Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 26(12)2021 Jun 21.
Article in English | MEDLINE | ID: mdl-34205704

ABSTRACT

The discovery of drugs capable of inhibiting SARS-CoV-2 is a priority for human beings due to the severity of the global health pandemic caused by COVID-19. To this end, repurposing of FDA-approved drugs such as NSAIDs against COVID-19 can provide therapeutic alternatives that could be utilized as an effective safe treatment for COVID-19. The anti-inflammatory activity of NSAIDs is also advantageous in the treatment of COVID-19, as it was found that SARS-CoV-2 is responsible for provoking inflammatory cytokine storms resulting in lung damage. In this study, 40 FDA-approved NSAIDs were evaluated through molecular docking against the main protease of SARS-CoV-2. Among the tested compounds, sulfinpyrazone 2, indomethacin 3, and auranofin 4 were proposed as potential antagonists of COVID-19 main protease. Molecular dynamics simulations were also carried out for the most promising members of the screened NSAID candidates (2, 3, and 4) to unravel the dynamic properties of NSAIDs at the target receptor. The conducted quantum mechanical study revealed that the hybrid functional B3PW91 provides a good description of the spatial parameters of auranofin 4. Interestingly, a promising structure-activity relationship (SAR) was concluded from our study that could help in the future design of potential SARS-CoV-2 main protease inhibitors with expected anti-inflammatory effects as well. NSAIDs may be used by medicinal chemists as lead compounds for the development of potent SARS-CoV-2 (Mpro) inhibitors. In addition, some NSAIDs can be selectively designated for treatment of inflammation resulting from COVID-19.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , COVID-19 Drug Treatment , Drug Repositioning/methods , Anti-Inflammatory Agents, Non-Steroidal/metabolism , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Auranofin/chemistry , Auranofin/pharmacology , Binding Sites , COVID-19/complications , Computational Biology , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/chemistry , Cytokine Release Syndrome/drug therapy , Cytokine Release Syndrome/etiology , Databases, Chemical , Humans , Indomethacin/chemistry , Indomethacin/pharmacology , Ligands , Models, Molecular , Molecular Docking Simulation , Molecular Dynamics Simulation , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , Protein Binding , SARS-CoV-2/chemistry , SARS-CoV-2/drug effects , Structure-Activity Relationship , Sulfinpyrazone/chemistry , Sulfinpyrazone/pharmacology , United States , United States Food and Drug Administration
2.
Xenobiotica ; 45(10): 847-57, 2015.
Article in English | MEDLINE | ID: mdl-25801059

ABSTRACT

1. This study compared the extent, affinity, and kinetics of drug binding to human serum albumin (HSA) and liver fatty acid binding protein (LFABP) using ultrafiltration and surface plasmon resonance (SPR). 2. Binding of basic and neutral drugs to both HSA and LFABP was typically negligible. Binding of acidic drugs ranged from minor (fu > 0.8) to extensive (fu < 0.1). Of the compounds screened, the highest binding to both HSA and LFABP was observed for the acidic drugs torsemide and sulfinpyrazone, and for ß-estradiol (a polar, neutral compound). 3. The extent of binding of acidic drugs to HSA was up to 40% greater than binding to LFABP. SPR experiments demonstrated comparable kinetics and affinity for the binding of representative acidic drugs (naproxen, sulfinpyrazone, and torsemide) to HSA and LFABP. 4. Simulations based on in vitro kinetic constants derived from SPR experiments and a rapid equilibrium model were undertaken to examine the impact of binding characteristics on compartmental drug distribution. Simulations provided mechanistic confirmation that equilibration of intracellular unbound drug with the extracellular unbound drug is attained rapidly in the absence of active transport mechanisms for drugs bound moderately or extensively to HSA and LFABP.


Subject(s)
Fatty Acid-Binding Proteins/metabolism , Pharmaceutical Preparations/metabolism , Serum Albumin/metabolism , Anilino Naphthalenesulfonates/chemistry , Anilino Naphthalenesulfonates/metabolism , Arachidonic Acid/chemistry , Arachidonic Acid/metabolism , Arachidonic Acid/pharmacokinetics , Base Sequence , Computer Simulation , Estradiol/chemistry , Estradiol/metabolism , Estradiol/pharmacokinetics , Fatty Acid-Binding Proteins/genetics , Hepatocytes/drug effects , Hepatocytes/metabolism , Humans , Models, Theoretical , Molecular Sequence Data , Pharmaceutical Preparations/chemistry , Pharmacokinetics , Serum Albumin/genetics , Sulfinpyrazone/chemistry , Sulfinpyrazone/metabolism , Sulfinpyrazone/pharmacokinetics , Sulfonamides/chemistry , Sulfonamides/metabolism , Sulfonamides/pharmacokinetics , Surface Plasmon Resonance , Torsemide , Ultrafiltration
3.
Cell Calcium ; 24(3): 213-21, 1998 Sep.
Article in English | MEDLINE | ID: mdl-9883275

ABSTRACT

Cytosolic calcium modulates the activity of osteoclasts, large multinucleate cells that resorb bone. Nuclear events, such as gene transcription, are also calcium-regulated in these cells, and fluorescence imaging has suggested that calcium signals produced by some stimuli are specifically targeted to, or amplified within, osteoclast nuclei. We used two alternative techniques of dye loading to examine the changes of intracellular calcium induced in rat osteoclasts by three stimuli. Osteoclasts loaded with the calcium indicator Fura-2 by the acetoxymethyl (AM) ester technique appeared to display marked nuclear calcium amplification. During stimulation with integrin-binding peptides, ATP, or high extracellular calcium, fluorescence ratios recorded from the nuclei rose higher than did ratios recorded from extranuclear regions. In contrast, nuclear calcium amplification was not observed after AM loading in the presence of the anion transport inhibitor sulfinpyrazone, nor in osteoclasts injected with Fura-2 conjugated to a high MW dextran. In these cells, nuclear fluorescence ratios were equal to the extranuclear values at all times: upon stimulation by an agonist, the nuclear and cytosolic calcium concentrations increased by the same amount. The calcium changes seen in stimulated osteoclasts can no longer be taken as evidence for the general validity of the phenomenon of nuclear calcium amplification.


Subject(s)
Adenosine Triphosphate/pharmacology , Calcium/analysis , Calcium/metabolism , Oligopeptides/pharmacology , Osteoclasts/metabolism , Animals , Cell Nucleus/drug effects , Cell Nucleus/metabolism , Cytosol/drug effects , Cytosol/metabolism , Dextrans/chemistry , Fluorescent Dyes/chemistry , Fluorescent Dyes/metabolism , Fura-2/chemistry , Fura-2/metabolism , Image Processing, Computer-Assisted , Integrins/metabolism , Oligopeptides/metabolism , Osteoclasts/drug effects , Rats , Spectrometry, Fluorescence , Sulfinpyrazone/chemistry , Sulfinpyrazone/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...