Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Front Immunol ; 10: 1737, 2019.
Article in English | MEDLINE | ID: mdl-31417547

ABSTRACT

The gut microbiota influences several biological functions including immune responses. Inflammatory bowel disease is favorably influenced by consumption of several dietary natural plant products such as pomegranate, walnuts, and berries containing polyphenolic compounds such as ellagitannins and ellagic acid. The gut microbiota metabolizes ellagic acid resulting in the formation of bioactive urolithins A, B, C, and D. Urolithin A (UA) is the most active and effective gut metabolite and acts as a potent anti-inflammatory and anti-oxidant agent. However, whether gut metabolite UA affects the function of immune cells remains incompletely understood. T cell proliferation is stimulated by store operated Ca2+ entry (SOCE) resulting from stimulation of Orai1 by STIM1/STIM2. We show here that treatment of murine CD4+ T cells with UA (10 µM, 3 days) significantly blunted SOCE in CD4+ T cells, an effect paralleled by significant downregulation of Orai1 and STIM1/2 transcript levels and protein abundance. UA treatment further increased miR-10a-5p abundance in CD4+ T cells in a dose dependent fashion. Overexpression of miR-10a-5p significantly decreased STIM1/2 and Orai1 mRNA and protein levels as well as SOCE in CD4+ T cells. UA further decreased CD4+ T cell proliferation. Thus, the gut bacterial metabolite UA increases miR-10a-5p levels thereby downregulating Orai1/STIM1/STIM2 expression, store operated Ca2+ entry, and proliferation of murine CD4+ T cells.


Subject(s)
Bacteria/immunology , CD4-Positive T-Lymphocytes/immunology , Calcium Signaling/immunology , Calcium/immunology , Coumarins/immunology , Gastrointestinal Microbiome/immunology , MicroRNAs/immunology , Animals , Cell Proliferation , Female , Gene Expression Regulation/immunology , Male , Mice , ORAI1 Protein/immunology , Stromal Interaction Molecule 1/immunology , Stromal Interaction Molecule 2/immunology
2.
Sci Signal ; 12(576)2019 04 09.
Article in English | MEDLINE | ID: mdl-30967511

ABSTRACT

Basophils are a small population of innate immune cells, but their release of the cytokine interleukin-4 (IL-4) is important for mounting an efficient immune response against distinct parasites. Yoshikawa et al (in the 9 April 2019 issue) showed that whereas STIM1 is essential for IL-4 release after stimulation of FcεRI, STIM2 mediates a delayed IL-3/IL-33-induced IL-4 release independent of STIM1.


Subject(s)
Interleukin-3/immunology , Parasitic Diseases/immunology , Stromal Interaction Molecule 2/immunology , Animals , Humans , Interleukin-33/immunology , Interleukin-4/immunology , Neoplasm Proteins/immunology , Parasitic Diseases/pathology , Receptors, IgE/immunology , Stromal Interaction Molecule 1/immunology
3.
Sci Signal ; 12(576)2019 04 09.
Article in English | MEDLINE | ID: mdl-30967512

ABSTRACT

Basophils have nonredundant roles in various immune responses that require Ca2+ influx. Here, we examined the role of two Ca2+ sensors, stromal interaction molecule 1 and 2 (STIM1 and STIM2), in basophil activation. We found that loss of STIM1, but not STIM2, impaired basophil IL-4 production after stimulation with immunoglobulin E (IgE)-containing immune complexes. In contrast, when basophils were stimulated with IL-3, loss of STIM2, but not STIM1, reduced basophil IL-4 production. This difference in STIM proteins was associated with distinct time courses of Ca2+ influx and transcription of the Il4 gene that were elicited by each stimulus. Similarly, basophil-specific STIM1 expression was required for IgE-driven chronic allergic inflammation in vivo, whereas STIM2 was required for IL-4 production after combined IL-3 and IL-33 treatment in mice. These data indicate that STIM1 and STIM2 have differential roles in the production of IL-4, which are stimulus dependent. Furthermore, these results illustrate the vital role of STIM2 in basophils, which is often considered to be less important than STIM1.


Subject(s)
Basophils/immunology , Calcium Signaling/immunology , Interleukin-3/immunology , Interleukin-4/immunology , Stromal Interaction Molecule 1/immunology , Stromal Interaction Molecule 2/immunology , Animals , Basophils/cytology , Calcium Signaling/genetics , Immunoglobulin E/immunology , Interleukin-3/genetics , Interleukin-4/genetics , Mice , Mice, Knockout , Stromal Interaction Molecule 1/genetics , Stromal Interaction Molecule 2/genetics
4.
Immunity ; 47(4): 664-679.e6, 2017 10 17.
Article in English | MEDLINE | ID: mdl-29030115

ABSTRACT

Store-operated Ca2+ entry (SOCE) is the main Ca2+ influx pathway in lymphocytes and is essential for T cell function and adaptive immunity. SOCE is mediated by Ca2+ release-activated Ca2+ (CRAC) channels that are activated by stromal interaction molecule (STIM) 1 and STIM2. SOCE regulates many Ca2+-dependent signaling molecules, including calcineurin, and inhibition of SOCE or calcineurin impairs antigen-dependent T cell proliferation. We here report that SOCE and calcineurin regulate cell cycle entry of quiescent T cells by controlling glycolysis and oxidative phosphorylation. SOCE directs the metabolic reprogramming of naive T cells by regulating the expression of glucose transporters, glycolytic enzymes, and metabolic regulators through the activation of nuclear factor of activated T cells (NFAT) and the PI3K-AKT kinase-mTOR nutrient-sensing pathway. We propose that SOCE controls a critical "metabolic checkpoint" at which T cells assess adequate nutrient supply to support clonal expansion and adaptive immune responses.


Subject(s)
Calcium Channels/immunology , Calcium Signaling/immunology , Calcium/immunology , T-Lymphocytes/immunology , Animals , Calcineurin/immunology , Calcineurin/metabolism , Calcium/metabolism , Calcium Channels/metabolism , Cell Division/immunology , Cells, Cultured , Female , Glycolysis/immunology , HEK293 Cells , Humans , Immunoblotting , Male , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Microscopy, Confocal , NFATC Transcription Factors/genetics , NFATC Transcription Factors/immunology , NFATC Transcription Factors/metabolism , Phosphatidylinositol 3-Kinases/immunology , Phosphatidylinositol 3-Kinases/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction/immunology , Stromal Interaction Molecule 1/genetics , Stromal Interaction Molecule 1/immunology , Stromal Interaction Molecule 1/metabolism , Stromal Interaction Molecule 2/genetics , Stromal Interaction Molecule 2/immunology , Stromal Interaction Molecule 2/metabolism , T-Lymphocytes/metabolism
5.
Blood ; 130(13): 1565-1577, 2017 09 28.
Article in English | MEDLINE | ID: mdl-28724541

ABSTRACT

Neutrophils are key effector cells of the innate immune system. Calcium-dependent signaling pathways initiated by store-operated calcium entry (SOCE) are known to regulate neutrophil activation; however, the precise mechanism of this process remains unclear. STIM1 and STIM2 are calcium-sensing molecules that link calcium depletion of the endoplasmic reticulum with opening of plasma membrane calcium channels. Although a role for STIM1 in neutrophil SOCE and activation has been established, the function of STIM2 is unknown. Here we use mice with conditional ablation of Stim1 and/or Stim2 to investigate the role of STIM2 in neutrophil activation. We demonstrate that loss of STIM2 results in decreased SOCE, particularly at lower doses of agonists. Reactive oxygen species (ROS) production, degranulation, and phagocytosis are normal in the absence of STIM2, suggesting STIM1 is the dominant calcium sensor required for classical short-term neutrophil responses. However, neutrophil cytokine production required STIM2, but not STIM1, at least in part as a result of redox regulation of cytokine gene expression. In vivo loss of STIM2 results in lower cytokine levels and protection from mortality in a mouse model of systemic inflammatory response syndrome. These data, combined with previous studies focusing on STIM1, define distinct but cooperative functions for STIM1 and STIM2 in modulating neutrophil bactericidal and cytokine responses.


Subject(s)
Calcium/metabolism , Cytokines/biosynthesis , Neutrophil Activation , Stromal Interaction Molecule 1/physiology , Stromal Interaction Molecule 2/physiology , Animals , Calcium Channels/metabolism , Mice , Oxidation-Reduction , Stromal Interaction Molecule 1/immunology , Stromal Interaction Molecule 2/immunology
6.
J Physiol ; 595(10): 3111-3128, 2017 05 15.
Article in English | MEDLINE | ID: mdl-28087881

ABSTRACT

An endoplasmic reticulum (ER)-resident protein that regulates cytosolic and ER free-Ca2+ concentration by induction of store-operated calcium entry: that is the original definition of STIM2 and its function. While its activity strongly depends on the amount of calcium stored in the ER, its function goes further, to intracellular signalling and gene expression. Initially under-studied owing to the prominent function of STIM1, STIM2 came to be regarded as vital in mice, gradually emerging as an important player in the nervous system, and cooperating with STIM1 in the immune system. STIM2 has also been proposed as a relevant player in pathological conditions related to ageing, Alzheimer's and Huntington's diseases, autoimmune disorders and cancer. The discovery of additional functions, together with new splicing forms with opposite roles, has clarified existing controversies about STIM2 function in SOCE. With STIM2 being essential for life, but apparently not for development, newly available data demonstrate a complex and still intriguing behaviour that this review summarizes, updating current knowledge of STIM2 function.


Subject(s)
Stromal Interaction Molecule 2 , Animals , Cardiovascular System/metabolism , Humans , Neoplasms/metabolism , Nervous System/metabolism , Stromal Interaction Molecule 2/chemistry , Stromal Interaction Molecule 2/genetics , Stromal Interaction Molecule 2/immunology , Stromal Interaction Molecule 2/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...