Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.703
Filter
1.
Int J Mol Sci ; 25(13)2024 Jun 26.
Article in English | MEDLINE | ID: mdl-39000087

ABSTRACT

Sulfur metabolism plays a major role in plant growth and development, environmental adaptation, and material synthesis, and the sulfate transporters are the beginning of sulfur metabolism. We identified 37 potential VcSULTR genes in the blueberry genome, encoding peptides with 534 to 766 amino acids. The genes were grouped into four subfamilies in an evolutionary analysis. The 37 putative VcSULTR proteins ranged in size from 60.03 to 83.87 kDa. These proteins were predicted to be hydrophobic and mostly localize to the plasma membrane. The VcSULTR genes were distributed on 30 chromosomes; VcSULTR3;5b and VcSULTR3;5c were the only tandemly repeated genes. The VcSULTR promoters contained cis-acting elements related to the fungal symbiosis and stress responses. The transcript levels of the VcSULTRs differed among blueberry organs and changed in response to ericoid mycorrhizal fungi and sulfate treatments. A subcellular localization analysis showed that VcSULTR2;1c localized to, and functioned in, the plasma membrane and chloroplast. The virus-induced gene knock-down of VcSULTR2;1c resulted in a significantly decreased endogenous sulfate content, and an up-regulation of genes encoding key enzymes in sulfur metabolism (VcATPS2 and VcSiR1). These findings enhance our understanding of mycorrhizal-fungi-mediated sulfate transport in blueberry, and lay the foundation for further research on blueberry-mycorrhizal symbiosis.


Subject(s)
Blueberry Plants , Gene Expression Regulation, Plant , Mycorrhizae , Phylogeny , Plant Proteins , Sulfate Transporters , Mycorrhizae/genetics , Blueberry Plants/genetics , Blueberry Plants/microbiology , Blueberry Plants/metabolism , Sulfate Transporters/genetics , Sulfate Transporters/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Multigene Family , Sulfates/metabolism , Symbiosis/genetics , Genome, Plant
2.
Orphanet J Rare Dis ; 19(1): 245, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956600

ABSTRACT

BACKGROUND: Multiple epiphyseal dysplasia-4 (MED-4, MIM 226900) is a rare autosomal recessive disease characterized by disproportionate height and early onset osteoarthritis of the lower limbs. MED-4 is caused by homozygous or compound heterozygous pathogenic variants in the SLC26A2 gene. However, the underlying pathogenic mechanisms in chondrocytes remains unknown. This study aimed to identify the pathogenic variants within a MED-4 family and explore the molecular etiology of this condition in human primary chondrocyte cells. METHODS: Clinical data were recorded and peripheral blood samples were collected for analysis. Whole exome sequencing (WES) and bioinformatic analyses were performed to determine causative variants. Wild-type SLC26A2 and corresponding mutant expression plasmids were constructed and transfected into human primary chondrocytes. The expression and subcellular distribution of SLC26A2 protein in chondrocytes were detected by immunoblotting and immunofluorescence. Effects of these variants on chondrocytes viability and apoptosis were measured by Cell Counting Kit-8 (CCK-8) assay. Expression of genes related to cartilage homeostasis was subsequently analyzed by quantitative real-time polymerase chain reaction (qRT-PCR). RESULTS: We identified two compound heterozygous variants c.1020_1022delTGT(p.Val341del) and c.1262 T > C(p.Ile421Thr) in the SLC26A2 gene in the patients. Mutant SLC26A2Val341del and SLC26A2Ile421Thr proteins were distributed in relatively few cells and were observed only within the nucleus. The viability of chondrocytes with the SLC26A2 variant group was similar to the wild-type (WT) group. However, the protein expressions of SLC26A2Val341del and SLC26A2Ile421Thr were decreased compared with SLC26A2WT. Expression levels of matrix metallopeptidase 13 (MMP13), α-1 chain of type X collagen (COL10A1), and Runt-related transcription factor 2 (RUNX2) were significantly decreased in the variant group. However, aggrecan (ACAN) expression was higher in the variant group than the WT group. CONCLUSIONS: Overall, our data demonstrate that the variants p.Val341del and p.Ile421Thr in SLC26A2 cause MED-4 and that these two variants promote chondrocyte proliferation while inhibiting chondrocyte differentiation.


Subject(s)
Chondrocytes , Osteochondrodysplasias , Sulfate Transporters , Humans , Chondrocytes/metabolism , Chondrocytes/pathology , Sulfate Transporters/genetics , Sulfate Transporters/metabolism , Osteochondrodysplasias/genetics , Osteochondrodysplasias/metabolism , Osteochondrodysplasias/pathology , Male , Female , Homeostasis/genetics , Exome Sequencing
3.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(7): 807-811, 2024 Jul 10.
Article in Chinese | MEDLINE | ID: mdl-38946362

ABSTRACT

OBJECTIVE: To analyze the genetic variant and molecular pathogenesis in a Chinese pedigree affected with Multiple epiphyseal dysplasia (MED). METHODS: A MED pedigree which had presented at the Beijing Jishuitan Hospital Affiliated to Capital Medical University on September 13, 2020 was selected as the study subject. Clinical data of the pedigree were collected. Peripheral blood samples were drawn from pedigree members for the extraction of genomic DNA. Whole exome sequencing (WES) was carried out for the pedigree. Candidate variant was verified by Sanger sequencing. Wild type and mutant SLC26A2 expression plasmids were constructed and transfected into human primary chondrocytes. The effect of the variants on the protein localization and cell proliferation was determined by immunofluorescence and CCK8 assays. RESULTS: WES and Sanger sequencing revealed that the proband has harbored compound heterozygous variants of the SLC26A2 gene, including a paternally derived c.484G>T (p.Val162Leu) missense variant and a maternally derived c.485_486delTG (p.Val162Glyfs*12) frameshifting variant. The SLC26A2WT and its mutant SLC26A2Val162Leu and SLC26A2Val162Glyfs*12 expression plasmids were distributed in the nuclei and cytoplasm of human primary chondrocytes. Compared with SLC26A2WT, the expressions of SLC26A2Val162Leu and SLC26A2Val162Glyfs*12 were decreased, along with reduced proliferation of human primary chondrocytes. CONCLUSION: The c.484G>T and c.485_486delTG compound heterozygous variants of the SLC26A2 gene may affect the proliferation of human primary chondrocytes and underlay the pathogenesis of MED in this pedigree.


Subject(s)
Asian People , Osteochondrodysplasias , Pedigree , Sulfate Transporters , Humans , Sulfate Transporters/genetics , Sulfate Transporters/metabolism , Osteochondrodysplasias/genetics , Male , Female , Asian People/genetics , Chondrocytes/metabolism , Exome Sequencing , Adult , China , Mutation , Genetic Variation , Cell Proliferation , East Asian People
5.
Mol Genet Genomic Med ; 12(6): e2434, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38860500

ABSTRACT

BACKGROUND: Hearing loss (HL) is the most frequent sensory deficit in humans, with strong genetic heterogeneity. The genetic diagnosis of HL is very important to aid treatment decisions and to provide prognostic information and genetic counselling for the patient's family. METHODS: We detected and analysed 362 Chinese non-syndromic HL patients by screening of variants in 15 hot spot mutations. Subsequently, 40 patients underwent further whole-exome sequencing (WES) to determine genetic aetiology. The candidate variants were verified using Sanger sequencing. Twenty-three carrier couples with pathogenic variants or likely pathogenic variants chose to proceed with prenatal diagnosis using Sanger sequencing. RESULTS: Among the 362 HL patients, 102 were assigned a molecular diagnosis with 52 different variants in 22 deafness genes. A total of 41 (11.33%) cases with the biallelic GJB2 (OMIM # 220290) gene mutations were detected, and 21 (5.80%) had biallelic SLC26A4 (OMIM # 605646) mutations. Mitochondrial gene (OMIM # 561000) mutations were detected in seven (1.93%) patients. Twenty of the variants in 15 deafness genes were novel. SOX10 (OMIM # 602229), MYO15A (OMIM # 602666) and WFS1 (OMIM # 606201) were each detected in two patients. Meanwhile, OSBPL2 (OMIM # 606731), RRM2B (OMIM # 604712), OTOG (OMIM # 604487), STRC (OMIM # 606440), PCDH15 (OMIM # 605514), LOXHD1 (OMIM # 613072), CDH23 (OMIM # 605516), TMC1 (OMIM # 606706), CHD7 (OMIM # 608892), DIAPH3 (OMIM # 614567), TBC1D24 (OMIM # 613577), TIMM8A (OMIM # 300356), PTPRQ (OMIM # 603317), SALL1 (OMIM # 602218), and GSDME (OMIM # 608798) were each detected in one patient. In addition, as regards one couple with a heterozygous variant of CDH23 and PCDH15, respectively, prenatal diagnosis results suggest that the foetus had double heterozygous (DH) variants of CDH23 and PCDH15, which has a high risk to cause ID/F type Usher syndrome. CONCLUSION: Our study expanded the spectrum of deafness gene variation, which will contribute to the genetic diagnosis, prenatal diagnosis and the procreation guidance of deaf couple. In addition, the deafness caused by two genes should be paid attention to in the prenatal diagnosis of families with both deaf patients.


Subject(s)
Mutation , Humans , Female , Male , China , Child , Hearing Loss/genetics , Adult , Child, Preschool , Sulfate Transporters/genetics , Adolescent , Cadherin Related Proteins
6.
Neuroradiology ; 66(8): 1397-1403, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38833161

ABSTRACT

PURPOSE: Incomplete partition type II (IP-II) is characterized by specific histological features and radiological appearance. It may occur in isolation or in association with an enlarged vestibular aqueduct (EVA). Among those with IP-II and EVA, a subset has a diagnosis of Pendred syndrome. This study aimed to explore the prevalence of isolated IP-II, IP-II with EVA, and cases with a genetic or syndromic basis in our cohort. METHODS: From a large, multicentre database of dysplastic cochleae (446 patients, 892 temporal bones), those with imaging features of IP-II were examined in detail, including whether there was a genetic or syndromic association. RESULTS: A total of 78 patients with IP-II were identified. Among these, 55 patients had bilateral IP-II and EVA (only 12 with typical Mondini triad), 8 with bilateral IP-II and normal VA, 2 with bilateral IP-II and unilateral EVA, and 13 with unilateral IP-II (9 with unilateral EVA). Among the group with bilateral IP-II and bilateral EVA in whom genetic analysis was available, 14 out of 29 (48%) had SLC26A4 mutations and a diagnosis of Pendred syndrome, 1 had a FOXI1 mutation, and a few other genetic abnormalities; none had KCNJ10 pathogenic variants. CONCLUSION: Bilateral IP-II-bilateral EVA may be seen in the context of Pendred syndrome (SLC26A4 or FOXI1 mutations) but, in the majority of our cohort, no genetic abnormalities were found, suggesting the possibility of unknown genetic associations. IP-II in isolation (without EVA) is favored to be genetic when bilateral, although the cause is often unknown.


Subject(s)
Hearing Loss, Sensorineural , Vestibular Aqueduct , Humans , Male , Female , Hearing Loss, Sensorineural/genetics , Hearing Loss, Sensorineural/diagnostic imaging , Child , Adolescent , Adult , Vestibular Aqueduct/diagnostic imaging , Vestibular Aqueduct/abnormalities , Child, Preschool , Middle Aged , Infant , Aged , Mutation , Goiter, Nodular/diagnostic imaging , Goiter, Nodular/genetics , Sulfate Transporters
7.
Clin Chim Acta ; 561: 119765, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38852790

ABSTRACT

BACKGROUND AND AIMS: Cystic fibrosis (CF) is an autosomal recessive disease caused by mutations to the CF transmembrane conductance regulator (CFTR). Symptoms and severity of the disease can be quite variable suggesting modifier genes play an important role. MATERIALS AND METHODS: Exome sequencing was performed on six individuals carrying homozygous deltaF508 for CFTR genotype but present with rapidly progressing CF (RPCF). Data was analyzed using an unbiased genome-wide genetic burden test against 3076 controls. Single cell RNA sequencing data from LungMAP was utilized to evaluate unique and co-expression of candidate genes, and structural modeling to evaluate the deleterious effects of identified candidate variants. RESULTS: We have identified solute carrier family 26 member 9 (SLC26A9) as a modifier gene to be associated with RPCF. Two rare missense SLC26A9 variants were discovered in three of six individuals deemed to have RPCF: c.229G > A; p.G77S (present in two patients), and c.1885C > T; p.P629S. Co-expression of SLC26A9 and CFTR mRNA is limited across different lung cell types, with the highest level of co-expression seen in human (6.3 %) and mouse (9.0 %) alveolar type 2 (AT2) cells. Structural modeling suggests deleterious effects of these mutations as they are in critical protein domains which might affect the anion transport capability of SLC26A9. CONCLUSION: The enrichment of rare and potentially deleterious SLC26A9 mutations in patients with RPCF suggests SLC26A9 may act as an alternative anion transporter in CF and is a modifier gene associated with this lung phenotype.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator , Cystic Fibrosis , Homozygote , Mutation , Sulfate Transporters , Humans , Cystic Fibrosis/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/chemistry , Sulfate Transporters/genetics , Sulfate Transporters/chemistry , Sulfate Transporters/metabolism , Female , Male , Antiporters/genetics , Antiporters/chemistry , Animals , Mice
8.
PLoS One ; 19(6): e0305050, 2024.
Article in English | MEDLINE | ID: mdl-38861540

ABSTRACT

OBJECTIVE: Circular RNA SLC26A4 (circSLC26A4) functions as an oncogene in the initiation and progression of cervical cancer (CC). However, the clinical role of plasma exosomal circSLC26A4 in CC is poorly known. This study aims to develop an accurate diagnostic method based on circulating exosomal circSLC26A4. METHODS: In this study, exosomal circSLC26A4 derived from CC cell lines (CaSki, SiHa, and HeLa) and human cervical epithelial cells (HcerEpic) was measured and compared using quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). Additionally, 56 volunteers, including 18 CC patients, 18 cervical high-grade squamous intraepithelial lesion (HSIL) patients, and 20 healthy volunteers, were enrolled. qRT-PCR was also performed to measure the plasma exosomal circSLC26A4 levels in all participants. RESULTS: The exosomal circSLC26A4 expression level derived from CC cells was significantly elevated compared to it derived from HcerEpic cells. Plasma exosomal circSLC26A4 levels in CC patients were significantly higher than in healthy women and HSIL patients (P < 0.05). In addition, high plasma exosomal circSLC26A4 expression was positively associated with lymph node metastasis and FIGO stage (all P < 0.05). However, no significant correlation was found between plasma exosomal circSLC26A4 expression and age, intravascular cancerous embolus, and perineural invasion (P > 0.05). CONCLUSIONS: The high exosomal circSLC26A4 expression is closely related to the occurrence of CC. Plasma exosomal circSLC26A4 can be used as a diagnostic marker for CC.


Subject(s)
Biomarkers, Tumor , Exosomes , RNA, Circular , Uterine Cervical Neoplasms , Adult , Female , Humans , Middle Aged , Biomarkers, Tumor/blood , Biomarkers, Tumor/genetics , Case-Control Studies , Cell Line, Tumor , Exosomes/metabolism , Exosomes/genetics , Liquid Biopsy/methods , RNA, Circular/blood , RNA, Circular/genetics , Sulfate Transporters/genetics , Sulfate Transporters/metabolism , Uterine Cervical Neoplasms/diagnosis , Uterine Cervical Neoplasms/pathology , Uterine Cervical Neoplasms/blood , Uterine Cervical Neoplasms/genetics
9.
Physiol Rep ; 12(11): e16089, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38828713

ABSTRACT

Solute carrier family 26 (Slc26) is a family of anion exchangers with 11 members in mammals (named Slc26a1-a11). Here, we identified a novel member of the slc26 family, slc26a12, located in tandem with slc26a2 in the genomes of several vertebrate lineages. BLAST and synteny analyses of various jawed vertebrate genome databases revealed that slc26a12 is present in coelacanths, amphibians, reptiles, and birds but not in cartilaginous fishes, lungfish, mammals, or ray-finned fishes. In some avian and reptilian lineages such as owls, penguins, egrets, and ducks, and most turtles examined, slc26a12 was lost or pseudogenized. Phylogenetic analysis showed that Slc26a12 formed an independent branch with the other Slc26 members and Slc26a12, Slc26a1 and Slc26a2 formed a single branch, suggesting that these three members formed a subfamily in Slc26. In jawless fish, hagfish have two genes homologous to slc26a2 and slc26a12, whereas lamprey has a single gene homologous to slc26a2. African clawed frogs express slc26a12 in larval gills, skin, and fins. These results show that slc26a12 was present at least before the separation of lobe-finned fish and tetrapods; the name slc26a12 is appropriate because the gene duplication occurred in the distant past.


Subject(s)
Evolution, Molecular , Phylogeny , Sulfate Transporters , Animals , Amphibians/genetics , Amphibians/metabolism , Birds/genetics , Reptiles/genetics , Sulfate Transporters/genetics , Sulfate Transporters/metabolism
10.
Ital J Pediatr ; 50(1): 106, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38812002

ABSTRACT

BACKGROUND: In this study, we used targeted next-generation sequencing (NGS) to investigate the genetic basis of congenital hypothyroidism (CH) in a 19-year-old Tunisian man who presented with severe hypothyroidism and goiter. CASE PRESENTATION: The propositus reported the appearance of goiter when he was 18. Importantly, he did not show signs of mental retardation, and his growth was proportionate. A partial organification defect was detected through the perchlorate-induced iodide discharge test. NGS identified a novel homozygous mutation in exon 18 of the SLC26A7 gene (P628Qfs*11), which encodes for a new iodide transporter. This variant is predicted to result in a truncated protein. Notably, the patient's euthyroid brother was heterozygous for the same mutation. No renal acid-base abnormalities were found and the administration of 1 mg of iodine failed to correct hypothyroidism. CONCLUSIONS: We described the first case of goitrous CH due to a homozygous mutation of the SLC26A7 gene diagnosed during late adolescence.


Subject(s)
Congenital Hypothyroidism , Homozygote , Mutation , Sulfate Transporters , Humans , Male , Antiporters , Congenital Hypothyroidism/genetics , Congenital Hypothyroidism/diagnosis , Goiter/genetics , Sulfate Transporters/genetics , Adolescent
11.
BMC Pediatr ; 24(1): 305, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38704545

ABSTRACT

INTRODUCTION: Congenital chloride diarrhoea (CCD) is an autosomal recessive condition that causes secretory diarrhoea and potentially deadly electrolyte imbalances in infants because of solute carrier family 26 member 3 (SLC26A3) gene mutations. CASE PRESENTATION: A 7-month-old Chinese infant with a history of maternal polyhydramnios presented with frequent watery diarrhoea, severe dehydration, hypokalaemia, hyponatraemia, failure to thrive, metabolic alkalosis, hyperreninaemia, and hyperaldosteronaemia. Genetic testing revealed a compound heterozygous SLC26A3 gene mutation in this patient (c.269_270dup and c.2006 C > A). Therapy was administered in the form of oral sodium and potassium chloride supplements, which decreased stool frequency. CONCLUSIONS: CCD should be considered when an infant presents with prolonged diarrhoea during infancy, particularly in the context of maternal polyhydramnios and dilated foetal bowel loops.


Subject(s)
Diarrhea , Metabolism, Inborn Errors , Mutation , Sulfate Transporters , Female , Humans , Infant , Male , Chloride-Bicarbonate Antiporters/genetics , Diarrhea/congenital , Diarrhea/genetics , East Asian People , Heterozygote , Metabolism, Inborn Errors/genetics , Metabolism, Inborn Errors/diagnosis , Polyhydramnios/genetics , Potassium Chloride/therapeutic use , Potassium Chloride/administration & dosage , Sulfate Transporters/genetics
12.
Biophys J ; 123(12): 1751-1762, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38773769

ABSTRACT

The anion exchanger solute carrier family 26 (SLC26)A9, consisting of the transmembrane (TM) domain and the cytoplasmic STAS domain, plays an essential role in regulating chloride transport across cell membranes. Recent studies have indicated that C-terminal helices block the entrance of the putative ion transport pathway. However, the precise functions of the STAS domain and C-terminal helix, as well as the underlying molecular mechanisms governing the transport process, remain poorly understood. In this study, we performed molecular dynamics simulations of three distinct models of human SLC26A9, full-length, STAS domain removal (ΔSTAS), and C-terminus removal (ΔC), to investigate their conformational dynamics and ion-binding properties. Stable binding of ions to the binding sites was exclusively observed in the ΔC model in these simulations. Comparing the full-length and ΔC simulations, the ΔC model displayed enhanced motion of the STAS domain. Furthermore, comparing the ΔSTAS and ΔC simulations, the ΔSTAS simulation failed to exhibit stable ion bindings to the sites despite the absence of the C-terminus blocking the ion transmission pathway in both systems. These results suggest that the removal of the C-terminus not only unblocks the access of ions to the permeation pathway but also triggers STAS domain motion, gating the TM domain to promote ions' entry into their binding site. Further analysis revealed that the asymmetric motion of the STAS domain leads to the expansion of the ion permeation pathway within the TM domain, resulting in the stiffening of the flexible TM12 helix near the ion-binding site. This structural change in the TM12 helix stabilizes chloride ion binding, which is essential for SLC26A9's alternate-access mechanism. Overall, our study provides new insights into the molecular mechanisms of SLC26A9 transport and may pave the way for the development of novel treatments for diseases associated with dysregulated ion transport.


Subject(s)
Antiporters , Chlorides , Molecular Dynamics Simulation , Protein Domains , Sulfate Transporters , Sulfate Transporters/metabolism , Sulfate Transporters/chemistry , Sulfate Transporters/genetics , Humans , Chlorides/metabolism , Antiporters/chemistry , Antiporters/metabolism , Antiporters/genetics , Ion Transport , Binding Sites , Protein Binding
13.
Sci Rep ; 14(1): 10596, 2024 05 08.
Article in English | MEDLINE | ID: mdl-38720048

ABSTRACT

To investigate the association between hereditary hearing loss and vestibular function, we compared vestibular function and symptoms among patients with GJB2, SLC26A4, and CDH23 variants. Thirty-nine patients with sensory neural hearing loss (11 males and 28 females) with biallelic pathogenic variants in either GJB2, SLC26A4, or CDH23 were included in this study (13 GJB2, 15 SLC26A4, and 11 CDH23). The patients were examined using caloric testing and cervical and ocular vestibular-evoked myogenic potentials (cVEMP and oVEMP). We also compared vestibular function and symptoms between patients with these gene variants and 78 normal-hearing ears without vestibular symptoms as controls. The frequency of semicircular canal hypofunction in caloric testing was higher in patients with SLC26A4 variants (47%) than in those with GJB2 (0%) and CDH23 variants (27%). According to the cVEMP results, 69% of patients with GJB2 variants had saccular hypofunction, a significantly higher proportion than in those carrying other variants (SLC26A4, 20%; CDH23, 18%). In oVEMP, which reflects utricular function, no difference was observed in the frequency of hypofunction among the three genes (GJB2, 15%; SLC26A4, 40%; and CDH23, 36%). Hence, discernable trends indicate vestibular dysfunction associated with each gene.


Subject(s)
Cadherin Related Proteins , Cadherins , Connexin 26 , Sulfate Transporters , Humans , Female , Male , Cadherins/genetics , Sulfate Transporters/genetics , Connexin 26/genetics , Adult , Adolescent , Middle Aged , Child , Young Adult , Vestibular Evoked Myogenic Potentials , Membrane Transport Proteins/genetics , Hearing Loss, Sensorineural/genetics , Hearing Loss, Sensorineural/physiopathology , Vestibular Function Tests , Child, Preschool , Vestibule, Labyrinth/physiopathology , Connexins/genetics
14.
Mol Biol Rep ; 51(1): 662, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38767670

ABSTRACT

BACKGROUND: Hearing loss (HL) is a common sensory impairment worldwide, with genetic and environmental factors contributing to its occurrence. Next Generation Sequencing (NGS) plays a crucial role in identifying the genetic factors involved in this heterogeneous disorder. METHODS AND RESULTS: In this study, a total of 9 unrelated Iranian families, each having at least one affected individual who tested negative for mutations in GJB2, underwent screening using whole exome sequencing (WES). The pathogenicity and novelty of the identified variant was checked using various databases. Co-segregation study was also performed to confirm the presence of the candidate variants in parents. Plus, The pathogenicity of the detected variant was assessed through in silico analysis using a number of mutation prediction software tools. Among the 9 investigated families, hearing loss-causing genes were identified in 6 families. the mutations were observed in USH2A, CLRN1, BSND, SLC26A4, and MITF, with two of the identified mutations being novel. CONCLUSION: Discovering additional variants and broadening the range of mutations associated with hearing impairment has the potential to enhance the diagnostic effectiveness of molecular testing in patient screening, and can also lead to improved counseling aimed at reducing the risk of affected offspring for high-risk couples.


Subject(s)
Connexin 26 , Exome Sequencing , Hearing Loss , Mutation , Pedigree , Humans , Iran , Exome Sequencing/methods , Male , Female , Hearing Loss/genetics , Mutation/genetics , Connexin 26/genetics , Genetic Predisposition to Disease , Adult , High-Throughput Nucleotide Sequencing/methods , Sulfate Transporters/genetics , Connexins/genetics , Microphthalmia-Associated Transcription Factor/genetics , Child , Genetic Variation/genetics , Extracellular Matrix Proteins/genetics
15.
Int J Mol Sci ; 25(8)2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38673775

ABSTRACT

Solute carrier family 26 member 4 (SLC26A4) is a member of the SLC26A transporter family and is expressed in various tissues, including the airway epithelium, kidney, thyroid, and tumors. It transports various ions, including bicarbonate, chloride, iodine, and oxalate. As a multiple-ion transporter, SLC26A4 is involved in the maintenance of hearing function, renal function, blood pressure, and hormone and pH regulation. In this review, we have summarized the various functions of SLC26A4 in multiple tissues and organs. Moreover, the relationships between SLC26A4 and other channels, such as cystic fibrosis transmembrane conductance regulator, epithelial sodium channel, and sodium chloride cotransporter, are highlighted. Although the modulation of SLC26A4 is critical for recovery from malfunctions of various organs, development of specific inducers or agonists of SLC26A4 remains challenging. This review contributes to providing a better understanding of the role of SLC26A4 and development of therapeutic approaches for the SLC26A4-associated hearing loss and SLC26A4-related dysfunction of various organs.


Subject(s)
Sulfate Transporters , Humans , Sulfate Transporters/metabolism , Sulfate Transporters/genetics , Animals , Kidney/metabolism , Chloride-Bicarbonate Antiporters/metabolism , Chloride-Bicarbonate Antiporters/genetics , Organ Specificity , Chlorides/metabolism , Ion Transport
16.
J Biol Chem ; 300(5): 107261, 2024 May.
Article in English | MEDLINE | ID: mdl-38582450

ABSTRACT

Mammalian SLC26 proteins are membrane-based anion transporters that belong to the large SLC26/SulP family, and many of their variants are associated with hereditary diseases. Recent structural studies revealed a strikingly similar homodimeric molecular architecture for several SLC26 members, implying a shared molecular principle. Now a new question emerges as to how these structurally similar proteins execute diverse physiological functions. In this study, we sought to identify the common versus distinct molecular mechanism among the SLC26 proteins using both naturally occurring and artificial missense changes introduced to SLC26A4, SLC26A5, and SLC26A9. We found: (i) the basic residue at the anion binding site is essential for both anion antiport of SLC26A4 and motor functions of SLC26A5, and its conversion to a nonpolar residue is crucial but not sufficient for the fast uncoupled anion transport in SLC26A9; (ii) the conserved polar residues in the N- and C-terminal cytosolic domains are likely involved in dynamic hydrogen-bonding networks and are essential for anion antiport of SLC26A4 but not for motor (SLC26A5) and uncoupled anion transport (SLC26A9) functions; (iii) the hydrophobic interaction between each protomer's last transmembrane helices, TM14, is not of functional significance in SLC26A9 but crucial for the functions of SLC26A4 and SLC26A5, likely contributing to optimally orient the axis of the relative movements of the core domain with respect to the gate domains within the cell membrane. These findings advance our understanding of the molecular mechanisms underlying the diverse physiological roles of the SLC26 family of proteins.


Subject(s)
Antiporters , Sulfate Transporters , Animals , Humans , Antiporters/metabolism , Antiporters/genetics , Antiporters/chemistry , Binding Sites , HEK293 Cells , Hydrogen Bonding , Models, Molecular , Mutation, Missense , Protein Domains , Protein Structure, Quaternary , Protein Structure, Tertiary , Sulfate Transporters/metabolism , Sulfate Transporters/genetics , Sulfate Transporters/chemistry , Protein Multimerization , Protein Structure, Secondary
17.
J Mol Diagn ; 26(7): 638-651, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38663495

ABSTRACT

Noninvasive prenatal diagnosis (NIPD) for autosomal recessive nonsyndromic hearing loss (ARNSHL) has been rarely reported until recent years. Additionally, the existing method can not be used for challenging genome loci (eg, copy number variations, deletions, inversions, or gene recombinants) or on families without proband genotype. This study assessed the performance of relative haplotype dosage analysis (RHDO)-based NIPD for identifying fetal genotyping in pregnancies at risk of ARNSHL. Fifty couples carrying pathogenic variants associated with ARNSHL in either GJB2 or SLC26A4 were recruited. The RHDO-based targeted linked-read sequencing combined with whole gene coverage probes was used to genotype the fetal cell-free DNA of 49 families who met the quality control standard. Fetal amniocyte samples were genotyped using invasive prenatal diagnosis (IPD) to assess the performance of NIPD. The NIPD results showed 100% (49/49) concordance with those obtained through IPD. Two families with copy number variation and recombination were also successfully identified. Sufficient specific informative single-nucleotide polymorphisms for haplotyping, as well as the fetal cell-free DNA concentration and sequencing depth, are prerequisites for RHDO-based NIPD. This method has the merits of covering the entire genes of GJB2 and SLC26A4, qualifying for copy number variation and recombination analysis with remarkable sensitivity and specificity. Therefore, it has clinical potential as an alternative to traditional IPD for ARNSHL.


Subject(s)
Alleles , Connexin 26 , Haplotypes , Sulfate Transporters , Humans , Sulfate Transporters/genetics , Female , Pregnancy , Polymorphism, Single Nucleotide , Noninvasive Prenatal Testing/methods , Connexins/genetics , Prenatal Diagnosis/methods , DNA Copy Number Variations , Deafness/genetics , Deafness/diagnosis , Genotype , Male , Genes, Recessive , High-Throughput Nucleotide Sequencing/methods , Membrane Transport Proteins/genetics
18.
Nat Commun ; 15(1): 3616, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38684689

ABSTRACT

SLC26A2 is a vital solute carrier responsible for transporting essential nutritional ions, including sulfate, within the human body. Pathogenic mutations within SLC26A2 give rise to a spectrum of human diseases, ranging from lethal to mild symptoms. The molecular details regarding the versatile substrate-transporter interactions and the impact of pathogenic mutations on SLC26A2 transporter function remain unclear. Here, using cryo-electron microscopy, we determine three high-resolution structures of SLC26A2 in complexes with different substrates. These structures unveil valuable insights, including the distinct features of the homodimer assembly, the dynamic nature of substrate binding, and the potential ramifications of pathogenic mutations. This structural-functional information regarding SLC26A2 will advance our understanding of cellular sulfate transport mechanisms and provide foundations for future therapeutic development against various human diseases.


Subject(s)
Cryoelectron Microscopy , Sulfate Transporters , Humans , Sulfate Transporters/metabolism , Sulfate Transporters/genetics , Sulfate Transporters/chemistry , Mutation , Protein Binding , Models, Molecular , Sulfates/metabolism , Protein Multimerization , HEK293 Cells , Binding Sites
19.
Article in Chinese | MEDLINE | ID: mdl-38563166

ABSTRACT

Objective:To analyze the mutation spectrum of 23-site chip newborn deafness genetic screening in Beijing, and to provide basis for genetic counseling and clinical diagnosis and treatment. Methods:The study included 21 006 babies born in Beijing from December 2022 to June 2023. All subjects underwent newborn deafness genetic screening in Beijing Tongren Hospital, covering 23 variants in 4 genes, the GJB2 gene(c.35delG, c.176_191del16, c.235delC, c.299_300delAT, c.109G>A, c.257C>G, c.512insAACG, c.427C>T, c.35insG), SLC26A4 gene(c.919-2A>G, c.2168A>G, c.1174A>T, c.1226G>A, c.1229C>T, c.1975G>C, c.2027T>A, c.589G>A, c.1707+5G>A, c.917insG, c.281C>T), Mt12SrRNA(m.1555A>G, m.1494C>T) and GJB3 gene(c.538C>T). The mutation detection rate and allele frequency were analyzed. Results:The overall mutation detection rate was 11.516%(2 419/21 006), with the GJB2 gene being the most frequently involved at 9.097%(1 911/21 006), followed by the SLC26A4 gene at 2.123%(446/21 006), the GJB3 gene at 0.362%(76/21 006) and Mt12SrRNA at 0.176%(37/21 006). Among the GJB2 genes, c.109G>A and c.235delC mutation detection rates were the highest, with 6.579%(1 382/21 006) and 1.795%(377/21 006), respectively. Of the SLC26A4 genes, c.919-2A>G and c.2168A>G had the highest mutation rates of 1.423%(299/21 006) and 0.233%(49/21 106), respectively. Regarding the allele frequency, GJB2 c.109G>A was the most common variant with an allele frequency of 3.359%(1 411/42 012), followed by the GJB2 c.235delC at 0.897%(377/42 012) and the SLC26A4 c.919-2A>G at 0.719%(302/42 012). Conclusion:23-site chip newborn deafness genetic screening in Beijing showed that GJB2 c.109G>A mutation detection rate and allele frequency were the highest. This study has enriched the epidemiological data of 23-site chip genetic screening mutation profiles for neonatal deafness, which can provide evidence for clinical practice.


Subject(s)
Deafness , Hearing Loss , Infant , Infant, Newborn , Humans , Connexins/genetics , Connexin 26/genetics , Deafness/genetics , Deafness/diagnosis , DNA Mutational Analysis , Sulfate Transporters/genetics , Genetic Testing , Mutation , Hearing Loss/genetics , Neonatal Screening , China
20.
Otol Neurotol ; 45(5): 495-501, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38561601

ABSTRACT

HYPOTHESIS: Cyclodextrin (CDX)-induced serum prestin burst is not dependent on outer hair cell (OHC) loss. BACKGROUND: Serum prestin has been proposed as a biomarker for ototoxicity. We recently used an automated Western approach to quantify serum prestin changes in a newly introduced model of CDX ototoxicity. To gain insights into prestin as a biomarker, here we further characterize serum prestin in the CDX model. METHODS: Guinea pigs were treated with 750, 3,000, or 4,000 mg/kg CDX, and serum samples were obtained through up to 15 weeks after exposure. Serum prestin levels were quantified using automated Western, and hair cell counts were obtained. RESULTS: All three doses induced an N -glycosylated ~134-kDa prestin burst; however, only the 3,000 and 4,000 mg/kg resulted in robust OHC loss. Prestin levels returned to baseline where they remained up to 15 weeks in the absence of OHCs. CONCLUSION: The ~134-kDa prestin burst induced after CDX administration is N -glycosylated, representing a posttranslational modification of prestin. Serum prestin seems to be a promising biomarker when using therapeutics with ototoxic properties because it is not dependent on OHC loss as a necessary event, thus affording the opportunity for early detection and intervention.


Subject(s)
Hair Cells, Auditory, Outer , Animals , Guinea Pigs , Hair Cells, Auditory, Outer/drug effects , Hair Cells, Auditory, Outer/pathology , Biomarkers/blood , Biomarkers/metabolism , Ototoxicity/etiology , Sulfate Transporters/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...