proves effective in providing detailed, objective gait analysis, offering valuable insights for clinical applications in stroke rehabilitation.


Subject(s)
Gait , Stroke Rehabilitation , Stroke , Transcranial Magnetic Stimulation , Wearable Electronic Devices , Humans , Male , Female , Transcranial Magnetic Stimulation/methods , Transcranial Magnetic Stimulation/instrumentation , Middle Aged , Stroke/physiopathology , Stroke/therapy , Gait/physiology , Aged , Stroke Rehabilitation/instrumentation , Stroke Rehabilitation/methods , Gait Analysis/methods
16.
Article in English | MEDLINE | ID: mdl-38753470

ABSTRACT

This study presents a wireless wearable portable system designed for the automatic quantitative spatio-temporal analysis of continuous thoracic spine motion across various planes and degrees of freedom (DOF). This includes automatic motion segmentation, computation of the range of motion (ROM) for six distinct thoracic spine movements across three planes, tracking of motion completion cycles, and visualization of both primary and coupled thoracic spine motions. To validate the system, this study employed an Inter-days experimental setting to conduct experiments involving a total of 957 thoracic spine movements, with participation from two representatives of varying age and gender. The reliability of the proposed system was assessed using the Intraclass Correlation Coefficient (ICC) and Standard Error of Measurement (SEM). The experimental results demonstrated strong ICC values for various thoracic spine movements across different planes, ranging from 0.774 to 0.918, with an average of 0.85. The SEM values ranged from 0.64° to 4.03°, with an average of 1.93°. Additionally, we successfully conducted an assessment of thoracic spine mobility in a stroke rehabilitation patient using the system. This illustrates the feasibility of the system for actively analyzing thoracic spine mobility, offering an effective technological means for non-invasive research on thoracic spine activity during continuous movement states.


Subject(s)
Movement , Range of Motion, Articular , Thoracic Vertebrae , Wearable Electronic Devices , Humans , Thoracic Vertebrae/physiology , Male , Range of Motion, Articular/physiology , Female , Reproducibility of Results , Adult , Movement/physiology , Equipment Design , Algorithms , Wireless Technology/instrumentation , Stroke Rehabilitation/instrumentation , Biomechanical Phenomena , Young Adult , Middle Aged , Monitoring, Ambulatory/instrumentation
17.
J Neuroeng Rehabil ; 21(1): 77, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38745227

ABSTRACT

BACKGROUND: Over 80% of patients with stroke experience finger grasping dysfunction, affecting independence in activities of daily living and quality of life. In routine training, task-oriented training is usually used for functional hand training, which may improve finger grasping performance after stroke, while augmented therapy may lead to a better treatment outcome. As a new technology-supported training, the hand rehabilitation robot provides opportunities to improve the therapeutic effect by increasing the training intensity. However, most hand rehabilitation robots commonly applied in clinics are based on a passive training mode and lack the sensory feedback function of fingers, which is not conducive to patients completing more accurate grasping movements. A force feedback hand rehabilitation robot can compensate for these defects. However, its clinical efficacy in patients with stroke remains unknown. This study aimed to investigate the effectiveness and added value of a force feedback hand rehabilitation robot combined with task-oriented training in stroke patients with hemiplegia. METHODS: In this single-blinded randomised controlled trial, 44 stroke patients with hemiplegia were randomly divided into experimental (n = 22) and control (n = 22) groups. Both groups received 40 min/day of conventional upper limb rehabilitation training. The experimental group received 20 min/day of task-oriented training assisted by a force feedback rehabilitation robot, and the control group received 20 min/day of task-oriented training assisted by therapists. Training was provided for 4 weeks, 5 times/week. The Fugl-Meyer motor function assessment of the hand part (FMA-Hand), Action Research Arm Test (ARAT), grip strength, Modified Ashworth scale (MAS), range of motion (ROM), Brunnstrom recovery stages of the hand (BRS-H), and Barthel index (BI) were used to evaluate the effect of two groups before and after treatment. RESULTS: Intra-group comparison: In both groups, the FMA-Hand, ARAT, grip strength, AROM, BRS-H, and BI scores after 4 weeks of treatment were significantly higher than those before treatment (p < 0.05), whereas there was no significant difference in finger flexor MAS scores before and after treatment (p > 0.05). Inter-group comparison: After 4 weeks of treatment, the experimental group's FMA-Hand total score, ARAT, grip strength, and AROM were significantly better than those of the control group (p < 0.05). However, there were no statistically significant differences in the scores of each sub-item of the FMA-Hand after Bonferroni correction (p > 0.007). In addition, there were no statistically significant differences in MAS, BRS-H, and BI scores (p > 0.05). CONCLUSION: Hand performance improved in patients with stroke after 4 weeks of task-oriented training. The use of a force feedback hand rehabilitation robot to support task-oriented training showed additional value over conventional task-oriented training in stroke patients with hand dysfunction. CLINICAL TRIAL REGISTRATION INFORMATION: NCT05841108.


Subject(s)
Hand Strength , Hemiplegia , Robotics , Stroke Rehabilitation , Humans , Stroke Rehabilitation/methods , Stroke Rehabilitation/instrumentation , Male , Female , Middle Aged , Robotics/instrumentation , Hand Strength/physiology , Hemiplegia/rehabilitation , Hemiplegia/physiopathology , Hemiplegia/etiology , Aged , Single-Blind Method , Stroke/complications , Stroke/physiopathology , Fingers/physiology , Fingers/physiopathology , Hand/physiopathology , Adult , Feedback, Sensory/physiology , Treatment Outcome , Recovery of Function
18.
J Neuroeng Rehabil ; 21(1): 76, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38745235

ABSTRACT

BACKGROUND: Gait disorder remains a major challenge for individuals with stroke, affecting their quality of life and increasing the risk of secondary complications. Robot-assisted gait training (RAGT) has emerged as a promising approach for improving gait independence in individuals with stroke. This study aimed to evaluate the effect of RAGT in individuals with subacute hemiparetic stroke using a one-leg assisted gait robot called Welwalk WW-1000. METHODS: An assessor-blinded, multicenter randomized controlled trial was conducted in the convalescent rehabilitation wards of eight hospitals in Japan. Participants with first-ever hemiparetic stroke who could not walk at pre-intervention assessment were randomized to either the Welwalk group, which underwent RAGT with conventional physical therapy, or the control group, which underwent conventional physical therapy alone. Both groups received 80 min of physical therapy per day, 7 days per week, while the Welwalk group received 40 min of RAGT per day, 6 days per week, as part of their physical therapy. The primary outcome was gait independence, as assessed using the Functional Independence Measure Walk Score. RESULTS: A total of 91 participants were enrolled, 85 of whom completed the intervention. As a result, 91 participants, as a full analysis set, and 85, as a per-protocol set, were analyzed. The primary outcome, the cumulative incidence of gait-independent events, was not significantly different between the groups. Subgroup analysis revealed that the interaction between the intervention group and stroke type did not yield significant differences in either the full analysis or per-protocol set. However, although not statistically significant, a discernible trend toward improvement with Welwalk was observed in cases of cerebral infarction for the full analysis and per-protocol sets (HR 4.167 [95%CI 0.914-18.995], p = 0.065, HR 4.443 [95%CI 0.973-20.279], p = 0.054, respectively). CONCLUSIONS: The combination of RAGT using Welwalk and conventional physical therapy was not significantly more effective than conventional physical therapy alone in promoting gait independence in individuals with subacute hemiparetic stroke, although a trend toward earlier gait independence was observed in individuals with cerebral infarction. TRIAL REGISTRATION: This study was registered with the Japan Registry of Clinical Trials ( https://jrct.niph.go.jp ; jRCT 042180078) on March 3, 2019.


Subject(s)
Gait Disorders, Neurologic , Paresis , Robotics , Stroke Rehabilitation , Stroke , Humans , Male , Stroke Rehabilitation/methods , Stroke Rehabilitation/instrumentation , Female , Aged , Robotics/methods , Robotics/instrumentation , Middle Aged , Gait Disorders, Neurologic/rehabilitation , Gait Disorders, Neurologic/etiology , Paresis/rehabilitation , Paresis/etiology , Stroke/complications , Gait/physiology , Exercise Therapy/methods , Exercise Therapy/instrumentation , Single-Blind Method , Physical Therapy Modalities/instrumentation , Treatment Outcome
19.
Sensors (Basel) ; 24(8)2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38676190

ABSTRACT

In post-stroke patients, the disabling motor deficit mainly affects the upper limb. The focus of rehabilitation is improving upper limb function and reducing long-term disability. This study aims to evaluate the feasibility of using the Gloreha Aria (R-Lead), a sensor-based upper limb in-hospital rehabilitation, compared with conventional physiotherapist-led training in subacute hemiplegic patients. Twenty-one patients were recruited and randomised 1:1 to a sensor-based group (treatment group TG) or a conventional group (control group, CG). All patients performed 30 sessions of 30 min each of dedicated upper limb rehabilitation. The Fugl-Meyer Assessment for Upper Extremity (FMA-UE) was the primary evaluation., both as a motor score and as individual items. Secondary evaluations were Functional Independence Measure; global disability assessed with the Modified Barthel Index; Motor Evaluation Scale for UE in stroke; power grip; and arm, shoulder, and hand disability. All the enrolled patients, 10 in the TG and 11 in the CG, completed all hand rehabilitation sessions during their hospital stay without experiencing any adverse events. FMA-UE scores in upper limb motor function improved in both groups [delta change CG (11.8 ± 9.2) vs. TG (12.7 ± 8.6)]. The score at T1 for FMA joint pain (21.8 vs. 24 best score) suggests the use of the Gloreha Aria (R-Lead) as feasible in improving arm function abilities in post-stroke patients.


Subject(s)
Hemiplegia , Stroke Rehabilitation , Upper Extremity , Humans , Hemiplegia/rehabilitation , Hemiplegia/physiopathology , Male , Female , Upper Extremity/physiopathology , Pilot Projects , Middle Aged , Aged , Stroke Rehabilitation/methods , Stroke Rehabilitation/instrumentation , Stroke/physiopathology
20.
J Neuroeng Rehabil ; 21(1): 66, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38685012

ABSTRACT

BACKGROUND: Understanding the role of adherence to home exercise programs for survivors of stroke is critical to ensure patients perform prescribed exercises and maximize effectiveness of recovery. METHODS: Survivors of hemiparetic stroke with impaired motor function were recruited into a 7-day study designed to test the utility and usability of a low-cost wearable system and progressive-challenge cued exercise program for encouraging graded-challenge exercise at-home. The wearable system comprised two wrist-worn MetaMotionR+ activity monitors and a custom smartphone app. The progressive-challenge cued exercise program included high-intensity activities (one repetition every 30 s) dosed at 1.5 h per day, embedded within 8 h of passive activity monitoring per day. Utility was assessed using measures of system uptime and cue response rate. Usability and user experience were assessed using well-validated quantitative surveys of system usability and user experience. Self-efficacy was assessed at the end of each day on a visual analog scale that ranged from 0 to 100. RESULTS: The system and exercise program had objective utility: system uptime was 92 ± 6.9% of intended hours and the rate of successful cue delivery was 99 ± 2.7%. The system and program also were effective in motivating cued exercise: activity was detected within 5-s of the cue 98 ± 3.1% of the time. As shown via two case studies, accelerometry data can accurately reflect graded-challenge exercise instructions and reveal differentiable activity levels across exercise stages. User experience surveys indicated positive overall usability in the home settings, strong levels of personal motivation to use the system, and high degrees of satisfaction with the devices and provided training. Self-efficacy assessments indicated a strong perception of proficiency across participants (95 ± 5.0). CONCLUSIONS: This study demonstrates that a low-cost wearable system providing frequent haptic cues to encourage graded-challenge exercise after stroke can have utility and can provide an overall positive user experience in home settings. The study also demonstrates how combining a graded exercise program with all-day activity monitoring can provide insight into the potential for wearable systems to assess adherence to-and effectiveness of-home-based exercise programs on an individualized basis.


Subject(s)
Cues , Exercise Therapy , Stroke Rehabilitation , Wearable Electronic Devices , Aged , Female , Humans , Male , Middle Aged , Arm , Exercise Therapy/instrumentation , Exercise Therapy/methods , Feasibility Studies , Mobile Applications , Patient Compliance , Stroke , Stroke Rehabilitation/instrumentation , Stroke Rehabilitation/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...