Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.646
Filter
1.
Water Res ; 257: 121751, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38744062

ABSTRACT

The human urine metabolome is complex, containing a wide range of organic metabolites that affect treatment of urine collected in resource-oriented sanitation systems. In this study, an advanced oxidation process involving heat-activated peroxydisulphate was used to selectively oxidise organic metabolites in urine over urea and chloride. Initial experiments evaluated optimal conditions (peroxydisulphate dose, temperature, time, pH) for activation of peroxydisulphate in unconcentrated, non-hydrolysed synthetic urine and real urine acidified to pH 3.0. Subsequent experiments determined the fate of 268 endogenous organic metabolites (OMs) and removal of COD from unconcentrated and concentrated real urine (80-90% mass reduced by evaporation). The results revealed >90% activation of 60 mM peroxydisulphate in real unconcentrated urine heated to 90 °C for 1 h, resulting in 43% ΣOMs degradation, 22% COD removal and 56% total organic carbon removal, while >94% of total nitrogen and >97% of urea in real unconcentrated urine were recovered. The mechanism of urea degradation was identified to be chemical hydrolysis to ammonia, with the rate constant for this reaction determined to be 1.9 × 10-6 s-1 at pH 3.0 and 90 °C. Treating concentrated real urine resulted in similar removal of COD, ΣOMs degradation and total nitrogen loss as observed for unconcentrated urine, but with significantly higher chloride oxidation and chemical hydrolysis of urea. Targeted metabolomic analysis revealed that peroxydisulphate treatment degraded 157 organic metabolites in urine, of which 67 metabolites were degraded by >80%. The rate constant for the reaction of sulphate radicals with oxidisable endogenous organic metabolites in urine was estimated to exceed 108 M-1 s-1. These metabolites were preferentially oxidised over chloride and urea in acidified, non-hydrolysed urine treated with peroxydisulphate. Overall, the findings support the development of emerging urine recycling technologies, including alkaline/acid dehydration and reverse osmosis, where the presence of endogenous organic urine metabolites significantly influences treatment parameters such as energy demand and product purity.


Subject(s)
Oxidation-Reduction , Urine , Humans , Urine/chemistry , Sulfates/metabolism , Sulfates/chemistry , Sulfates/urine , Hydrogen-Ion Concentration , Urea/metabolism , Urea/urine
2.
Carbohydr Polym ; 337: 122157, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38710573

ABSTRACT

Seaweed polysaccharides, particularly sulfated ones, exhibited potent antiviral activity against a wide variety of enveloped viruses, such as herpes simplex virus and respiratory viruses. Different mechanisms of action were suggested, which may range from preventing infection to intracellular antiviral activity, at different stages of the viral cycle. Herein, we generated two chemically engineered sulfated fucans (C303 and C304) from Cystoseira indica by an amalgamated extraction-sulfation procedure using chlorosulfonic acid-pyridine/N,N-dimethylformamide and sulfur trioxide-pyridine/N,N-dimethylformamide reagents, respectively. These compounds exhibited activity against HSV-1 and RSV with 50 % inhibitory concentration values in the range of 0.75-2.5 µg/mL and low cytotoxicity at concentrations up to 500 µg/mL. The antiviral activities of chemically sulfated fucans (C303 and C304) were higher than the water (C301) and CaCl2 extracted (C302) polysaccharides. Compound C303 had a (1,3)-linked fucan backbone and was branched. Sulfates were present at positions C-2, C-4, and C-2,4 of Fucp, and C-6 of Galp residues of this polymer. Compound C304 had a comparable structure but with more sulfates at C-4 of Fucp residue. Both C303 and C304 were potent antiviral candidates, acting in a dose-dependent manner on the adsorption and other intracellular stages of HSV-1 and RSV replication, in vitro.


Subject(s)
Antiviral Agents , Herpesvirus 1, Human , Polysaccharides , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Chlorocebus aethiops , Herpesvirus 1, Human/drug effects , Polysaccharides/pharmacology , Polysaccharides/chemistry , Polysaccharides/isolation & purification , Animals , Vero Cells , Humans , Sulfates/chemistry , Sulfates/pharmacology , Respiratory Syncytial Viruses/drug effects
3.
Bioresour Technol ; 402: 130806, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38718906

ABSTRACT

The study investigated the inactivation of Microcystis aeruginosa using a combined approach involving thermally activated peroxyacetic acid (Heat/PAA) and thermally activated persulfate (Heat/PDS). The Heat/PDS algal inactivation process conforms to first-order reaction kinetics. Both hydroxyl radical (•OH) and sulfate radical (SO4-•) significantly impact the disruption of cell integrity, with SO4-• assuming a predominant role. PAA appears to activate organic radicals (RO•), hydroxyl (•OH), and a minimal amount of singlet oxygen (1O2). A thorough analysis underscores persulfate's superior ability to disrupt algal cell membranes. Additionally, SO4-• can convert small-molecule proteins into aromatic hydrocarbons, accelerating cell lysis. PAA can accelerate cell death by diffusing into the cell membrane and triggering advanced oxidative reactions within the cell. This study validates the effectiveness of the thermally activated persulfate process and the thermally activated peroxyacetic acid as strategies for algae inactivation.


Subject(s)
Microcystis , Oxidation-Reduction , Reactive Oxygen Species , Microcystis/drug effects , Microcystis/metabolism , Reactive Oxygen Species/metabolism , Sulfates/metabolism , Sulfates/pharmacology , Sulfates/chemistry , Peracetic Acid/pharmacology , Hot Temperature , Hydroxyl Radical/metabolism , Kinetics
4.
Environ Sci Technol ; 58(20): 8966-8975, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38722667

ABSTRACT

The absolute radical quantum yield (Φ) is a critical parameter to evaluate the efficiency of radical-based processes in engineered water treatment. However, measuring Φ is fraught with challenges, as current quantification methods lack selectivity, specificity, and anti-interference capabilities, resulting in significant error propagation. Herein, we report a direct and reliable time-resolved technique to determine Φ at pH 7.0 for commonly used radical precursors in advanced oxidation processes. For H2O2 and peroxydisulfate (PDS), the values of Φ•OH and ΦSO4•- at 266 nm were measured to be 1.10 ± 0.01 and 1.46 ± 0.05, respectively. For peroxymonosulfate (PMS), we developed a new approach to determine Φ•OHPMS with terephthalic acid as a trap-and-trigger probe in the nonsteady state system. For the first time, the Φ•OHPMS value was measured to be 0.56 by the direct method, which is stoichiometrically equal to ΦSO4•-PMS (0.57 ± 0.02). Additionally, radical formation mechanisms were elucidated by density functional theory (DFT) calculations. The theoretical results showed that the highest occupied molecular orbitals of the radical precursors are O-O antibonding orbitals, facilitating the destabilization of the peroxy bond for radical formation. Electronic structures of these precursors were compared, aiming to rationalize the tendency of the Φ values we observed. Overall, this time-resolved technique with specific probes can be used as a reliable tool to determine Φ, serving as a scientific basis for the accurate performance evaluation of diverse radical-based treatment processes.


Subject(s)
Hydroxyl Radical , Sulfates , Sulfates/chemistry , Hydroxyl Radical/chemistry , Water Purification/methods , Oxidation-Reduction , Hydrogen Peroxide/chemistry
5.
Org Biomol Chem ; 22(19): 3986-3994, 2024 05 15.
Article in English | MEDLINE | ID: mdl-38695061

ABSTRACT

Algae-based marine carbohydrate drugs are typically decorated with negative ion groups such as carboxylate and sulfate groups. However, the precise synthesis of highly sulfated alginates is challenging, thus impeding their structure-activity relationship studies. Herein we achieve a microwave-assisted synthesis of a range of highly sulfated mannuronate glycans with up to 17 sulfation sites by overcoming the incomplete sulfation due to the electrostatic repulsion of crowded polyanionic groups. Although the partially sulfated tetrasaccharide had the highest affinity for the receptor binding domain (RBD) of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant, the fully sulfated octasaccharide showed the most potent interference with the binding of the RBD to angiotensin-converting enzyme 2 (ACE2) and Vero E6 cells, indicating that the sulfated oligosaccharides might inhibit the RBD binding to ACE2 in a length-dependent manner.


Subject(s)
Angiotensin-Converting Enzyme 2 , Antiviral Agents , Microwaves , Polysaccharides , SARS-CoV-2 , SARS-CoV-2/drug effects , Antiviral Agents/pharmacology , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Chlorocebus aethiops , Angiotensin-Converting Enzyme 2/metabolism , Angiotensin-Converting Enzyme 2/antagonists & inhibitors , Angiotensin-Converting Enzyme 2/chemistry , Vero Cells , Polysaccharides/chemistry , Polysaccharides/pharmacology , Polysaccharides/chemical synthesis , Humans , Animals , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Spike Glycoprotein, Coronavirus/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Hexuronic Acids/chemistry , Hexuronic Acids/pharmacology , Hexuronic Acids/chemical synthesis , Sulfates/chemistry , Sulfates/pharmacology , Sulfates/chemical synthesis , COVID-19 Drug Treatment , Structure-Activity Relationship
6.
Bioprocess Biosyst Eng ; 47(6): 943-955, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38703203

ABSTRACT

At present, the application of sewage treatment technologies is restricted by high sulfate concentrations. In the present work, the sulfate removal was biologically treated using an upflow anaerobic sludge blanket (UASB) in the absence/presence of light. First, the start-up of UASB for the sulfate removal was studied in terms of COD degradation, sulfate removal, and effluent pH. Second, the impacts of different operation parameters (i.e., COD/SO42- ratio, temperature and illumination time) on the UASB performance were explored. Third, the properties of sludge derived from the UASB at different time were analyzed. Results show that after 28 days of start-up, the COD removal efficiencies in both the photoreactor and non-photoreactor could reach a range of 85-90% while such reactors could achieve > 90% of sulfate being removed. Besides, higher illumination time could facilitate the removal of pollutants in the photoreactor. To sum up, the present study can provide technical support for the clean removal of sulfate from wastewater using photoreactors.


Subject(s)
Light , Sewage , Sulfates , Sulfates/chemistry , Sewage/microbiology , Bioreactors , Anaerobiosis , Wastewater/chemistry , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/isolation & purification , Water Pollutants, Chemical/chemistry , Water Purification/methods
7.
Chemosphere ; 359: 142276, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38761830

ABSTRACT

The production of solid wastes in the metallurgical industry has significant implications for land resources and environmental pollution. To address this issue, it is crucial to explore the potential of recycling these solid wastes to reduce land occupation while protecting the environment and promoting resource utilization. Steel slag, red mud, copper slag and steel picking waste liquor are examples of solid wastes generated during the metallurgical process that possess high iron content and Fe species, making them excellent catalysts for persulfate-based advanced oxidation processes (PS-AOPs). This review elucidates the catalytic mechanisms and pathways of Fe2+ and Fe0 in the activation PS. Additionally, it underscores the potential of metallurgical iron-containing solid waste (MISW) as a catalyst for PS activation, offering a viable strategy for its high-value utilization. Lastly, the article provides an outlook towards future challenges and prospects for MISW in PS activation for the degradation of organic pollutants.


Subject(s)
Iron , Solid Waste , Iron/chemistry , Catalysis , Oxidation-Reduction , Metallurgy , Sulfates/chemistry , Environmental Pollutants/chemistry , Recycling/methods , Environmental Pollution/prevention & control
8.
Chemosphere ; 359: 142374, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38763393

ABSTRACT

If trace amounts of antibiotics remain in the environment, they can lead to microbial pathogens becoming resistant to antibiotics and putting ecosystem health at risk. For instance, ciprofloxacin (CIP) can be found in surface and ground waters, suggesting that conventional water treatment technologies are ineffective at removing it. Now, a rGO/g-C3N4/SiO2 nanocomposite was synthesized in this study to activate peroxydisulfate (PDS) under UVA-LED irradiation. UVA-LED/rGO-g-C3N4-SiO2/PDS system performance was evaluated using Ciprofloxacin as an antibiotic. Particularly, rGO/g-C3N4/SiO2 showed superior catalytic activity for PDS activation to remove CIP. Operational variables, reactive species determination, and mechanisms were investigated. 0.85 mM PDS and 0.3 g/L rGO/g-C3N4/SiO2 eliminated 99.63% of CIP in 35 min and mineralized 59.78% in 100 min at pH = 6.18. By scavenging free radicals, bicarbonate ions inhibit CIP degradation. According to the trapping experiments, superoxide (O2•-) was the main active species rather than sulfate (SO4•-) and hydroxyl radicals (•OH). RGO/g-C3N4/SiO2 showed an excellent recyclable capability of up to six cycles. The UVA-LED/rGO-g-C3N4-SiO2/PDS system was also tested under real conditions. The system efficiency was reasonable. By calculating the synergistic factor (SF), this work highlights the benefit of combining composite, UVA-LED, and PDS. UVA-LED/rGO-g-C3N4-SiO2/PDS had also been predicted to be an eco-friendly process based on the results of the ECOSAR program. Consequently, this study provides a novel and durable nanocomposite with supreme thermal stability that effectively mitigates environmental contamination by eliminating antibiotics from wastewater.


Subject(s)
Ciprofloxacin , Graphite , Nanocomposites , Silicon Dioxide , Sulfates , Ultraviolet Rays , Water Pollutants, Chemical , Water Purification , Silicon Dioxide/chemistry , Nanocomposites/chemistry , Ciprofloxacin/chemistry , Water Pollutants, Chemical/chemistry , Graphite/chemistry , Catalysis , Sulfates/chemistry , Water Purification/methods , Anti-Bacterial Agents/chemistry
9.
ACS Nano ; 18(22): 14312-14326, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38767151

ABSTRACT

Periodontitis, a prevalent chronic inflammatory disease worldwide, is triggered by periodontopathogenic bacteria, resulting in the progressive destruction of periodontal tissue, particularly the alveolar bone. To effectively address periodontitis, this study proposed a nanoformulation known as CuS@MSN-SCS. This formulation involves coating citrate-grafted copper sulfide (CuS) nanoparticles with mesoporous silica (MSNs), followed by surface modification using amino groups and sulfated chitosan (SCS) through electrostatic interactions. The objective of this formulation is to achieve efficient bacteria removal by inducing ROS signaling pathways mediated by Cu2+ ions. Additionally, it aims to promote alveolar bone regeneration through Cu2+-induced pro-angiogenesis and SCS-mediated bone regeneration. As anticipated, by regulating the surface charges, the negatively charged CuS nanoparticles capped with sodium citrate were successfully coated with MSNs, and the subsequent introduction of amine groups using (3-aminopropyl)triethoxysilane was followed by the incorporation of SCS through electrostatic interactions, resulting in the formation of CuS@MSN-SCS. The developed nanoformulation was verified to not only significantly exacerbate the oxidative stress of Fusobacterium nucleatum, thereby suppressing bacteria growth and biofilm formation in vitro, but also effectively alleviate the inflammatory response and promote alveolar bone regeneration without evident biotoxicity in an in vivo rat periodontitis model. These findings contribute to the therapeutic effect on periodontitis. Overall, this study successfully developed a nanoformulation for combating bacteria and facilitating alveolar bone regeneration, demonstrating the promising potential for clinical treatment of periodontitis.


Subject(s)
Anti-Bacterial Agents , Bone Regeneration , Chitosan , Copper , Fusobacterium nucleatum , Nanoparticles , Periodontitis , Chitosan/chemistry , Chitosan/pharmacology , Periodontitis/drug therapy , Periodontitis/microbiology , Periodontitis/therapy , Periodontitis/pathology , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Bone Regeneration/drug effects , Rats , Copper/chemistry , Copper/pharmacology , Fusobacterium nucleatum/drug effects , Nanoparticles/chemistry , Rats, Sprague-Dawley , Male , Sulfates/chemistry , Sulfates/pharmacology , Silicon Dioxide/chemistry , Silicon Dioxide/pharmacology , Microbial Sensitivity Tests
10.
Sci Rep ; 14(1): 12505, 2024 05 31.
Article in English | MEDLINE | ID: mdl-38822052

ABSTRACT

Photocatalysts of TiO2-CuO coupled with 30% graphene oxide (GO) were hydrothermally fabricated, which varied the TiO2 to CuO weight ratios to 1:4, 1:2, 1:1, 2:1 and 4:1 and reduced to form TiO2-CuO/reduced graphene oxide (rGO) photocatalysts. They were characterized using XRD, TEM, SEM, XPS, Raman, and DRS technologies. TiO2-CuO composites and TiO2-CuO/GO degrade methylene blue when persulfate ions are present. Persulfate concentration ranged from 1, 2, 4 to 8 mmol/dm-3 in which the highest activity of 4.4 × 10-2 and 7.35 × 10-2 min-1 was obtained with 4 mmol/dm-3 for TiO2-CuO (1:4) and TiO2-CuO/GO (1:1), respectively. The presence of EDTA and isopropyl alcohol reduced the photodegradation. TiO2-CuO coupled with rGO coagulates methylene blue in the presence of persulfate ions and such coagulation is independent of light. The catalyst dosage and the concentration of the dye were varied for the best-performing samples. The antibacterial activity of the synthesized samples was evaluated against the growth of Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa and Klebsiella pneumonia. Ti:Cu (1:2)-GO and Ti:Cu (1:4)-GO had the highest antibacterial activity against K. pneumoniae (16.08 ± 0.14 mm), P. aeruginosa (22.33 ± 0.58 mm), E. coli (16.17 ± 0.29 mm) and S. aureus (16.08 ± 0.88).


Subject(s)
Anti-Bacterial Agents , Copper , Graphite , Methylene Blue , Titanium , Graphite/chemistry , Titanium/chemistry , Titanium/pharmacology , Copper/chemistry , Copper/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Catalysis , Methylene Blue/chemistry , Methylene Blue/pharmacology , Escherichia coli/drug effects , Escherichia coli/growth & development , Staphylococcus aureus/drug effects , Photolysis , Sulfates/chemistry
11.
Biomed Pharmacother ; 175: 116750, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38749174

ABSTRACT

Connective tissue growth factor (CTGF) holds great promise for enhancing the wound healing process; however, its clinical application is hindered by its low stability and the challenge of maintaining its effective concentration at the wound site. Herein, we developed novel double-emulsion alginate (Alg) and heparin-mimetic alginate sulfate (AlgSulf)/polycaprolactone (PCL) nanoparticles (NPs) for controlled CTGF delivery to promote accelerated wound healing. The NPs' physicochemical properties, cytocompatibility, and wound healing activity were assessed on immortalized human keratinocytes (HaCaT), primary human dermal fibroblasts (HDF), and a murine cutaneous wound model. The synthesized NPs had a minimum hydrodynamic size of 200.25 nm. Treatment of HaCaT and HDF cells with Alg and AlgSulf2.0/PCL NPs did not show any toxicity when used at concentrations <50 µg/mL for up to 72 h. Moreover, the NPs' size was not affected by elevated temperatures, acidic pH, or the presence of a protein-rich medium. The NPs have slow lysozyme-mediated degradation implying that they have an extended tissue retention time. Furthermore, we found that treatment of HaCaT and HDF cells with CTGF-loaded Alg and AlgSulf2.0/PCL NPs, respectively, induced rapid cell migration (76.12% and 79.49%, P<0.05). Finally, in vivo studies showed that CTGF-loaded Alg and AlgSulf2.0/PCL NPs result in the fastest and highest wound closure at the early and late stages of wound healing, respectively (36.49%, P<0.001 on day 1; 90.45%, P<0.05 on day 10), outperforming free CTGF. Double-emulsion NPs based on Alg or AlgSulf represent a viable strategy for delivering heparin-binding GF and other therapeutics, potentially aiding various disease treatments.


Subject(s)
Alginates , Connective Tissue Growth Factor , Nanoparticles , Polyesters , Wound Healing , Wound Healing/drug effects , Alginates/chemistry , Polyesters/chemistry , Humans , Connective Tissue Growth Factor/metabolism , Animals , Nanoparticles/chemistry , Mice , HaCaT Cells , Fibroblasts/drug effects , Male , Drug Carriers/chemistry , Cell Line , Drug Delivery Systems/methods , Keratinocytes/drug effects , Particle Size , Sulfates/chemistry , Sulfates/pharmacology
12.
Chemosphere ; 359: 142287, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38723685

ABSTRACT

Sulfamethoxazole (SMX), a widely utilized antibiotic, was continually detected in the environment, causing serious risks to aquatic ecology and water security. In this study, carbon nanotubes (CNTs) with abundant defects were developed by argon plasma-etching technology to enhance the activation of persulfate (PS, including peroxymonosulfate (PMS) and peroxydisulfate (PDS)) for SMX degradation while reducing environmental toxicity. Obviously, the increase of ID/IG value from 0.980 to 1.333 indicated that Ar plasma-etching successfully introduced rich defects into CNTs. Of note, Ar-90-CNT, whose Ar plasma-etching time was 90 min with optimum catalytic performance, exhibited a significant discrepancy between PMS activation and PDS activation. Interestingly, though the Ar-90-CNT/PDS system (kobs = 0.0332 min-1) was more efficient in SMX elimination than the Ar-90-CNT/PMS system (kobs = 0.0190 min-1), Ar plasma-etching treatment had no discernible enhancement in the catalytic efficiency of MWCNT for PDS activation. Then the discrepancy on activation mechanism between PMS and PDS was methodically investigated through quenching experiments, electron spin resonance (ESR), chemical probes, electrochemical measurements and theoretical calculations, and the findings unraveled that the created vacancy defects were the ruling active sites for the production of dominated singlet oxygen (1O2) in the Ar-90-CNT/PMS system to degrade SMX, while the electron transfer pathway (ETP), originated from PDS activation by the inherent edge defects, was the central pathway for SMX removal in the Ar-90-CNT/PDS system. Based on the toxicity test of Microcystis aeruginosa, the Ar-90-CNT/PDS system was more effective in alleviating environmental toxicity during SMX degradation. These findings not only provide insights into the discrepancy between PMS activation and PDS activation via carbon-based materials with controlled defects regulated by the plasma-etching strategy, but also efficiently degrade sulfonamide antibiotics and reduce the toxicity of their products.


Subject(s)
Nanotubes, Carbon , Peroxides , Sulfamethoxazole , Sulfamethoxazole/chemistry , Nanotubes, Carbon/chemistry , Peroxides/chemistry , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/metabolism , Sulfates/chemistry , Catalysis , Anti-Bacterial Agents/chemistry
13.
Sci Total Environ ; 931: 172846, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38703858

ABSTRACT

The development of low-cost, highly efficient adsorbent materials is of significant importance for environmental remediation. In this study, a novel material, sulfurized nano zero-valent iron loaded biomass carbon (S-nZVI/BC), was successfully synthesized by a simple manufacturing process. The preparation of S-nZVI/BC does not require the use of expensive and hazardous chemicals. Instead, residual sludge, a solid waste product, is used as feedstock. The sludge is rich in Sulfate-Reducing Bacteria (SRB), which can provide carbon and sulfur sources for the synthesis of S-nZVI/BC. It was observed that S-nZVI particles formed in situ were dispersed within BC and covered by it. Additionally, S-nZVI/BC inherited the large specific surface area and porosity of BC. The adsorption capacity of S-nZVI/BC can reach 857.55 mg g-1 Hg (II) during the remediation of mercury-polluted water. This research offers new perspectives for developing composites in terms of the low cost and harmlessness of raw materials.


Subject(s)
Biomass , Iron , Mercury , Water Pollutants, Chemical , Iron/chemistry , Water Pollutants, Chemical/analysis , Adsorption , Sulfur/chemistry , Environmental Restoration and Remediation/methods , Sulfur-Reducing Bacteria/metabolism , Sulfates/chemistry
14.
Mar Drugs ; 22(5)2024 May 20.
Article in English | MEDLINE | ID: mdl-38786622

ABSTRACT

Five new sulfated arylpyrrole and arylpyrrolone alkaloids, denigrins H-L (1-5), along with two known compounds, dictyodendrin B and denigrin G, were isolated from an extract of a New Zealand Dictyodendrilla c.f. dendyi marine sponge. Denigrins H-L represent the first examples of sulfated denigrins, with denigrins H and I (1-2), as derivatives of denigrin D, containing a pyrrolone core, and denigrins J-L (3-5), as derivatives of denigrin E (6), containing a pyrrole core. Their structures were elucidated by interpretation of 1D and 2D NMR spectroscopic data, ESI, and HR-ESI-MS spectrometric data, as well as comparison with literature data. Compounds 1-5, along with six known compounds previously isolated from the same extract, showed minimal cytotoxicity against the HeLa cervical cancer cell line.


Subject(s)
Alkaloids , Porifera , Pyrroles , Animals , Porifera/chemistry , Humans , New Zealand , Pyrroles/pharmacology , Pyrroles/chemistry , Pyrroles/isolation & purification , HeLa Cells , Alkaloids/pharmacology , Alkaloids/chemistry , Alkaloids/isolation & purification , Sulfates/chemistry , Sulfates/pharmacology , Molecular Structure , Magnetic Resonance Spectroscopy , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/isolation & purification
15.
Mar Drugs ; 22(5)2024 May 20.
Article in English | MEDLINE | ID: mdl-38786623

ABSTRACT

Mycoplasma pneumoniae, a notable pathogen behind respiratory infections, employs specialized proteins to adhere to the respiratory epithelium, an essential process for initiating infection. The role of glycosaminoglycans, especially heparan sulfate, is critical in facilitating pathogen-host interactions, presenting a strategic target for therapeutic intervention. In this study, we assembled a glycan library comprising heparin, its oligosaccharide derivatives, and a variety of marine-derived sulfated glycans to screen the potential inhibitors for the pathogen-host interactions. By using Surface Plasmon Resonance spectroscopy, we evaluated the library's efficacy in inhibiting the interaction between M. pneumoniae adhesion proteins and heparin. Our findings offer a promising avenue for developing novel therapeutic strategies against M. pneumoniae infections.


Subject(s)
Heparin , Mycoplasma pneumoniae , Polysaccharides , Mycoplasma pneumoniae/drug effects , Heparin/pharmacology , Heparin/chemistry , Polysaccharides/pharmacology , Polysaccharides/chemistry , Aquatic Organisms , Humans , Adhesins, Bacterial/metabolism , Adhesins, Bacterial/drug effects , Bacterial Adhesion/drug effects , Pneumonia, Mycoplasma/drug therapy , Pneumonia, Mycoplasma/microbiology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Animals , Host-Pathogen Interactions , Sulfates/chemistry , Sulfates/pharmacology
16.
J Hazard Mater ; 470: 134254, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38615644

ABSTRACT

The existence of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) has been a global public environment and health issue. Due to the different cell structures, gram-positive/negative ARB exhibit various inactivation mechanisms in water disinfection. In this study, a gram-negative ARB Escherichia coli DH5α (E. coli DH5α) was used as a horizontal gene transfer (HGT) donor, while a gram-positive ARB Bacillus as a recipient. To develop an efficient and engineering applicable method in water disinfection, ARB and ARGs removal efficiency of Fe(VI) coupled peroxydisulfate (PDS) or peroxymonosulfate (PMS) was compared, wherein hydroxylamine (HA) was added as a reducing agent. The results indicated that Fe(VI)/PMS/HA showed higher disinfection efficiency than Fe(VI)/PDS/HA. When the concentration of each Fe(VI), PMS, HA was 0.48 mM, 5.15 log E. coli DH5α and 3.57 log Bacillus lost cultivability, while the proportion of recovered cells was 0.0017 % and 0.0566 %, respectively, and HGT was blocked. Intracellular tetA was reduced by 2.49 log. Fe(IV) and/or Fe(V) were proved to be the decisive reactive species. Due to the superiority of low cost as well as high efficiency and practicality, Fe(VI)/PMS/HA has significant application potential in ARB, ARGs removal and HGT inhibition, offering a new insight for wastewater treatment.


Subject(s)
Gene Transfer, Horizontal , Iron , Peroxides , Peroxides/chemistry , Iron/chemistry , Water Purification/methods , Escherichia coli/drug effects , Escherichia coli/genetics , Drug Resistance, Bacterial/genetics , Disinfection/methods , Sulfates/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Bacillus/genetics , Bacillus/drug effects , Bacillus/metabolism
17.
J Hazard Mater ; 470: 134221, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38615651

ABSTRACT

Constructed wetlands (CWs) are a promising approach for treating acid mine drainage (AMD). However, the extreme acidity and high loads of heavy metals in AMD can easily lead to the collapse of CWs without proper pre-treatment. Therefore, it is considered essential to maintain efficient and stable performance for AMD treatment in CWs. In this study, pre-prepared attapulgite-soda residue (ASR) composites were used to improve the substrate of CWs. Compared with CWs filled with gravel (CWs-G), the removal efficiencies of sulfate and Fe, Mn, Cu, Zn Cd and Pb in CWs filled with ASR composites (CWs-ASR) were increased by 30% and 10-70%, respectively. These metals were mainly retained in the substrate in stable forms, such as carbonate-, Fe/Mn (oxide)hydroxide-, and sulfide-bound forms. Additionally, higher levels of photosynthetic pigments and antioxidant enzyme activities in plants, along with a richer microbial community, were observed in CWs-ASR than in CWs-G. The application of ASR composites alleviated the adverse effects of AMD stresses on wetland plants and microorganisms. In return, the increased bacteria abundance, particularly SRB genera (e.g., Thermodesulfovibrionia and Desulfobacca), promoted the formation of metal sulfides, enabling the saturated ASR adsorbed with metals to regenerate and continuously capture heavy metals. The synergistic adsorption of ASR composites and microbial sulfate reduction maintained the stable and efficient operation of CWs. This study contributes to the resource utilization of industrial alkaline by-products and promotes the breakthrough of new techniques for low-cost and passive treatment systems such as CWs.


Subject(s)
Magnesium Compounds , Metals, Heavy , Mining , Silicon Compounds , Sulfates , Water Pollutants, Chemical , Wetlands , Sulfates/chemistry , Metals, Heavy/chemistry , Adsorption , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/metabolism , Silicon Compounds/chemistry , Magnesium Compounds/chemistry , Acids/chemistry , Oxidation-Reduction , Biodegradation, Environmental , Hydrogen-Ion Concentration
18.
Carbohydr Polym ; 336: 122124, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38670755

ABSTRACT

Sulfated polysaccharides play important roles in tissue engineering applications because of their high growth factor preservation ability and their native-like biological features. There are different sulfated polysaccharides based on different repeating units in the carbohydrate backbone, the position of the sulfate group, and the sulfation degree of the polysaccharide. These led to various sulfated polymers with different negative charge densities and resultant structure-property relationships. Since numerous reports are presented related to sulfated polysaccharide applications in tissue engineering, it is crucial to review the role of effective physicochemical and biological parameters in their usage; as well as their structure-property relationships. Within this review, we focused on the effect of naturally occurring and synthetic sulfated polysaccharides in tissue engineering applications reported in the last years, highlighting the challenges of the scaffold fabrication process, the position, and the degree of sulfate on biomedical activity. Additionally, we discussed their use in numerous in vitro and in vivo model systems.


Subject(s)
Biomimetic Materials , Polysaccharides , Sulfates , Tissue Engineering , Tissue Scaffolds , Tissue Engineering/methods , Polysaccharides/chemistry , Polysaccharides/pharmacology , Tissue Scaffolds/chemistry , Humans , Animals , Sulfates/chemistry , Biomimetic Materials/chemistry , Biomimetic Materials/pharmacology , Biopolymers/chemistry , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology
19.
Bioresour Technol ; 400: 130684, 2024 May.
Article in English | MEDLINE | ID: mdl-38614146

ABSTRACT

Advancements in biochar activating persulfate advanced oxidation processes (PS-AOP), have gained significant attention. However, the understanding of biochar-based catalysts in activating PS remains limited. Herein, biochar (BC) and N-doped biochar (NBC) were synthesized from hemp for activating PS to treat tetracycline (TC) wastewater and analyzed their mechanisms separately. Surprisingly, N-doped in biochar leads to a change in the activation mechanism of PS. The BC-PS system operates mainly through a radical pathway, advantageous for treating soil organic pollution (68%) with pH adaptability (less than 10% variation). Nevertheless, the NBC-PS system primarily employs an electron transfer non-radical pathway, demonstrating stability (only 7% performance degradation over four cycles) and enhanced resistance to anionic interference (less than 10% variation) in organic wastewater treatment. This study provides a technical reference and theoretical foundation for enhancing biochar activation of PS in the removal of organic pollutants from aquatic and terrestrial environments.


Subject(s)
Cannabis , Charcoal , Sulfates , Tetracycline , Wastewater , Water Pollutants, Chemical , Water Purification , Charcoal/chemistry , Wastewater/chemistry , Tetracycline/chemistry , Cannabis/chemistry , Sulfates/chemistry , Water Pollutants, Chemical/chemistry , Catalysis , Water Purification/methods , Oxidation-Reduction , Hydrogen-Ion Concentration
20.
Water Res ; 256: 121564, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38615605

ABSTRACT

Natural organic matter (NOM) is a major sink of radicals in advanced oxidation processes (AOPs) and understanding the transformation of NOM is important in water treatment. By using Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) in conjunction with machine learning, we comprehensively investigated the reactivity and transformation of NOM, and the formation of organosulfates during the UV/peroxydisulfate (PDS) process. After 60 min UV/PDS treatment, the CHO formula number and dissolved organic carbon concentration significantly decreased by 83.4 % and 74.8 %, respectively. Concurrently, the CHOS formula number increased substantially from 0.7 % to 20.5 %. Machine learning identifies DBE and AImod as the critical characteristics determining the reactivity of NOM during UV/PDS treatment. Furthermore, linkage analysis suggests that decarboxylation and dealkylation reactions are dominant transformation pathways, while the additions of SO3 and SO4 are also non-negligible. According to SHAP analysis, the m/z, number of oxygens, DBE and O/C of NOM were positively correlated with the formation of organosulfates in UV/PDS process. 92 organosulfates were screened out by precursor ion scan of HPLC-MS/MS and verified by UPLC-Q-TOF-MS, among which, 7 organosufates were quantified by authentic standards with the highest concentrations ranging from 2.1 to 203.0 ng L‒1. In addition, the cytotoxicity of NOM to Chinese Hamster Ovary (CHO) cells increased by 13.8 % after 30 min UV/PDS treatment, likely responsible for the formation of organosulfates. This is the first study to employ FT-ICR MS combined with machine learning to identify the dominant NOM properties affecting its reactivity and confirmed the formation of organosulfates from sulfate radical oxidation of NOM.


Subject(s)
Machine Learning , Sulfates , Sulfates/chemistry , Animals , CHO Cells , Ultraviolet Rays , Cricetulus , Mass Spectrometry , Water Purification/methods , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL
...