Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.985
Filter
1.
Transl Psychiatry ; 14(1): 221, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38811559

ABSTRACT

Substance use disorder (SUD) is a global health problem with a significant impact on individuals and society. The presentation of SUD is diverse, involving various substances, ages at onset, comorbid conditions, and disease trajectories. Current treatments for SUD struggle to address this heterogeneity, resulting in high relapse rates. SUD often co-occurs with other psychiatric and mental health-related conditions that contribute to the heterogeneity of the disorder and predispose to adverse disease trajectories. Family and genetic studies highlight the role of genetic and environmental factors in the course of SUD, and point to a shared genetic liability between SUDs and comorbid psychopathology. In this study, we aimed to disentangle SUD heterogeneity using a deeply phenotyped SUD cohort and polygenic scores (PGSs) for psychiatric disorders and related traits. We explored associations between PGSs and various SUD-related phenotypes, as well as PGS-environment interactions using information on lifetime emotional, physical, and/or sexual abuse. Our results identify clusters of individuals who exhibit differences in their phenotypic profile and reveal different patterns of associations between SUD-related phenotypes and the genetic liability for mental health-related traits, which may help explain part of the heterogeneity observed in SUD. In our SUD sample, we found associations linking the genetic liability for attention-deficit hyperactivity disorder (ADHD) with lower educational attainment, the genetic liability for post-traumatic stress disorder (PTSD) with higher rates of unemployment, the genetic liability for educational attainment with lower rates of criminal records and unemployment, and the genetic liability for well-being with lower rates of outpatient treatments and fewer problems related to family and social relationships. We also found evidence of PGS-environment interactions showing that genetic liability for suicide attempts worsened the psychiatric status in SUD individuals with a history of emotional physical and/or sexual abuse. Collectively, these data contribute to a better understanding of the role of genetic liability for mental health-related conditions and adverse life experiences in SUD heterogeneity.


Subject(s)
Multifactorial Inheritance , Phenotype , Substance-Related Disorders , Humans , Substance-Related Disorders/genetics , Substance-Related Disorders/epidemiology , Male , Female , Adult , Genetic Predisposition to Disease , Middle Aged , Genome-Wide Association Study , Gene-Environment Interaction , Young Adult , Comorbidity , Mental Disorders/genetics , Mental Disorders/epidemiology
2.
Addict Biol ; 29(4): e13392, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38564607

ABSTRACT

Suicide attempts (SA) are prevalent in substance use disorders (SUD). Epigenetic mechanisms may play a pivotal role in the molecular mechanisms of environmental effects eliciting suicidal behaviour in this population. Hypothalamic-pituitary-adrenal axis (HPA), oxytocin and neurotrophin pathways have been consistently involved in SA, yet , their interplay with childhood adversity remains unclear, particularly in SUD. In 24 outpatients with SUDs, we examined the relation between three parental dysfunctional styles and history of SA with methylation of 32 genes from these pathways, eventually analysing 823 methylation sites. Extensive phenotypic characterization was obtained using a semi-structured interview. Parental style was patient-reported using the Measure of Parental Style (MOPS) questionnaire, analysed with and without imputation of missing items. Linear regressions were performed to adjust for possible confounders, followed by multiple testing correction. We describe both differentially methylated probes (DMPs) and regions (DMRs) for each set of analyses (with and without imputation of MOPS items). Without imputation, five DMRs in OXTR, CRH and NTF3 significantly interacted with MOPS father abuse to increase the risk for lifetime SA, thus covering the three pathways. After imputation of missing MOPS items, two other DMPs from FKBP5 and SOCS3 significantly interacted with each of the three father styles to increase the risk for SA. Although our findings must be interpreted with caution due to small sample size, they suggest implications of stress reactivity genes in the suicidal risk of SUD patients and highlight the significance of father dysfunction as a potential marker of childhood adversity in SUD patients.


Subject(s)
Substance-Related Disorders , Suicide, Attempted , Humans , Child , Hypothalamo-Hypophyseal System , Pituitary-Adrenal System , Parents , Substance-Related Disorders/genetics , Epigenesis, Genetic
3.
BMC Genomics ; 25(1): 255, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38448893

ABSTRACT

BACKGROUND: Drug addiction is a serious problem worldwide and is influenced by genetic factors. The present study aimed to investigate the association between genetics and drug addiction among Han Chinese. METHODS: A total of 1000 Chinese users of illicit drugs and 9693 healthy controls were enrolled and underwent single nucleotide polymorphism (SNP)-based and haplotype-based association analyses via whole-genome genotyping. RESULTS: Both single-SNP and haplotype tests revealed associations between illicit drug use and several immune-related genes in the major histocompatibility complex (MHC) region (SNP association: log10BF = 15.135, p = 1.054e-18; haplotype association: log10BF = 20.925, p = 2.065e-24). These genes may affect the risk of drug addiction via modulation of the neuroimmune system. The single-SNP test exclusively reported genome-wide significant associations between rs3782886 (SNP association: log10BF = 8.726, p = 4.842e-11) in BRAP and rs671 (SNP association: log10BF = 7.406, p = 9.333e-10) in ALDH2 and drug addiction. The haplotype test exclusively reported a genome-wide significant association (haplotype association: log10BF = 7.607, p = 3.342e-11) between a region with allelic heterogeneity on chromosome 22 and drug addiction, which may be involved in the pathway of vitamin B12 transport and metabolism, indicating a causal link between lower vitamin B12 levels and methamphetamine addiction. CONCLUSIONS: These findings provide new insights into risk-modeling and the prevention and treatment of methamphetamine and heroin dependence, which may further contribute to potential novel therapeutic approaches.


Subject(s)
Methamphetamine , Substance-Related Disorders , Humans , Genome-Wide Association Study , Haplotypes , Polymorphism, Single Nucleotide , Substance-Related Disorders/genetics , Vitamin B 12 , China , Aldehyde Dehydrogenase, Mitochondrial
4.
J Psychosoc Nurs Ment Health Serv ; 62(3): 11-14, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38446624

ABSTRACT

Substance use disorders (SUDs) are complex brain disorders with heritability rooted in the interplay of multiple genetic factors, alongside significant environmental influences. Gaining insights into the genetic mechanisms that heighten SUD risk can guide precision care, specifically in the development of targeted tools for prevention, early intervention, and the discovery of therapeutic targets. Nurses are ideally placed to advance genomics-informed precision care for individuals with SUDs. To fulfill this role, they must be adequately prepared to assess the value and utility of current genomics knowledge, its limitations, and ways to incorporate this understanding into clinical practice, education, research, and health care policy. [Journal of Psychosocial Nursing and Mental Health Services, 62(3), 11-14.].


Subject(s)
Brain Diseases , Substance-Related Disorders , Humans , Substance-Related Disorders/genetics , Substance-Related Disorders/therapy , Educational Status , Genomics , Health Policy
5.
Am J Psychiatry ; 181(4): 322-329, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38419493

ABSTRACT

OBJECTIVE: The authors sought to clarify the components of the familial liability to alcohol use disorder (AUD) by examining parent-offspring transmission in a large Swedish population sample. METHODS: To this end, 1,244,516 offspring in intact families with a mean age at follow-up of 37.7 years (SD=6.8) were examined. Hazard ratios for offspring of parents with AUD were calculated using Cox models for risk of five disorders assessed from Swedish medical and criminal registries: AUD, drug use disorders, attention deficit hyperactivity disorder, major depression, and anxiety disorders. RESULTS: The hazard ratio for the offspring was highest for AUD (hazard ratio=2.36), followed by drug use disorder (hazard ratio=2.04), attention deficit hyperactivity disorder (hazard ratio=1.82), major depression (hazard ratio=1.43), and anxiety disorder (hazard ratio=1.43). The risks for AUD were statistically indistinguishable between the children having mothers with AUD compared with those having fathers with AUD and between sons and daughters of a parent with AUD. All risks for offspring having two parents with AUD were higher than those having one parent with AUD, but the increase with two parents with AUD was greatest for AUD, followed by drug use disorder and attention deficit hyperactivity disorder. Age at AUD onset of the parents predicted risk among the offspring more strongly for AUD and drug use disorder, followed by attention deficit hyperactivity disorder, and then major depression and anxiety disorders. Number of recurrences of the parents with AUD predicted risks for all disorders equally. The risk pattern of disorders for the offspring of not-lived-with fathers with AUD was similar to that in the main analysis of intact families. No evidence was found for sex-specific transmission of AUD or a familial female protective effect. CONCLUSIONS: Familial and likely genetic liability to AUD has three components: a nonspecific risk of common internalizing and externalizing disorders, a moderately specific risk of externalizing disorders, and a highly specific risk of AUD.


Subject(s)
Alcoholism , Child of Impaired Parents , Substance-Related Disorders , Male , Child , Humans , Female , Alcoholism/epidemiology , Alcoholism/genetics , Child of Impaired Parents/psychology , Risk Factors , Parents/psychology , Substance-Related Disorders/epidemiology , Substance-Related Disorders/genetics , Substance-Related Disorders/psychology
6.
Psychiatry Res ; 333: 115758, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38335780

ABSTRACT

We characterized the genetic architecture of the attention-deficit hyperactivity disorder-substance use disorder (ADHD-SUD) relationship by investigating genetic correlation, causality, pleiotropy, and common polygenic risk. Summary statistics from genome-wide association studies (GWAS) were used to investigate ADHD (Neff = 51,568), cannabis use disorder (CanUD, Neff = 161,053), opioid use disorder (OUD, Neff = 57,120), problematic alcohol use (PAU, Neff = 502,272), and problematic tobacco use (PTU, Neff = 97,836). ADHD, CanUD, and OUD GWAS meta-analyses included cohorts with case definitions based on different diagnostic criteria. PAU GWAS combined information related to alcohol use disorder, alcohol dependence, and the items related to alcohol problematic consequences assessed by the alcohol use disorders identification test. PTU GWAS was generated a multi-trait analysis including information regarding Fagerström Test for Nicotine Dependence and cigarettes per day. Linkage disequilibrium score regression analyses indicated positive genetic correlation with CanUD, OUD, PAU, and PTU. Genomic structural equation modeling showed that these genetic correlations were related to two latent factors: one including ADHD, CanUD, and PTU and the other with OUD and PAU. The evidence of a causal effect of PAU and PTU on ADHD was stronger than the reverse in the two-sample Mendelian randomization analysis. Conversely, similar strength of evidence was found between ADHD and CanUD. CADM2 rs62250713 was a pleiotropic SNP between ADHD and all SUDs. We found seven, one, and twenty-eight pleiotropic variants between ADHD and CanUD, PAU, and PTU, respectively. Finally, OUD, CanUD, and PAU PRS were associated with increased odds of ADHD. Our findings demonstrated the contribution of multiple pleiotropic mechanisms to the comorbidity between ADHD and SUDs.


Subject(s)
Alcoholism , Attention Deficit Disorder with Hyperactivity , Opioid-Related Disorders , Substance-Related Disorders , Humans , Attention Deficit Disorder with Hyperactivity/epidemiology , Alcoholism/epidemiology , Alcoholism/genetics , Genome-Wide Association Study , Substance-Related Disorders/epidemiology , Substance-Related Disorders/genetics , Substance-Related Disorders/complications , Comorbidity , Opioid-Related Disorders/complications
7.
Psychol Med ; 54(8): 1867-1875, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38314515

ABSTRACT

BACKGROUND: One potential cause of comorbidity is the direct causal effect of one disorder - A - on risk for subsequent onset of disorder B. Could genetic risk scores be utilized to test for such an effect? If disorder A causally impacts on risk for disorder B, then genetic risk for disorder A should be lower in cases of disorder A with v. without a prior onset of B. METHODS: In all individuals (n = 905 736) born in Sweden from 1980 to 1990, from six psychiatric and drug use disorders (major depression, anxiety disorders, alcohol use disorder, drug use disorder, bipolar disorder, and schizophrenia), we formed 14 pairs of disorders A and B. In these pairs, we compared, using Cox proportional hazards models, the predictive effect of the familial-genetic risk score (FGRS) for disorder B in those who had v. had not had a prior onset of disorder A. RESULTS: In all pairs, the impact of the FGRS for disorder B was significantly stronger in cases without v. with a prior history of disorder A. These effects were similar across sex, stable across levels of FGRS and not likely due to clinician bias. In many of our disorder pairs, previous clinical studies suggest a mechanism for a causal effect of disorder A on B. CONCLUSIONS: Our findings provide indirect evidence that the occurrence of one psychiatric or substance use disorder often has a causal effect on risk for subsequent disorders. This mechanism may substantially contribute to the widespread comorbidity among psychiatric conditions.


Subject(s)
Genetic Predisposition to Disease , Substance-Related Disorders , Humans , Sweden/epidemiology , Female , Male , Substance-Related Disorders/epidemiology , Substance-Related Disorders/genetics , Adult , Schizophrenia/genetics , Schizophrenia/epidemiology , Proportional Hazards Models , Comorbidity , Mental Disorders/genetics , Mental Disorders/epidemiology , Anxiety Disorders/genetics , Anxiety Disorders/epidemiology , Risk Factors , Bipolar Disorder/genetics , Bipolar Disorder/epidemiology , Depressive Disorder, Major/genetics , Depressive Disorder, Major/epidemiology , Middle Aged , Causality , Genetic Risk Score
8.
J Neural Transm (Vienna) ; 131(5): 495-503, 2024 05.
Article in English | MEDLINE | ID: mdl-38396082

ABSTRACT

Alternative splicing is a co-transcriptional process that significantly contributes to the molecular landscape of the cell. It plays a multifaceted role in shaping gene transcription, protein diversity, and functional adaptability in response to environmental cues. Recent studies demonstrate that drugs of abuse have a profound impact on alternative splicing patterns within different brain regions. Drugs like alcohol and cocaine modify the expression of genes responsible for encoding splicing factors, thereby influencing alternative splicing of crucial genes involved in neurotransmission, neurogenesis, and neuroinflammation. Notable examples of these alterations include alcohol-induced changes in splicing factors such as HSPA6 and PCBP1, as well as cocaine's impact on PTBP1 and SRSF11. Beyond the immediate effects of drug exposure, recent research has shed light on the role of alternative splicing in contributing to the risk of substance use disorders (SUDs). This is exemplified by exon skipping events in key genes like ELOVL7, which can elevate the risk of alcohol use disorder. Lastly, drugs of abuse can induce splicing alterations through epigenetic modifications. For example, cocaine exposure leads to alterations in levels of trimethylated lysine 36 of histone H3, which exhibits a robust association with alternative splicing and serves as a reliable predictor for exon exclusion. In summary, alternative splicing has emerged as a critical player in the complex interplay between drugs of abuse and the brain, offering insights into the molecular underpinnings of SUDs.


Subject(s)
Brain , Substance-Related Disorders , Humans , Substance-Related Disorders/genetics , Substance-Related Disorders/metabolism , Brain/metabolism , Brain/drug effects , Animals , Alternative Splicing , RNA Splicing/drug effects
9.
J Psychiatr Res ; 171: 346-353, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38354668

ABSTRACT

Several studies have examined the association of externalizing polygenic scores (PGS) with externalizing symptoms in samples of European ancestry. However, less is known about the associations of externalizing polygenic vulnerability in relation to phenotypic externalizing disorders among individuals of different ancestries, such as Mexican youth. Here, we leveraged the largest genome-wide association study on externalizing behaviors that included over 1 million individuals of European ancestry to examine associations of externalizing PGS with a range of externalizing disorders in Mexican adolescents, and investigated whether adversity exposure in childhood moderated these associations. Participants (N = 1064; age range 12-17 years old; 58.8% female) were adolescents recruited for a general population survey on adolescent mental health in the Mexico City Metropolitan region and were genotyped. Childhood adversity exposure and externalizing disorders, specifically attention-deficit hyperactivity disorder (ADHD), conduct disorder, oppositional defiant disorder, and substance use disorder, were assessed via the computer-assisted World Mental Health Composite International Diagnostic Interview for adolescents. A greater externalizing PGS was associated with a greater odds of any externalizing disorder (OR = 1.29 [1.12, 1.48]; p < 0.01) and ADHD (OR = 1.40 [1.15, 1.70]; p < 0.01) in the whole sample, and in females in particular. There were no main effects of the externalizing PGS on conduct disorder, oppositional defiant disorder, or substance use disorder, nor did adversity exposure moderate these associations. Our results suggest that greater genetic propensity for externalizing disorders is associated with increased odds of any externalizing disorders and ADHD among Mexican adolescents, furthering our understanding of externalizing disorder manifestation in this population.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Conduct Disorder , Substance-Related Disorders , Humans , Adolescent , Female , Child , Male , Genome-Wide Association Study , Mexico , Conduct Disorder/epidemiology , Conduct Disorder/genetics , Attention Deficit Disorder with Hyperactivity/epidemiology , Attention Deficit Disorder with Hyperactivity/genetics , Attention Deficit Disorder with Hyperactivity/diagnosis , Substance-Related Disorders/epidemiology , Substance-Related Disorders/genetics , Substance-Related Disorders/complications
10.
Transl Psychiatry ; 14(1): 101, 2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38374108

ABSTRACT

G protein-coupled receptor 55 (GPR55) has been thought to be a putative cannabinoid receptor. However, little is known about its functional role in cannabinoid action and substance use disorders. Here we report that GPR55 is predominantly found in glutamate neurons in the brain, and its activation reduces self-administration of cocaine and nicotine in rats and mice. Using RNAscope in situ hybridization, GPR55 mRNA was identified in cortical vesicular glutamate transporter 1 (VgluT1)-positive and subcortical VgluT2-positive glutamate neurons, with no detection in midbrain dopamine (DA) neurons. Immunohistochemistry detected a GPR55-like signal in both wildtype and GPR55-knockout mice, suggesting non-specific staining. However, analysis using a fluorescent CB1/GPR55 ligand (T1117) in CB1-knockout mice confirmed GPR55 binding in glutamate neurons, not in midbrain DA neurons. Systemic administration of the GPR55 agonist O-1602 didnt impact ∆9-THC-induced analgesia, hypothermia and catalepsy, but significantly mitigated cocaine-enhanced brain-stimulation reward caused by optogenetic activation of midbrain DA neurons. O-1602 alone failed to alter extracellar DA, but elevated extracellular glutamate, in the nucleus accumbens. In addition, O-1602 also demonstrated inhibitory effects on cocaine or nicotine self-administration under low fixed-ratio and/or progressive-ratio reinforcement schedules in rats and wildtype mice, with no such effects observed in GPR55-knockout mice. Together, these findings suggest that GPR55 activation may functionally modulate drug-taking and drug-seeking behavior possibly via a glutamate-dependent mechanism, and therefore, GPR55 deserves further study as a new therapeutic target for treating substance use disorders.


Subject(s)
Cannabidiol , Cocaine , Receptors, Cannabinoid , Substance-Related Disorders , Animals , Mice , Rats , Cannabidiol/analogs & derivatives , Cocaine/pharmacology , Dopaminergic Neurons/metabolism , Glutamic Acid/metabolism , Mice, Knockout , Nicotine/pharmacology , Pharmaceutical Preparations/metabolism , Receptors, Cannabinoid/metabolism , Receptors, G-Protein-Coupled/genetics , Substance-Related Disorders/genetics , Substance-Related Disorders/metabolism
11.
Int J Mol Sci ; 25(2)2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38255861

ABSTRACT

Substance addiction is a neuropsychiatric disorder characterized by a recurring desire to continue using a substance despite harmful consequences. Brain-derived neurotrophic factor (BDNF) is a protein that plays a role in the activity-dependent remodeling of neural function in adult nervous systems. This study analyzed the association of the rs6265 polymorphism of the BDNF gene in a group of patients addicted to psychoactive substances who were participating in addiction treatment for the first time, in a group of post-relapse psychoactive substance abusers and in a control group. The study also assessed personality and anxiety in all study groups. Statistically significant differences in the frequency of genotypes and alleles were found between all study groups. Compared to the control, both study groups had statistically significantly higher scores for trait and state anxiety. Addicted patients in both groups also had higher scores on the Neuroticism and Openness scales and lower scores on the Extraversion and Agreeableness scales. The results of this study provide further evidence that personality traits, anxiety and the rs6265 polymorphism of the BDNF gene may be risk factors for susceptibility to addiction to psychoactive substances. In addition, they can be a predictor of addiction relapse, but further extensive studies are required to confirm these findings.


Subject(s)
Behavior, Addictive , Substance-Related Disorders , Adult , Humans , Alleles , Brain-Derived Neurotrophic Factor/genetics , Chronic Disease , Polymorphism, Genetic , Substance-Related Disorders/genetics
12.
Int J Mol Sci ; 25(2)2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38279213

ABSTRACT

The development of a substance use disorder (SUD) is a multifaceted process influenced by both genetic and environmental factors. Recent research has suggested the potential involvement of the HINT1 gene in various aspects of plasticity, mood regulation, anxiety-like behaviour, and stress-coping mechanisms. Moreover, personality traits are also recognised to be instrumental in developing substance dependency. Given these considerations, our study investigated the associations among cigarette smoking, personality traits, and the rs2526303 polymorphism. Additionally, we investigated the interactions between personality traits and rs2526303 in the HINT1 gene. The study group comprised 531 volunteers: 375 cigarette users (mean age = 29.42 ± 10.72; F = 49%, M = 51%) and 156 never-smokers (mean age = 26.93 ± 10.09; F = 79%, M = 21%). Genotyping was conducted using the real-time PCR method, and the NEO Five-Factor Personality Inventory and State-Trait Anxiety Inventory were administered. There were no statistically significant differences in the frequency of rs2526303 genotypes and alleles in the cigarette user group compared to the control group. Compared to the control group, the cigarette users obtained higher scores in the assessment of the NEO-FFI Extraversion scale and lower results for the NEO-FFI Openness, Agreeableness, and Conscientiousness scales. Additionally, there was a statistically significant effect of rs2526303 genotype interaction and cigarette-using status on the conscientiousness scale. These outcomes collectively suggest a notable association between cigarette smoking and specific dimensions of personality, particularly highlighting differences in extraversion, openness, agreeableness, and conscientiousness. Furthermore, the detected interaction effect involving rs2526303 concerning conscientiousness signifies a complex interplay between genetic factors and smoking behaviour.


Subject(s)
Substance-Related Disorders , Tobacco Products , Humans , Adolescent , Young Adult , Adult , Smokers , Polymorphism, Genetic , Personality Inventory , Personality/genetics , Substance-Related Disorders/genetics , Nerve Tissue Proteins/genetics
13.
Dev Psychopathol ; 36(1): 28-39, 2024 Feb.
Article in English | MEDLINE | ID: mdl-36700356

ABSTRACT

There is evidence for intergenerational transmission of substance use and disorder. However, it is unclear whether separation from a parent with substance use disorder (SUD) moderates intergenerational transmission, and no studies have tested this question across three generations. In a three-generation study of families oversampled for familial SUD, we tested whether separation between father (G1; first generation) and child (G2; second generation) moderated the effect of G1 father SUDs on G2 child SUDs. We also tested whether separation between father (G2) and child (G3; third generation) moderated the effect of G2 SUDs on G3 drinking. Finally, we tested whether G1-G2 or G2-G3 separation moderated the mediated effect of G1 SUDs on G3 drinking through G2 SUDs. G1 father-G2 child separation moderated intergenerational transmission. In families with G1-G2 separation, there were no significant effects of father SUD on G2 SUD or G3 drinking. However, in nonseparated families, greater G1 father SUDs predicted heightened G2 SUDs and G3 grandchild drinking. In nonseparated families, G1 father SUDs significantly predicted G2 SUDs, which predicted G3 drinking. However, G2-G3 separation predicted heightened G3 drinking regardless of G2 and G1 SUDs. Parental separation may introduce risk for SUDs and drinking among youth with lower familial risk.


Subject(s)
Parents , Substance-Related Disorders , Adolescent , Humans , Substance-Related Disorders/genetics , Intergenerational Relations , Parent-Child Relations
14.
Behav Genet ; 54(2): 181-195, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37840057

ABSTRACT

This study tested interactions among puberty-related genetic risk, prenatal substance use, harsh discipline, and pubertal timing for the severity and directionality (i.e., differentiation) of externalizing and internalizing problems and adolescent substance use. This is a companion paper to Marceau et al. (2021) which examined the same influences in developmental cascade models. Data were from the Avon Longitudinal Study of Parents and Children (ALSPAC) cohort (n = 4504 White boys, n = 4287 White girls assessed from the prenatal period through 18.5 years). We hypothesized generally that later predictors would strengthen the influence of puberty-related genetic risk, prenatal substance use exposure, and pubertal risk on psychopathology and substance use (two-way interactions), and that later predictors would strengthen the interactions of earlier influences on psychopathology and substance use (three-way interactions). Interactions were sparse. Although all fourteen interactions showed that later influences can exacerbate or trigger the effects of earlier ones, they often were not in the expected direction. The most robust moderator was parental discipline, and differing and synergistic effects of biological and socially-relevant aspects of puberty were found. In all, the influences examined here operate more robustly in developmental cascades than in interaction with each other for the development of psychopathology and transitions to substance use.


Subject(s)
Parenting , Substance-Related Disorders , Male , Child , Female , Pregnancy , Humans , Adolescent , Longitudinal Studies , Puberty/genetics , Substance-Related Disorders/genetics , Parents
15.
Biomed Pharmacother ; 170: 115951, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38043446

ABSTRACT

Drug addiction is a complex disease affected by numerous genetic and environmental factors. Brain regions in reward pathway, neuronal adaptations, genetic and epigenetic interactions causing transcriptional enhancement or repression of multiple genes induce different addiction phenotypes for varying duration. Addictive drug use causes epigenetic alterations and similarly epigenetic changes induced by environment can promote addiction. Epigenetic mechanisms include DNA methylation and post-translational modifications like methylation, acetylation, phosphorylation, ubiquitylation, sumoylation, dopaminylation and crotonylation of histones, and ADP-ribosylation. Non-coding RNAs also induce epigenetic changes. This review discusses these above areas and stresses the need for exploring epidrugs as a treatment alternative and adjunct, considering the limited success of current addiction treatment strategies. Epigenome editing complexes have lately been effective in eukaryotic systems. Targeted DNA cleavage techniques such as CRISPR-Cas9 system, CRISPR-dCas9 complexes, transcription activator-like effector nucleases (TALENs) and zinc-finger nucleases (ZFNs) have been exploited as targeted DNA recognition or anchoring platforms, fused with epigenetic writer or eraser proteins and delivered by transfection or transduction methods. Efficacy of epidrugs is seen in various neuropsychiatric conditions and initial results in addiction treatment involving model organisms are remarkable. Epidrugs present a promising alternative treatment for addiction.


Subject(s)
Epigenomics , Substance-Related Disorders , Humans , Histones , DNA Methylation/genetics , Epigenesis, Genetic , Substance-Related Disorders/drug therapy , Substance-Related Disorders/genetics
16.
Behav Genet ; 54(1): 86-100, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38097814

ABSTRACT

There are distinct individual trajectories of depressive symptoms across adolescence which are most often differentiated into low, moderate/stable, and high/increasing groups. Research has found genetic predisposition for depression associated with trajectories characterized by greater depressive symptoms. However, the majority of this research has been conducted in White youth. Moreover, a separate literature indicates that trajectories with elevated depressive symptoms can result in substance use. It is critical to identify depressive symptom trajectories, genetic predictors, and substance use outcomes in diverse samples in early adolescence to understand distinct processes and convey equitable benefits from research. Using data from the Adolescent Cognitive Brain Development Study (ABCD), we examined parent-reported depressive symptom trajectories within Black/African American (AA, n = 1783), White/European American (EA, n = 6179), and Hispanic/Latinx (LX, n = 2410) youth across four annual assessments in early adolescence (age 9-10 to 12-13). We examined racially/ethnically aligned polygenic scores (Dep-PGS) as predictors of trajectories as well as substance use intent and perceived substance use harm as outcomes at age 12-13. Differential trajectories were found in AA, EA, and LX youth but low and high trajectories were represented within each group. In EA youth, greater Dep-PGS were broadly associated with membership in trajectories with greater depressive symptoms. Genetic effects were not significant in AA and LX youth. In AA youth, membership in the low trajectory was associated with greater substance use intent. In EA youth, membership in trajectories with higher depressive symptoms was associated with greater substance use intent and less perceived harm. There were no associations between trajectories and substance use intent and perceived harm in LX youth. These findings indicate that there are distinct depressive symptom trajectories in AA, EA, and LX youth, accompanied by unique associations with genetic predisposition for depressive symptoms and substance use outcomes.


Subject(s)
Depression , Substance-Related Disorders , Humans , Adolescent , Child , Depression/genetics , Adolescent Development , Parents/psychology , Genetic Predisposition to Disease/genetics , Substance-Related Disorders/genetics , Longitudinal Studies
17.
Nat Commun ; 14(1): 8481, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38123574

ABSTRACT

The risk of developing drug addiction is strongly influenced by the epigenetic landscape and chromatin remodeling. While histone modifications such as methylation and acetylation have been studied in the ventral tegmental area and nucleus accumbens (NAc), the role of H2A monoubiquitination remains unknown. Our investigations, initially focused on the scaffold protein melanoma-associated antigen D1 (Maged1), reveal that H2A monoubiquitination in the paraventricular thalamus (PVT) significantly contributes to cocaine-adaptive behaviors and transcriptional repression induced by cocaine. Chronic cocaine use increases H2A monoubiquitination, regulated by Maged1 and its partner USP7. Accordingly, Maged1 specific inactivation in thalamic Vglut2 neurons, or USP7 inhibition, blocks cocaine-evoked H2A monoubiquitination and cocaine locomotor sensitization. Additionally, genetic variations in MAGED1 and USP7 are linked to altered susceptibility to cocaine addiction and cocaine-associated symptoms in humans. These findings unveil an epigenetic modification in a non-canonical reward pathway of the brain and a potent marker of epigenetic risk factors for drug addiction in humans.


Subject(s)
Cocaine-Related Disorders , Cocaine , Substance-Related Disorders , Humans , Ubiquitin-Specific Peptidase 7/metabolism , Cocaine/pharmacology , Cocaine/metabolism , Cocaine-Related Disorders/genetics , Cocaine-Related Disorders/metabolism , Substance-Related Disorders/genetics , Epigenesis, Genetic , Nucleus Accumbens/metabolism , Thalamus/metabolism
18.
PLoS One ; 18(10): e0287446, 2023.
Article in English | MEDLINE | ID: mdl-37906564

ABSTRACT

BACKGROUND: The abuse of psychogenic drugs can lead to multiple health-related problems. Genetic and environmental vulnerabilities are factors in the emergence of substance use disorders. Empirical evidence regarding the gene-environment interaction in substance use is mixed. Summaries of the latest findings from a candidate gene approach will be useful for revealing the significance of particular gene contributions. Thus, we aim to identify different gene-environment interactions in patterns of substance use and investigate whether any effects trend notably across different genders and races. METHODS: We reviewed published studies, until March 1, 2022, on substance use for candidate gene-environment interaction. Basic demographics of the included studies, target genes, environmental factors, main findings, patterns of gene-environment interaction, and other relevant information were collected and summarized. RESULTS: Among a total of 44 studies, 38 demonstrated at least one significant interaction effect. About 61.5% of studies on the 5-HTTLPR gene, 100% on the MAOA gene, 42.9% on the DRD2 gene, 50% on the DRD4 gene, 50% on the DAT gene, 80% on the CRHR1 gene, 100% on the OPRM1 gene, 100% on the GABRA1 gene, and 50% on the CHRNA gene had a significant gene-environment interaction effect. The diathesis-stress model represents a dominant interaction pattern (89.5%) in the studies with a significant interaction effect; the remaining significant effect on substance use is found in the differential susceptibility model. The social push and swing model were not reported in the included studies. CONCLUSION: The gene-environment interaction research on substance use behavior is methodologically multidimensional, which causes difficulty in conducting pooled analysis, or stated differently-making it hard to identify single sources of significant influence over maladaptive patterns of drug taking. In decreasing the heterogeneity and facilitating future pooled analysis, researchers must (1) replicate the existing studies with consistent study designs and measures, (2) conduct power calculations to report gene-environment correlations, (3) control for covariates, and (4) generate theory-based hypotheses with factorial based experiments when designing future studies.


Subject(s)
Gene-Environment Interaction , Substance-Related Disorders , Humans , Male , Female , Substance-Related Disorders/genetics
19.
PLoS One ; 18(10): e0292068, 2023.
Article in English | MEDLINE | ID: mdl-37796845

ABSTRACT

BACKGROUND: The prevalence of substance use in people with HIV (PWH) in the United States is higher than in the general population and is an important driver of HIV-related outcomes. We sought to assess if previously identified genetic associations that contribute to substance use are also observed in a population of PWH. METHODS: We performed genome-wide association studies (GWAS) of alcohol, smoking, and cannabis use phenotypes in a multi-ancestry population of 7,542 PWH from the Center for AIDS Research Network of Integrated Clinical Systems (CNICS). We conducted multi-ancestry GWAS for individuals of African (n = 3,748), Admixed American (n = 1,334), and European (n = 2,460) ancestry. Phenotype data were self-reported and collected using patient reported outcomes (PROs) and three questions from AUDIT-C, an alcohol screening tool. We analyzed nine phenotypes: 1) frequency of alcohol consumption, 2) typical number of drinks on a day when drinking alcohol, 3) frequency of five or more alcoholic drinks in a 30-day period, 4) smoking initiation, 5) smoking cessation, 6) cigarettes per day, 7) cannabis use initiation, 8) cannabis use cessation, 9) frequency of cannabis use during the previous 30 days. For each phenotype we considered a) variants previously identified as associated with a substance use trait and b) novel associations. RESULTS: We observed evidence for effects of previously reported single nucleotide polymorphisms (SNPs) related to alcohol (rs1229984, p = 0.001), tobacco (rs11783093, p = 2.22E-4), and cannabis use (rs2875907, p = 0.005). We also report two novel loci (19p13.2, p = 1.3E-8; and 20p11.21, p = 2.1E-8) associated with cannabis use cessation. CONCLUSIONS: Our analyses contribute to understanding the genetic bases of substance use in a population with relatively higher rates of use compared to the general population.


Subject(s)
Cannabis , HIV Infections , Substance-Related Disorders , Humans , United States/epidemiology , Genome-Wide Association Study , Smoking/genetics , Smoking/epidemiology , Alcohol Drinking/genetics , Alcohol Drinking/epidemiology , Substance-Related Disorders/epidemiology , Substance-Related Disorders/genetics , Cannabis/genetics , Ethanol , HIV Infections/epidemiology , HIV Infections/genetics
20.
Neurochem Int ; 171: 105627, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37827244

ABSTRACT

Changes in gene expression are involved in many brain functions. Epigenetic processes modulate gene expression by histone modification and DNA methylation or RNA-mediated processes, which is important for brain function. Consequently, epigenetic changes are also a part of brain diseases such as mental illness and addiction. Understanding the role of different factors on the brain epigenome may help us understand the function of the brain. This review discussed the effects of caffeine, lipids, addictive substances, physical activity, and pollutants on the epigenetic changes in the brain and their modulatory effects on brain function.


Subject(s)
Caffeine , Substance-Related Disorders , Humans , Micronutrients , Epigenesis, Genetic , DNA Methylation , Substance-Related Disorders/genetics , Brain , Exercise
SELECTION OF CITATIONS
SEARCH DETAIL
...