Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.350
Filter
1.
Ren Fail ; 46(2): 2403653, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39291665

ABSTRACT

Objectives: The aim of this study was to investigate the mechanism of itaconate's potential effect in diabetic kidney disease.Methods: Renal immune responsive gene 1 (IRG1) levels were measured in db/db mice and streptozotocin (STZ) + high-fat diet (HFD)-induced diabetic mice. Irg1 knockout mice were generated. db/db mice were treated with 4-octyl itaconate (4-OI, 50 mg/kg), a derivative of itaconate, for 4 weeks. Renal function and morphological changes were investigated. Ultrastructural alterations were determined by transmission electron microscopy.Results: Renal IRG1 levels were reduced in two diabetic models. STZ+HFD-treated Irg1 knockout mice exhibited aggravated renal tubular injury and worsened renal function. Treatment with 4-OI lowered urinary albumin-to-creatinine ratio and blood urea nitrogen levels, and restored renal histological changes in db/db mice. It improved mitochondrial damage, increased expressions of peroxisome-proliferator-activated receptor γ coactivator-1α (PGC-1α) and mitochondrial transcription factor A (TFAM) in the renal cortex of db/db mice. These were confirmed in vitro; 4-OI improved high glucose-induced abnormal mitochondrial morphology and TFAM expression in HK-2 cells, effects that were inhibited by PGC-1α silencing. Moreover, 4-OI reduced the number of apoptotic cells in the renal cortex of db/db mice. Further study showed that 4-OI increased renal Nrf2 expression and decreased oxidative stress levels in db/db mice. In HK-2 cells, 4-OI decreased high glucose-induced mitochondrial ROS production, which was reversed by Nrf2 silencing. Nrf2 depletion also inhibited 4-OI-mediated regulation of PGC-1α, TFAM, and mitochondrial apoptotic protein expressions.Conclusions: 4-OI attenuates renal tubular injury in db/db mice by activating Nrf2 and promoting PGC-1α-mediated mitochondrial biogenesis.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Nephropathies , Mice, Knockout , NF-E2-Related Factor 2 , Organelle Biogenesis , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Succinates , Animals , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , NF-E2-Related Factor 2/metabolism , Mice , Succinates/pharmacology , Succinates/therapeutic use , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/pathology , Diabetic Nephropathies/prevention & control , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/metabolism , Male , Humans , Mitochondria/drug effects , Mitochondria/metabolism , Oxidative Stress/drug effects , Transcription Factors/metabolism , Kidney Tubules/pathology , Kidney Tubules/drug effects , Kidney Tubules/metabolism , Mice, Inbred C57BL , Apoptosis/drug effects
2.
J Neuroinflammation ; 21(1): 207, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39164713

ABSTRACT

Despite advances in antimicrobial and anti-inflammatory treatment, inflammation and its consequences remain a major challenge in the field of medicine. Inflammatory reactions can lead to life-threatening conditions such as septic shock, while chronic inflammation has the potential to worsen the condition of body tissues and ultimately lead to significant impairment of their functionality. Although the central nervous system has long been considered immune privileged to peripheral immune responses, recent research has shown that strong immune responses in the periphery also affect the brain, leading to reactive microglia, which belong to the innate immune system and reside in the brain, and neuroinflammation. The inflammatory response is primarily a protective mechanism to defend against pathogens and tissue damage. However, excessive and chronic inflammation can have negative effects on neuronal structure and function. Neuroinflammation underlies the pathogenesis of many neurological and neurodegenerative diseases and can accelerate their progression. Consequently, targeting inflammatory signaling pathways offers potential therapeutic strategies for various neuropathological conditions, particularly Parkinson's and Alzheimer's disease, by curbing inflammation. Here the blood-brain barrier is a major hurdle for potential therapeutic strategies, therefore it would be highly advantageous to foster and utilize brain innate anti-inflammatory mechanisms. The tricarboxylic acid cycle-derived metabolite itaconate is highly upregulated in activated macrophages and has been shown to act as an immunomodulator with anti-inflammatory and antimicrobial functions. Mesaconate, an isomer of itaconate, similarly reduces the inflammatory response in macrophages. Nevertheless, most studies have focused on its esterified forms and its peripheral effects, while its influence on the CNS remained largely unexplored. Therefore, this study investigated the immunomodulatory and therapeutic potential of endogenously synthesized itaconate and its isomer mesaconate in lipopolysaccharide (LPS)-induced neuroinflammatory processes. Our results show that both itaconate and mesaconate reduce LPS-induced neuroinflammation, as evidenced by lower levels of inflammatory mediators, reduced microglial reactivity and a rescue of synaptic plasticity, the cellular correlate of learning and memory processes in the brain. Overall, this study emphasizes that both itaconate and mesaconate have therapeutic potential for neuroinflammatory processes in the brain and are of remarkable importance due to their endogenous origin and production, which usually leads to high tolerance.


Subject(s)
Lipopolysaccharides , Neuroinflammatory Diseases , Succinates , Animals , Succinates/pharmacology , Succinates/therapeutic use , Neuroinflammatory Diseases/drug therapy , Neuroinflammatory Diseases/metabolism , Neuroinflammatory Diseases/pathology , Neuroinflammatory Diseases/chemically induced , Neuroinflammatory Diseases/immunology , Lipopolysaccharides/toxicity , Brain/drug effects , Brain/metabolism , Brain/pathology , Brain/immunology , Mice , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Male , Mice, Inbred C57BL
3.
Biomed Mater Eng ; 35(5): 475-485, 2024.
Article in English | MEDLINE | ID: mdl-39150826

ABSTRACT

BACKGROUND: Osteoarthritis (OA) is a chronic and degenerative joint disease that remains a great challenge in treatment due to the lack of effective therapies. 4-octyl itaconate (4-OI) is a novel and potent modulator of inflammation for the treatment of inflammatory disease. However, the clinical usage of 4-OI is limited due to its poor solubility and low bioavailability. As a promising drug delivery strategy, injectable hydrogels offers an effective approach to address these limitations of 4-OI. OBJECTIVE: The aim of the study was to verify that the composite 4-OI/SA hydrogels could achieve a controlled release of 4-OI and reduce damage to articular cartilage in the group of osteoarthritic rats treated with the system. METHODS: In this study, an injectable composite hydrogel containing sodium alginate (SA) and 4-octyl itaconate (4-OI) has been developed for continuous intra-articular administration in the treatment of OA. RESULTS: After intra-articular injection in arthritic rats, the as-prepared 4-OI/SA hydrogel containing of 62.5 µM 4-OI effectively significantly reduced the expression of TNF-α, IL-1ß, IL-6 and MMP3 in the ankle fluid. Most importantly, the as-prepared 4-OI/SA hydrogel system restored the morphological parameters of the ankle joints close to normal. CONCLUSION: 4-OI/SA hydrogel shows a good anti-inflammatory activity and reverse cartilage disruption, which provide a new strategy for the clinical treatment of OA.


Subject(s)
Alginates , Anti-Inflammatory Agents , Delayed-Action Preparations , Hydrogels , Osteoarthritis , Rats, Sprague-Dawley , Succinates , Animals , Hydrogels/chemistry , Alginates/chemistry , Succinates/chemistry , Succinates/pharmacology , Anti-Inflammatory Agents/administration & dosage , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/pharmacokinetics , Delayed-Action Preparations/chemistry , Osteoarthritis/drug therapy , Osteoarthritis/pathology , Rats , Male , Injections, Intra-Articular , Cartilage, Articular/drug effects , Cartilage, Articular/pathology , Cartilage, Articular/metabolism
4.
Cell Commun Signal ; 22(1): 413, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39192276

ABSTRACT

Nasopharyngeal carcinoma (NPC) is a malignant tumor of epithelial origin in head and neck with high incidence rate in South China, Southeast Asia and North Africa. The intervention of tumor-associated macrophages (Mφs) (TAMs)-mediated immunosuppression is a potential therapeutic strategy against tumor metastasis, but the exact mechanisms of TAM-mediated immunosuppression in nasopharyngeal carcinoma are unclear. Furthermore, how TAM affects the occurrence and development of nasopharyngeal carcinoma through metabolism is rarely involved. In this work, we revealed that NPC cells promoted M2-type Mφ polarization and elevated itaconic acid (ITA) release. Also, TAMs facilitated NPC cell proliferation, migration, and invasion through immune response gene 1 (IRG1)-catalyzed ITA production. Then, IRG1-mediated ITA production in TAMs repressed the killing of CD8+ T cells, induced M2-type polarization of TAMs, and reduced the phagocytosis of TAMs. Moreover, we demonstrated ITA played a tumor immunosuppressive role by binding and dampening ten-eleven translocation-2 (TET2) expression. Finally, we proved that ITA promotes NPC growth by facilitating immune escape in CD34+ hematopoietic stem cell humanized mice. In Conclusion, TAM-derived ITA facilitated NPC progression by enhancing immune escape through targeting TET2, highlighting that interfering with the metabolic pathway of ITA may be a potential strategy for NPC treatment.


Subject(s)
DNA-Binding Proteins , Dioxygenases , Nasopharyngeal Carcinoma , Nasopharyngeal Neoplasms , Proto-Oncogene Proteins , Succinates , Tumor Escape , Tumor-Associated Macrophages , Nasopharyngeal Carcinoma/pathology , Nasopharyngeal Carcinoma/immunology , Tumor-Associated Macrophages/immunology , Tumor-Associated Macrophages/metabolism , Humans , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Animals , Mice , Succinates/pharmacology , Nasopharyngeal Neoplasms/pathology , Nasopharyngeal Neoplasms/immunology , Nasopharyngeal Neoplasms/metabolism , Cell Line, Tumor , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins/genetics , Disease Progression , Cell Proliferation , Cell Movement/drug effects , CD8-Positive T-Lymphocytes/immunology , Carboxy-Lyases
5.
Cell Rep ; 43(8): 114570, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39093697

ABSTRACT

A wide variety of electrophilic derivatives of itaconate, the Kreb's cycle-derived metabolite, are immunomodulatory, yet these derivatives have overlapping and sometimes contradictory activities. Therefore, we generated a genetic system to interrogate the immunomodulatory functions of endogenously produced itaconate in human macrophages. Endogenous itaconate is driven by multiple innate signals restraining inflammatory cytokine production. Endogenous itaconate directly targets cysteine 13 in IRAK4 (disrupting IRAK4 autophosphorylation and activation), drives the degradation of nuclear factor κB, and modulates global ubiquitination patterns. As a result, cells unable to make itaconate overproduce inflammatory cytokines such as tumor necrosis factor alpha (TNFα), interleukin-6 (IL-6), and IL-1ß in response to these innate activators. In contrast, the production of interferon (IFN)ß, downstream of LPS, requires the production of itaconate. These data demonstrate that itaconate is a critical arbiter of inflammatory cytokine production downstream of multiple innate signaling pathways, laying the groundwork for the development of itaconate mimetics for the treatment of autoimmunity.


Subject(s)
Cytokines , Immunity, Innate , Macrophages , Succinates , Ubiquitination , Humans , Succinates/pharmacology , Succinates/metabolism , Ubiquitination/drug effects , Macrophages/metabolism , Macrophages/drug effects , Macrophages/immunology , Cytokines/metabolism , Immunity, Innate/drug effects , NF-kappa B/metabolism , Interleukin-1 Receptor-Associated Kinases/metabolism , Signal Transduction/drug effects , Lipopolysaccharides/pharmacology , HEK293 Cells
6.
Front Immunol ; 15: 1427457, 2024.
Article in English | MEDLINE | ID: mdl-39156902

ABSTRACT

Aconitate decarboxylase-1 (ACOD1) is expressed by activated macrophages and generates itaconate that exerts anti-microbial and immunoregulatory effects. ACOD1-itaconate is essential for macrophage-mediated control of the intracellular pathogen Coxiella (C.) burnetii, which causes Q fever. Two isomers of itaconate, mesaconate and citraconate, have overlapping yet distinct activity on macrophage metabolism and inflammatory gene expression. Here, we found that all three isomers inhibited the growth of C. burnetii in axenic culture in ACCM-2 medium. However, only itaconate reduced C. burnetii replication efficiently in Acod1-/- macrophages. In contrast, addition of citraconate strongly increased C. burnetii replication in Acod1+/- macrophages, whereas mesaconate weakly enhanced bacterial burden in Acod1-/- macrophages. Analysis of intracellular isomers showed that exogenous citraconate and mesaconate inhibited the generation of itaconate by infected Acod1+/- macrophages. Uptake of added isomers into Acod1-/- macrophages was increased after infection for itaconate and mesaconate, but not for citraconate. Mesaconate, but not citraconate, competed with itaconate for uptake into macrophages. Taken together, inhibition of itaconate generation by macrophages and interference with the uptake of extracellular itaconate could be identified as potential mechanisms behind the divergent effects of citraconate and mesaconate on C. burnetii replication in macrophages or in axenic culture.


Subject(s)
Axenic Culture , Carboxy-Lyases , Coxiella burnetii , Macrophages , Succinates , Coxiella burnetii/drug effects , Coxiella burnetii/growth & development , Succinates/pharmacology , Animals , Macrophages/microbiology , Macrophages/immunology , Macrophages/metabolism , Macrophages/drug effects , Mice , Carboxy-Lyases/metabolism , Mice, Knockout , Q Fever/immunology , Q Fever/microbiology , Mice, Inbred C57BL , Hydro-Lyases
8.
Nat Metab ; 6(9): 1661-1667, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39060560

ABSTRACT

The metabolite itaconate has emerged as an important immunoregulator with roles in antibacterial defence, inhibition of inflammation and, more recently, as an inhibitory factor in obesity. Itaconate is one of the most upregulated metabolites in inflammatory macrophages. It is produced owing to the disturbance of the tricarboxylic acid cycle and the diversion of aconitate to itaconate via the enzyme aconitate decarboxylase 1. In immunology, initial studies concentrated on the role of itaconate in inflammatory macrophages where it was shown to be inhibitory, but this has expanded as the impact of itaconate on other cell types is starting to emerge. This review focuses on itaconate as a key immunoregulatory metabolite and describes its diverse mechanisms of action and its many impacts on the immune and inflammatory responses and in cancer. We also examine the clinical relevance of this immunometabolite and its therapeutic potential for immune and inflammatory diseases.


Subject(s)
Inflammation , Succinates , Humans , Succinates/metabolism , Succinates/pharmacology , Animals , Inflammation/metabolism , Macrophages/metabolism , Citric Acid Cycle , Neoplasms/metabolism , Neoplasms/drug therapy , Carboxy-Lyases/metabolism
9.
ACS Biomater Sci Eng ; 10(8): 4823-4838, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39056337

ABSTRACT

Itaconic acid and its derivative 4-octyl itaconate (OI) represent a novel anti-inflammatory medication that has demonstrated efficacy in multiple inflammation models because of its minimal side effects. Recently, natural polymers conjugated with small molecule drugs, known as polymer-drug conjugates (PDCs), have emerged as a promising approach to sustained drug release. In this work, we reported an approach to prepare a PDC containing an OI and make it into an injectable hydrogel. Chitosan (CS) was selected for PDC synthesis because of its abundant free amino groups that can be conjugated with molecules containing carboxyl groups by carbodiimide chemistry. We used an ethanol/water cosolvent system to synthesize a CS-OI conjugate via EDC/NHS catalysis. The CS-OI conjugate had improved water solubility and unique anti-inflammatory activity and did not show compromised antibacterial activity compared with unmodified CS. Beta-glycerophosphate (ß-GP) cross-linked CS-OI hydrogel exhibited good injectability with sustainable OI release and effectively modulated inflammatory response in a rat model. Therefore, this study provides valuable insights into the design of PDC hydrogels with inflammatory modulatory properties.


Subject(s)
Anti-Inflammatory Agents , Chitosan , Hydrogels , Inflammation , Succinates , Chitosan/chemistry , Animals , Succinates/chemistry , Succinates/pharmacology , Hydrogels/chemistry , Hydrogels/pharmacology , Inflammation/drug therapy , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/administration & dosage , Rats , Male , Rats, Sprague-Dawley , Mice , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/administration & dosage
10.
Cytokine Growth Factor Rev ; 78: 37-49, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38981775

ABSTRACT

Almost 16 % of the global population is affected by neurological disorders, including neurodegenerative and cerebral neuroimmune diseases, triggered by acute or chronic inflammation. Neuroinflammation is recognized as a common pathogenic mechanism in a wide array of neurological conditions including Alzheimer's disease, Parkinson's disease, postoperative cognitive dysfunction, stroke, traumatic brain injury, and multiple sclerosis. Inflammatory process in the central nervous system (CNS) can lead to neuronal damage and neuronal apoptosis, consequently exacerbating these diseases. Itaconate, an immunomodulatory metabolite from the tricarboxylic acid cycle, suppresses neuroinflammation and modulates the CNS immune response. Emerging human studies suggest that itaconate levels in plasma and cerebrospinal fluid may serve as biomarkers associated with inflammatory responses in neurological disorders. Preclinical studies have shown that itaconate and its highly cell-permeable derivatives are promising candidates for preventing and treating neuroinflammation-related neurological disorders. The underlying mechanism may involve the regulation of immune cells in the CNS and neuroinflammation-related signaling pathways and molecules including Nrf2/KEAP1 signaling pathway, reactive oxygen species, and NLRP3 inflammasome. Here, we introduce the metabolism and function of itaconate and the synthesis and development of its derivatives. We summarize the potential impact and therapeutic potential of itaconate and its derivatives on brain immune cells and the associated signaling pathways and molecules, based on preclinical evidence via various neurological disorder models. We also discuss the challenges and potential solutions for clinical translation to promote further research on itaconate and its derivatives for neuroinflammation-related neurological disorders.


Subject(s)
Anti-Inflammatory Agents , Nervous System Diseases , Succinates , Humans , Succinates/therapeutic use , Succinates/pharmacology , Animals , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents/pharmacology , Nervous System Diseases/drug therapy , Nervous System Diseases/immunology , Neuroinflammatory Diseases/drug therapy , Neuroinflammatory Diseases/immunology , Signal Transduction/drug effects , Inflammation/drug therapy , NF-E2-Related Factor 2/metabolism
11.
J Immunol ; 213(4): 419-434, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38949522

ABSTRACT

The Krebs cycle enzyme aconitate decarboxylase 1 (ACOD1) mediates itaconate synthesis in monocytes and macrophages. Previously, we reported that administration of 4-octyl itaconate to lupus-prone mice abrogated immune dysregulation and clinical features. In this study, we explore the role of the endogenous ACOD1/itaconate pathway in the development of TLR7-induced lupus (imiquimod [IMQ] model). We found that, in vitro, ACOD1 was induced in mouse bone marrow-derived macrophages and human monocyte-derived macrophages following TLR7 stimulation. This induction was partially dependent on type I IFN receptor signaling and on specific intracellular pathways. In the IMQ-induced mouse model of lupus, ACOD1 knockout (Acod1-/-) displayed disruptions of the splenic architecture, increased serum levels of anti-dsDNA and proinflammatory cytokines, and enhanced kidney immune complex deposition and proteinuria, when compared with the IMQ-treated wild-type mice. Consistent with these results, Acod1-/- bone marrow-derived macrophages treated in vitro with IMQ showed higher proinflammatory features. Furthermore, itaconate serum levels in systemic lupus erythematosus patients were decreased compared with healthy individuals, in association with disease activity and specific perturbed cardiometabolic parameters. These findings suggest that the ACOD1/itaconate pathway plays important immunomodulatory and vasculoprotective roles in systemic lupus erythematosus, supporting the potential therapeutic role of itaconate analogs in autoimmune diseases.


Subject(s)
Carboxy-Lyases , Lupus Erythematosus, Systemic , Macrophages , Mice, Knockout , Succinates , Animals , Lupus Erythematosus, Systemic/immunology , Mice , Humans , Female , Macrophages/immunology , Succinates/pharmacology , Cardiovascular Diseases/immunology , Biomarkers , Mice, Inbred C57BL , Signal Transduction/immunology , Adult , Male , Disease Models, Animal , Middle Aged , Cytokines/metabolism , Toll-Like Receptor 7/metabolism , Hydro-Lyases
12.
J Leukoc Biol ; 116(3): 611-620, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-38941443

ABSTRACT

Itaconate is one of the most studied immunometabolites produced by myeloid cells during inflammatory response. It mediates a wide range of anti-inflammatory and immunoregulatory effects and plays a role in a number of pathological states, including autoimmunity and cancer. Itaconate and its derivatives are considered potential therapeutic agents for the treatment of inflammatory diseases. While immunoregulatory effects of itaconate have been extensively studied in vitro and using knockout mouse models, less is known about how therapeutic administration of this metabolite regulates inflammatory response in vivo. Here, we investigate the immunoregulatory properties of exogenous administration of itaconate and its derivative dimethyl itaconate in a mouse model of lipopolysaccharide-induced inflammation. The data show that administration of itaconate or dimethyl itaconate controls systemic production of multiple cytokines, including increased IL-10 production. However, only dimethyl itaconate was able to suppress systemic production of IFNγ and IL-1ß. In contrast to in vitro data, administration of itaconate or dimethyl itaconate in vivo resulted in systemic upregulation of IL-6 in the blood. Electrophilic stress due to itaconate or dimethyl itaconate was not responsible for IL-6 upregulation. However, inhibition of succinate dehydrogenase with dimethyl malonate also resulted in elevated systemic levels of IL-6 and IL-10. Taken together, our study reports a novel effect of exogenous itaconate and its derivative dimethyl itaconate on the production of IL-6 in vivo, with important implications for the development of itaconate-based anti-inflammatory therapies.


Subject(s)
Inflammation , Interleukin-6 , Lipopolysaccharides , Succinates , Animals , Succinates/pharmacology , Interleukin-6/metabolism , Mice , Inflammation/drug therapy , Inflammation/chemically induced , Inflammation/metabolism , Mice, Inbred C57BL , Up-Regulation/drug effects , Male , Interleukin-10/metabolism
13.
J Chem Inf Model ; 64(13): 5207-5218, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38913174

ABSTRACT

Nirmatrelvir, a pivotal component of the oral antiviral Paxlovid for COVID-19, targets the SARS-CoV-2 main protease (Mpro) as a covalent inhibitor. Here, we employed combined computational methods to explore how the prevalent Omicron variant mutation P132H, alone and in combination with A173V (P132H-A173V), affects nirmatrelvir's efficacy. Our findings suggest that P132H enhances the noncovalent binding affinity of Mpro for nirmatrelvir, whereas P132H-A173V diminishes it. Although both mutants catalyze the rate-limiting step more efficiently than the wild-type (WT) Mpro, P132H slows the overall rate of covalent bond formation, whereas P132H-A173V accelerates it. Comprehensive analysis of noncovalent and covalent contributions to the overall binding free energy of the covalent complex suggests that P132H likely enhances Mpro sensitivity to nirmatrelvir, while P132H-A173V may confer resistance. Per-residue decompositions of the binding and activation free energies pinpoint key residues that significantly affect the binding affinity and reaction rates, revealing how the mutations modulate these effects. The mutation-induced conformational perturbations alter drug-protein local contact intensities and the electrostatic preorganization of the protein, affecting noncovalent binding affinity and the stability of key reaction states, respectively. Our findings inform the mechanisms of nirmatrelvir resistance and sensitivity, facilitating improved drug design and the detection of resistant strains.


Subject(s)
Antiviral Agents , Coronavirus 3C Proteases , Mutation , SARS-CoV-2 , SARS-CoV-2/enzymology , SARS-CoV-2/drug effects , SARS-CoV-2/genetics , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/metabolism , Coronavirus 3C Proteases/chemistry , Coronavirus 3C Proteases/genetics , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Humans , COVID-19 Drug Treatment , Molecular Dynamics Simulation , Protease Inhibitors/pharmacology , Protease Inhibitors/chemistry , Protease Inhibitors/metabolism , Leucine/chemistry , Thermodynamics , Sulfonamides/pharmacology , Sulfonamides/chemistry , Sulfonamides/metabolism , Protein Binding , Succinates/chemistry , Succinates/pharmacology , Succinates/metabolism , Lactams , Nitriles , Proline
14.
Int Immunopharmacol ; 137: 112531, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-38906009

ABSTRACT

The role of oxidative stress and ferroptosis in osteoarthritis (OA) pathogenesis is increasingly recognized. Notably, 4-octyl Itaconate (OI) has been documented to counteract oxidative stress and inflammatory responses, highlighting its therapeutic potential in OA. This study explored the effects of OI on GPX4 methylation, oxidative stress, and ferroptosis in chondrocytes affected by OA. Our results demonstrated that OI mitigated IL-1ß-induced chondrocyte degeneration in a dose-dependent manner. It also suppressed reactive oxygen species (ROS) production and sustained GPX4 expression, thereby attenuating the degenerative impact of IL-1ß and Erastin on chondrocytes by curtailing ferroptosis. Moreover, we observed that blocking GPX4 methylation could alleviate IL-1ß-induced degeneration, oxidative stress, and ferroptosis in chondrocytes. The regulatory mechanism of OI on GPX4 expression in chondrocytes involved the inhibition of GPX4 methylation. In a mouse model of OA, OI's protective effects against OA were comparable to those of Ferrostatin-1. Thus, OI reduced chondrocyte degeneration, oxidative stress, and ferroptosis by inhibiting GPX4 methylation, offering a novel mechanistic insight into its therapeutic application in OA.


Subject(s)
Chondrocytes , Ferroptosis , Interleukin-1beta , Mice, Inbred C57BL , Osteoarthritis , Oxidative Stress , Phospholipid Hydroperoxide Glutathione Peroxidase , Succinates , Animals , Chondrocytes/drug effects , Chondrocytes/metabolism , Ferroptosis/drug effects , Oxidative Stress/drug effects , Succinates/pharmacology , Succinates/therapeutic use , Interleukin-1beta/metabolism , Osteoarthritis/drug therapy , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Phospholipid Hydroperoxide Glutathione Peroxidase/genetics , Mice , Male , Humans , Methylation/drug effects , Reactive Oxygen Species/metabolism , Cells, Cultured , Disease Models, Animal
15.
Int J Mol Sci ; 25(11)2024 May 22.
Article in English | MEDLINE | ID: mdl-38891843

ABSTRACT

Mesotrione, as a widely used herbicide, is present in the environment in detectable amounts, causing serious damage. Here, we aimed to investigate the effect of mesotrione on Caco-2 cells and the possibility of its toxicity mitigation by cichoric acid. Therefore, we analyzed the cytotoxicity of both these compounds and the selected oxidative stress parameters, apoptosis and interaction of both the tested compounds with the cell membrane and their accumulation within the cells. In cytotoxicity studies, the stimulating activity of mesotrione was observed, and simultaneously, the inhibitory effect of cichoric acid was noticed. This effect was related to the results of oxidative stress analysis and apoptosis measurements. The activity level of key enzymes (glutathione peroxidase, catalase and superoxide dismutase) in Caco-2 cells exposed to cichoric acid was higher as compared to that of the control. The treatment with mesotrione did not induce apoptosis in the Caco-2 cells. The penetration of the studied compounds into the Caco-2 cells was measured by using an HPLC methodology, and the results indicate mesotrione's high penetration capacity. The distribution of charge on the surface of the cell membranes changed under the influence of both compounds. Considering the mutual interactions of beneficial and potentially toxic food ingredients, it should be noted that, despite the observed favorable trend, cichoric acid is not able to overcome the toxic and cancer-stimulating effects of this pesticide.


Subject(s)
Apoptosis , Caffeic Acids , Cyclohexanones , Oxidative Stress , Humans , Caco-2 Cells , Apoptosis/drug effects , Cyclohexanones/pharmacology , Oxidative Stress/drug effects , Caffeic Acids/pharmacology , Succinates/pharmacology , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Adenocarcinoma/drug therapy , Adenocarcinoma/pathology , Adenocarcinoma/metabolism , Herbicides/toxicity , Superoxide Dismutase/metabolism , Cell Survival/drug effects , Catalase/metabolism , Glutathione Peroxidase/metabolism , Cell Membrane/drug effects , Cell Membrane/metabolism
17.
J Neuroinflammation ; 21(1): 132, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760862

ABSTRACT

BACKGROUND: Neonatal hypoxic-ischemic encephalopathy (HIE) is one of the most common neurological problems occurring in the perinatal period. However, there still is not a promising approach to reduce long-term neurodevelopmental outcomes of HIE. Recently, itaconate has been found to exhibit anti-oxidative and anti-inflammatory effects. However, the therapeutic efficacy of itaconate in HIE remains inconclusive. Therefore, this study attempts to explore the pathophysiological mechanisms of oxidative stress and inflammatory responses in HIE as well as the potential therapeutic role of a derivative of itaconate, 4-octyl itaconate (4OI). METHODS: We used 7-day-old mice to induce hypoxic-ischemic (HI) model by right common carotid artery ligation followed by 1 h of hypoxia. Behavioral experiments including the Y-maze and novel object recognition test were performed on HI mice at P60 to evaluate long-term neurodevelopmental outcomes. We employed an approach combining non-targeted metabolomics with transcriptomics to screen alterations in metabolic profiles and gene expression in the hippocampal tissue of the mice at 8 h after hypoxia. Immunofluorescence staining and RT-PCR were used to evaluate the pathological changes in brain tissue cells and the expression of mRNA and proteins. 4OI was intraperitoneally injected into HI model mice to assess its anti-inflammatory and antioxidant effects. BV2 and C8D1A cells were cultured in vitro to study the effect of 4OI on the expression and nuclear translocation of Nrf2. We also used Nrf2-siRNA to further validate 4OI-induced Nrf2 pathway in astrocytes. RESULTS: We found that in the acute phase of HI, there was an accumulation of pyruvate and lactate in the hippocampal tissue, accompanied by oxidative stress and pro-inflammatory, as well as increased expression of antioxidative stress and anti-inflammatory genes. Treatment of 4OI could inhibit activation and proliferation of microglial cells and astrocytes, reduce neuronal death and relieve cognitive dysfunction in HI mice. Furthermore, 4OI enhanced nuclear factor erythroid-2-related factor (Nfe2l2; Nrf2) expression and nuclear translocation in astrocytes, reduced pro-inflammatory cytokine production, and increased antioxidant enzyme expression. CONCLUSION: Our study demonstrates that 4OI has a potential therapeutic effect on neuronal damage and cognitive deficits in HIE, potentially through the modulation of inflammation and oxidative stress pathways by Nrf2 in astrocytes.


Subject(s)
Animals, Newborn , Astrocytes , Hypoxia-Ischemia, Brain , NF-E2-Related Factor 2 , Neuroprotective Agents , Succinates , Animals , NF-E2-Related Factor 2/metabolism , Hypoxia-Ischemia, Brain/metabolism , Hypoxia-Ischemia, Brain/drug therapy , Hypoxia-Ischemia, Brain/pathology , Mice , Astrocytes/drug effects , Astrocytes/metabolism , Succinates/pharmacology , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Signal Transduction/drug effects , Mice, Inbred C57BL , Oxidative Stress/drug effects , Oxidative Stress/physiology , Disease Models, Animal
18.
J Steroid Biochem Mol Biol ; 243: 106546, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38754523

ABSTRACT

Polycystic ovary syndrome (PCOS) is the most common cause of anovulation and infertility in women. Inflammation and oxidative stress are considered to be the causes of ovarian dysfunction in PCOS. Dimethyl itaconate, as a macrophage-derived immunometabolite, has anti-inflammatory and antioxidative properties, but limited data are available about its effect on female reproductive dysfunctions. The present study aimed to determine the effects of dimethyl itaconate, a cell-permeable derivative of itaconate, on the histological changes, oxidative stress, and inflammation in the ovaries of PCOS rats. In this experimental study, 48 mature female Wistar rats (160-180 g) were randomly divided into the six groups including control, PCOS, PCOS+DMI, PCOS+ metformin, control DMI and control metformin. Following PCOS induction by using testosterone enanthate (1 mg/100 g/day for 35 days), the animals were treated with DMI (50 mg/kg) or metformin (300 mg/kg) for 30 days. At the end of the experimental period, the insulin resistance markers (serum insulin and glucose concentrations, and the homeostasis model assessment of basal insulin resistance (HOMA-IR), oxidative stress index (OSI), and inflammatory cytokines were measured. The process of Folliculogenesis was evaluated by histological examination of the ovary. The results showed that DMI improved insulin resistance and decreased TNF- and IL-1ß levels and OSI in the ovarian tissue of rats following androgen-induced PCOS. It also improved steroidogenesis and Folliculogenesis by reducing cystic follicles and ovarian tissue structure. Results indicated that DMI may be a potential candidate to ameliorate PCOS adverse effects by reducing insulin resistance, inflammation, and oxidative stress and restoring ovarian Folliculogenesis.


Subject(s)
Inflammation , Insulin Resistance , Metformin , Ovary , Oxidative Stress , Polycystic Ovary Syndrome , Rats, Wistar , Succinates , Animals , Female , Polycystic Ovary Syndrome/drug therapy , Polycystic Ovary Syndrome/pathology , Polycystic Ovary Syndrome/metabolism , Polycystic Ovary Syndrome/chemically induced , Oxidative Stress/drug effects , Rats , Inflammation/drug therapy , Inflammation/metabolism , Inflammation/pathology , Succinates/pharmacology , Ovary/drug effects , Ovary/pathology , Ovary/metabolism , Metformin/pharmacology , Disease Models, Animal , Antioxidants/pharmacology , Insulin/metabolism , Insulin/blood
19.
Respir Res ; 25(1): 205, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38730297

ABSTRACT

BACKGROUND: Obesity is the main risk factor leading to the development of various respiratory diseases, such as asthma and pulmonary hypertension. Pulmonary microvascular endothelial cells (PMVECs) play a significant role in the development of lung diseases. Aconitate decarboxylase 1 (Acod1) mediates the production of itaconate, and Acod1/itaconate axis has been reported to play a protective role in multiple diseases. However, the roles of Acod1/itaconate axis in the PMVECs of obese mice are still unclear. METHODS: mRNA-seq was performed to identify the differentially expressed genes (DEGs) between high-fat diet (HFD)-induced PMVECs and chow-fed PMVECs in mice (|log2 fold change| ≥ 1, p ≤ 0.05). Free fatty acid (FFA) was used to induce cell injury, inflammation and mitochondrial oxidative stress in mouse PMVECs after transfection with the Acod1 overexpressed plasmid or 4-Octyl Itaconate (4-OI) administration. In addition, we investigated whether the nuclear factor erythroid 2-like 2 (Nrf2) pathway was involved in the effects of Acod1/itaconate in FFA-induced PMVECs. RESULTS: Down-regulated Acod1 was identified in HFD mouse PMVECs by mRNA-seq. Acod1 expression was also reduced in FFA-treated PMVECs. Acod1 overexpression inhibited cell injury, inflammation and mitochondrial oxidative stress induced by FFA in mouse PMVECs. 4-OI administration showed the consistent results in FFA-treated mouse PMVECs. Moreover, silencing Nrf2 reversed the effects of Acod1 overexpression and 4-OI administration in FFA-treated PMVECs, indicating that Nrf2 activation was required for the protective effects of Acod1/itaconate. CONCLUSION: Our results demonstrated that Acod1/Itaconate axis might protect mouse PMVECs from FFA-induced injury, inflammation and mitochondrial oxidative stress via activating Nrf2 pathway. It was meaningful for the treatment of obesity-caused pulmonary microvascular endotheliopathy.


Subject(s)
Carboxy-Lyases , Endothelial Cells , Lung , Mice, Inbred C57BL , NF-E2-Related Factor 2 , Obesity , Succinates , Animals , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Mice , Endothelial Cells/metabolism , Endothelial Cells/drug effects , Endothelial Cells/pathology , Carboxy-Lyases/metabolism , Carboxy-Lyases/genetics , Obesity/metabolism , Obesity/complications , Male , Succinates/pharmacology , Lung/metabolism , Lung/drug effects , Lung/pathology , Lung/blood supply , Cells, Cultured , Microvessels/metabolism , Microvessels/drug effects , Microvessels/pathology , Oxidative Stress/drug effects , Oxidative Stress/physiology , Diet, High-Fat/adverse effects , Endothelium, Vascular/metabolism , Endothelium, Vascular/drug effects , Endothelium, Vascular/pathology , Hydro-Lyases
20.
Nat Commun ; 15(1): 4096, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750019

ABSTRACT

The presence of heterogeneity in responses to oncolytic virotherapy poses a barrier to clinical effectiveness, as resistance to this treatment can occur through the inhibition of viral spread within the tumor, potentially leading to treatment failures. Here we show that 4-octyl itaconate (4-OI), a chemical derivative of the Krebs cycle-derived metabolite itaconate, enhances oncolytic virotherapy with VSVΔ51 in various models including human and murine resistant cancer cell lines, three-dimensional (3D) patient-derived colon tumoroids and organotypic brain tumor slices. Furthermore, 4-OI in combination with VSVΔ51 improves therapeutic outcomes in a resistant murine colon tumor model. Mechanistically, we find that 4-OI suppresses antiviral immunity in cancer cells through the modification of cysteine residues in MAVS and IKKß independently of the NRF2/KEAP1 axis. We propose that the combination of a metabolite-derived drug with an oncolytic virus agent can greatly improve anticancer therapeutic outcomes by direct interference with the type I IFN and NF-κB-mediated antiviral responses.


Subject(s)
Oncolytic Virotherapy , Oncolytic Viruses , Succinates , Animals , Humans , Oncolytic Virotherapy/methods , Succinates/pharmacology , Mice , Cell Line, Tumor , Interferon Type I/metabolism , NF-E2-Related Factor 2/metabolism , Colonic Neoplasms/therapy , Colonic Neoplasms/immunology , Colonic Neoplasms/drug therapy , Antiviral Agents/pharmacology , NF-kappa B/metabolism , I-kappa B Kinase/metabolism , Kelch-Like ECH-Associated Protein 1/metabolism , Inflammation/drug therapy , Female , Vesicular stomatitis Indiana virus/physiology , Vesicular stomatitis Indiana virus/drug effects , Signal Transduction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL