Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.105
Filter
1.
BMC Bioinformatics ; 25(1): 206, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38840038

ABSTRACT

BACKGROUND: Bisulfite sequencing (BS-Seq) is a fundamental technique for characterizing DNA methylation profiles. Genotype calling from bisulfite-converted BS-Seq data allows allele-specific methylation analysis and the concurrent exploration of genetic and epigenetic profiles. Despite various methods have been proposed, single nucleotide polymorphisms (SNPs) calling from BS-Seq data, particularly for SNPs on chromosome X and in the presence of contaminative data, poses ongoing challenges. RESULTS: We introduce bsgenova, a novel SNP caller tailored for bisulfite sequencing data, employing a Bayesian multinomial model. The performance of bsgenova is assessed by comparing SNPs called from real-world BS-Seq data with those from corresponding whole-genome sequencing (WGS) data across three human cell lines. bsgenova is both sensitive and precise, especially for chromosome X, compared with three existing methods. Moreover, in the presence of low-quality reads, bsgenova outperforms other methods notably. In addition, bsgenova is meticulously implemented, leveraging matrix imputation and multi-process parallelization. Compared to existing methods, bsgenova stands out for its speed and efficiency in memory and disk usage. Furthermore, bsgenova integrates bsextractor, a methylation extractor, enhancing its flexibility and expanding its utility. CONCLUSIONS: We introduce bsgenova for SNP calling from bisulfite-sequencing data. The source code is available at https://github.com/hippo-yf/bsgenova under license GPL-3.0.


Subject(s)
DNA Methylation , Polymorphism, Single Nucleotide , Sequence Analysis, DNA , Sulfites , Humans , DNA Methylation/genetics , Sulfites/chemistry , Sequence Analysis, DNA/methods , Genotype , Software , Whole Genome Sequencing/methods , Bayes Theorem
2.
PLoS One ; 19(5): e0297006, 2024.
Article in English | MEDLINE | ID: mdl-38743704

ABSTRACT

Epigenetic ageing in a human context, has been used to better understand the relationship between age and factors such as lifestyle and genetics. In an ecological setting, it has been used to predict the age of individual animals for wildlife management. Despite the importance of epigenetic ageing in a range of research fields, the assays to measure epigenetic ageing are either expensive on a large scale or complex. In this study, we aimed to improve the efficiency and sequencing quality of an existing epigenetic ageing assay for the Australian Lungfish (Neoceratodus forsteri). We used an enzyme-based alternative to bisulfite conversion to reduce DNA fragmentation and evaluated its performance relative to bisulfite conversion. We found the sequencing quality to be 12% higher with the enzymatic alternative compared to bisulfite treatment (p-value < 0.01). This new enzymatic based approach, although currently double the cost of bisulfite treatment can increases the throughput and sequencing quality. We envisage this assay setup being adopted increasingly as the scope and scale of epigenetic ageing research continues to grow.


Subject(s)
Aging , Epigenesis, Genetic , Sulfites , Animals , Aging/genetics , Sulfites/chemistry , Fishes/genetics , Sequence Analysis, DNA/methods , DNA Methylation , DNA Fragmentation
3.
Environ Sci Technol ; 58(21): 9427-9435, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38747404

ABSTRACT

Photoexcitation of sulfite (SO32-) is often used to generate hydrated electrons (eaq-) in processes to degrade perfluoroalkyl and polyfluoroalkyl substances (PFASs). Conventional consensus discourages the utilization of SO32- concentrations exceeding 10 mM for effective defluorination. This has hindered our understanding of SO32- chemistry beyond its electron photogeneration properties. In contrast, the radiation-chemical study presented here, directly producing eaq- through water radiolysis, suggests that SO32- plays a previously overlooked activation role in the defluorination. Quantitative 60Co gamma irradiation experiments indicate that the increased SO32- concentration from 0.1 to 1 M enhances the defluorination rate by a remarkable 15-fold, especially for short-chain perfluoroalkyl sulfonate (PFSA). Furthermore, during the treatment of long-chain PFSA (C8F17-SO3-) with a higher concentration of SO32-, the intermediates of C8H17-SO3- and C3F7-COO- were observed, which are absent without SO32-. These observations highlight that a higher concentration of SO32- facilitates both reaction pathways: chain shortening and H/F exchange. Pulse radiolysis measurements show that elevated SO32- concentrations accelerate the bimolecular reaction between eaq- and PFSA by 2 orders of magnitude. 19F NMR measurements and theoretical simulations reveal the noncovalent interactions between SO32- and F atoms, which exceptionally reduce the C-F bond dissociation energy by nearly 40%. As a result, our study offers a more effective strategy for degrading highly persistent PFSA contaminants.


Subject(s)
Electrons , Fluorocarbons , Sulfites , Sulfites/chemistry , Fluorocarbons/chemistry , Water/chemistry
4.
Ecotoxicol Environ Saf ; 279: 116474, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38772144

ABSTRACT

Rhubarb is widely used in health care, but causing a great amount of rhein-containing herbal residue. Rhein with several toxicities might pollute environment, damage ecology and even hazard human health if left untreated. In this study, the degradation effects of bisulfite- (BS) and peroxymonosulfate- (PMS) based oxidation systems on rhein in rhubarb residue were compared and investigated. The effects of BS and PMS with two valence states of ferric ion (Fe) on the degradation of rhein in rhubarb residue were optimized for the selection of optimal oxidation system. The influences of reaction temperature, reaction time and initial pH on the removal of rhein under the optimal oxidation system were evaluated. The chemical profiles of rhubarb residue with and without oxidation process were compared by UPLC-QTOF-MS/MS, and the degradation effects were investigated by PLS-DA and S plot/OPLS-DA analysis. The results manifested that PMS showed relative higher efficiency than BS on the degradation of rhein. Moreover, Fe(III) promoted the degradation effect of PMS, demonstrated that Fe(III)/PMS is the optimal oxidation system to degrade rhein in rhubarb residue. Further studies indicated that the degradation of rhein by the Fe(III)/PMS oxidation system was accelerated with the prolong of reaction time and the elevation of reaction temperature, and also affected by the initial pH. More importantly, Fe(III)/PMS oxidation system could degrade rhein in rhubarb residue completely under the optimal conditions. In conclusion, Fe(III)/PMS oxidation system is a feasible method to treat rhein in rhubarb residue.


Subject(s)
Anthraquinones , Oxidation-Reduction , Peroxides , Rheum , Anthraquinones/chemistry , Rheum/chemistry , Peroxides/chemistry , Tandem Mass Spectrometry , Sulfites/chemistry , Hydrogen-Ion Concentration , Ferric Compounds/chemistry , Temperature
5.
Molecules ; 29(10)2024 May 08.
Article in English | MEDLINE | ID: mdl-38792053

ABSTRACT

Sulfite, a widely used food additive, is subject to regulated labeling. The extraction of sulfite as the stable hydroxymethylsulfonate (HMS) form and its quantitative analysis by liquid chromatography-tandem mass spectrometry (LC-MS/MS) has been recognized for their good sensitivity, selectivity, and versatility across various food materials. This study aimed to develop a cost-effective and simpler method for sulfite quantitation, while maintaining the superior sensitivity and selectivity of mass spectrometry (MS). To achieve this, we introduced paper spray ionization (PSI), an ambient desorption ionization technique that could achieve the direct measurement of analytes without employing separation. We also employed a novel internal standard (IS) structurally similar to the analyte, replacing the more expensive isotopically labeled IS. Although the PSI-MS/MS method developed in this study exhibited slightly lower analytical performance compared to the conventional LC-MS/MS, it remained effective for sulfite analysis in dried fruits.


Subject(s)
Fruit , Sulfites , Tandem Mass Spectrometry , Sulfites/analysis , Sulfites/chemistry , Tandem Mass Spectrometry/methods , Fruit/chemistry , Chromatography, Liquid/methods , Paper , Food Analysis/methods
6.
Environ Pollut ; 355: 124182, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38776997

ABSTRACT

The treatment of textile wastewater containing harmful metal ions poses a significant challenge in industrial applications due to its environmental impact. In this study, the use of sulfite for treating simulated dye wastewater containing New Coccine (NC) and Cr(VI) was investigated. The removal of NC was influenced by the redox reaction between Cr(VI) and sulfite, demonstrating a strong self-boosting effect of Cr(VI) on NC removal. Remarkable NC decoloration (95%) and Cr(VI) reduction (90%) were achieved within 1 min, highlighting the effectiveness of the treatment. Quenching experiments and electron paramagnetic resonance (EPR) technology confirmed that singlet oxygen (1O2) was the main oxidative agent for organic dye removal and SO4•-, •OH and Cr(V) were also identified as key contributors to NC degradation. The Cr(VI)/sulfite system exhibited higher efficiency in degrading azo dyes, such as NC and Congo Red (CR), compared to non-azo dyes like Methylene Blue (MB). This superiority may be attributed to the action of Cr(V) on azo groups. Additionally, the COD removal experiments were conducted on the actual dye wastewater, showing the excellent performance of the Cr(VI)/Sulfite system in treating industrial textile wastewater. This approach presents a promising strategy for effective "waste control by waste", offering great potential for addressing challenges related to dye wastewater treatment and environmental pollution control in practical industrial scenarios.


Subject(s)
Chromium , Coloring Agents , Oxidation-Reduction , Sulfites , Waste Disposal, Fluid , Wastewater , Water Pollutants, Chemical , Wastewater/chemistry , Coloring Agents/chemistry , Water Pollutants, Chemical/chemistry , Chromium/chemistry , Sulfites/chemistry , Waste Disposal, Fluid/methods , Textiles , Textile Industry , Industrial Waste
7.
Analyst ; 149(12): 3356-3362, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38712511

ABSTRACT

Many diseases in the human body are related to the overexpression of viscosity and sulfur dioxide. Therefore, it is essential to develop rapid and sensitive fluorescent probes to detect viscosity and sulfur dioxide. In the present work, we developed a dual-response fluorescent probe (ES) for efficient detection of viscosity and sulfur dioxide while targeting mitochondria well. The probe generates intramolecular charge transfer by pushing and pulling the electron-electron system, and the ICT effect is destroyed and the fluorescence quenched upon reaction with sulfite. The rotation of the molecule is inhibited in the high-viscosity system, producing a bright red light. In addition, the probe has good biocompatibility and can be used to detect sulfite in cells, zebrafish and mice, as well as upregulation of viscosity in LPS-induced inflammation models. We expect that the dual response fluorescent probe ES will be able to detect viscosity and sulfite efficiently, providing an effective means of detecting viscosity and sulfite-related diseases.


Subject(s)
Fluorescent Dyes , Inflammation , Mitochondria , Sulfites , Zebrafish , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Fluorescent Dyes/toxicity , Animals , Sulfites/chemistry , Sulfites/analysis , Viscosity , Mitochondria/metabolism , Mitochondria/chemistry , Mice , Humans , Inflammation/chemically induced , Sulfur Dioxide/analysis , Sulfur Dioxide/chemistry , Lipopolysaccharides , RAW 264.7 Cells , Optical Imaging/methods
8.
Water Res ; 258: 121773, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38796910

ABSTRACT

Sulfite (S(IV)), as an alternative to persulfate, has demonstrated its cost-effectiveness and environmentally friendly nature, garnering increasing attention in Advanced Oxidation Processes (AOPs). Dissolved organic matter (DOM) commonly occurred in diverse environments and was often regarded as an interfering factor in sulfite-based AOPs. However, less attention has been paid to the promotion of the activation of sulfite by excited DOM, which could produce various reactive intermediates. The study focused on the activation of sulfite using visible light (VL) - excited humic acid (HA) to efficiently degrade many common organic pollutants, which was better than peroxydisulfate (PDS) and peroxymonosulfate (PMS) systems. Quenching experiments and electron paramagnetic resonance (EPR) analysis revealed that the triplet states of HA (3HA*) activated sulfite through energy transfer, resulting in the production of SO4·-, O2·-, and 1O2. The most significant active species found in the degradation of roxarsone (ROX) was 1O2, which was a non-radical pathway and exhibits high selectivity for pollutant degradation. This non-radical pathway was not commonly observed in traditional sulfite-based AOPs. Additionally, the coexistence of various inorganic anions, such as NO3-, Cl-, SO42-, CO32-, and PO43-, had little effect on the degradation of ROX. Furthermore, DOM from different natural water demonstrated efficient activation of S(IV) under light conditions, opening up new possibilities for applying sulfite-based advanced oxidation to the remediation of organic pollution in diverse sites and water bodies. In summary, this research offered promising insights into the potential application of sulfite-based AOPs, facilitated by photo-excited HA, as a new strategy for efficiently degrading organic pollutants in various environmental settings.


Subject(s)
Humic Substances , Light , Sulfites , Wastewater , Water Pollutants, Chemical , Sulfites/chemistry , Wastewater/chemistry , Water Pollutants, Chemical/chemistry , Water Purification/methods , Waste Disposal, Fluid/methods , Oxidation-Reduction
9.
Nucleic Acids Res ; 52(10): e49, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38709875

ABSTRACT

Over 150 types of chemical modifications have been identified in RNA to date, with pseudouridine (Ψ) being one of the most prevalent modifications in RNA. Ψ plays vital roles in various biological processes, and precise, base-resolution detection methods are fundamental for deep analysis of its distribution and function. In this study, we introduced a novel base-resolution Ψ detection method named pseU-TRACE. pseU-TRACE relied on the fact that RNA containing Ψ underwent a base deletion after treatment of bisulfite (BS) during reverse transcription, which enabled efficient ligation of two probes complementary to the cDNA sequence on either side of the Ψ site and successful amplification in subsequent real-time quantitative PCR (qPCR), thereby achieving selective and accurate Ψ detection. Our method accurately and sensitively detected several known Ψ sites in 28S, 18S, 5.8S, and even mRNA. Moreover, pseU-TRACE could be employed to measure the Ψ fraction in RNA and explore the Ψ metabolism of different pseudouridine synthases (PUSs), providing valuable insights into the function of Ψ. Overall, pseU-TRACE represents a reliable, time-efficient and sensitive Ψ detection method.


Subject(s)
Pseudouridine , Real-Time Polymerase Chain Reaction , Sulfites , Humans , Pseudouridine/chemistry , Pseudouridine/genetics , Pseudouridine/isolation & purification , Real-Time Polymerase Chain Reaction/methods , RNA/chemistry , RNA/genetics , RNA, Messenger/genetics , RNA, Messenger/chemistry , RNA, Messenger/metabolism , Sulfites/chemistry
10.
Food Chem ; 448: 139112, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38569404

ABSTRACT

Ginseng is a most popular health-promoting food with ginsenosides as its main bioactive ingredients. Illegal sulfur-fumigation causes ginsenosides convert to toxic sulfur-containing derivatives, and reduced the efficacy/safety of ginseng. 24-sulfo-25-ene ginsenoside Rg1 (25-ene SRg1), one of the sulfur-containing derivatives, is a potential quality control marker of fumigated ginseng, but with low accessibility owing to its unknown generation mechanism. In this study, metals/bisulfite system involved generation mechanism was investigated and verified. The generation of 25-ene SRg1 in sulfur-fumigated ginseng is that SO2, formed during sulfur-fumigation, reacted with water and ionized into HSO3-. On the one hand, under the metals/bisulfite system, HSO3- generates HSO5- and free radicals which converted ginsenoside Rg1 to 24,25-epoxide Rg1; on the other hand, as a nucleophilic group, HSO3- reacted with 24,25-epoxide Rg1 and further dehydrated to 25-ene SRg1. This study provided a technical support for the promotion of 25-ene SRg1 as the characteristic quality control marker of sulfur-fumigated ginseng.


Subject(s)
Fumigation , Ginsenosides , Panax , Quality Control , Sulfur , Ginsenosides/chemistry , Ginsenosides/analysis , Panax/chemistry , Sulfur/chemistry , Sulfites/chemistry , Sulfites/analysis , Metals/chemistry , Metals/analysis , Plant Extracts/chemistry
11.
Methods Mol Biol ; 2757: 447-460, 2024.
Article in English | MEDLINE | ID: mdl-38668978

ABSTRACT

Epigenomic regulation and dynamic DNA methylation, in particular, are widespread mechanisms orchestrating the genome operation across time and species. Whole-genome bisulfite sequencing (WGBS) is currently the only method for unbiasedly capturing the presence of 5-methylcytosine (5-mC) DNA methylation patterns across an entire genome with single-nucleotide resolution. Bisulfite treatment converts unmethylated cytosines to uracils but leaves methylated cytosines intact, thereby creating a map of all methylated cytosines across a genome also known as a methylome. These epigenomic patterns of DNA methylation have been found to regulate gene expression and influence gene evolution rates between species. While protocols have been optimized for vertebrate methylome production, little adaptation has been done for invertebrates. Creating a methylome reference allows comparisons to be made between rates of transcription and epigenomic patterning in animals. Here we present a method of library construction for bisulfite sequencing optimized for non-bilateral metazoans such as the ctenophore, Mnemiopsis leidyi. We have improved upon our previously published method by including spike-in genomic DNA controls to measure methylation conversion rates. By pooling two bisulfite conversion reactions from the same individual, we also produced sequencing libraries that yielded a higher percentage of sequenced reads uniquely mapping to the reference genome. We successfully detected 5-mC in whole-animal methylomes at CpG, CHG, and CHH sites and visualized datasets using circos diagrams. The proof-of-concept tests were performed both under control conditions and following injury tests with changes in methylation patterns of genes encoding innexins, toxins and neuropeptides. Our approach can be easily adapted to produce epigenomes from other fragile marine animals.


Subject(s)
Ctenophora , DNA Methylation , Animals , Ctenophora/genetics , Sulfites/chemistry , Epigenomics/methods , Epigenesis, Genetic , Epigenome , 5-Methylcytosine/metabolism , Sequence Analysis, DNA/methods , Whole Genome Sequencing/methods , Genome
12.
Anal Chim Acta ; 1305: 342588, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38677842

ABSTRACT

BACKGROUND: Sulfur dioxide (SO2) is a significant gas signaling molecule in organisms, and viscosity is a crucial parameter of the cellular microenvironment. They are both involved in regulating many physiological processes in the human body. However, abnormalities in SO2 and viscosity levels are associated with various diseases, such as cardiovascular disease, lung cancer, respiratory diseases, neurological disorders, diabetes and Alzheimer's disease. Hence, it is essential to explore novel and efficient fluorescent probes for simultaneously monitoring SO2 and viscosity in organisms. RESULTS: We selected quinolinium salt with good stability, high fluorescence intensity, good solubility and low cytotoxicity as the fluorophore and developed a highly sensitive ratiometric probe QQD to identify SO2 and viscosity changes based on Förster resonance energy transfer/twisted intramolecular charge transfer (FRET/TICT) mechanism. Excitingly, compared with other probes for SO2 detection, QQD not only identified HSO3-/SO32- with a large Stokes shift (218 nm), low detection limit (1.87 µM), good selectivity, high energy transfer efficiency (92 %) and wide recognition range (1.87-200 µM), but also identified viscosity with a 26-fold fluorescence enhancement and good linearity. Crucially, QQD was applied to detect HSO3-/SO32- and viscosity in actual water and food samples. In addition, QQD had low toxicity and good photostability for imaging HSO3-/SO32- and viscosity in cells. These results confirmed the feasibility and reliability of QQD for HSO3-/SO32- and viscosity imaging and environmental detection. SIGNIFICANCE: We reported a unique ratiometric probe QQD for detecting HSO3-/SO32- and viscosity based on the quinolinium skeleton. In addition to detecting HSO3-/SO32- and viscosity change in actual water and food samples, QQD could also monitor the variations of HSO3-/SO32- and viscosity in cells, which provided an experimental basis for further exploration of the role of SO2 derivatives and viscosity in biological systems.


Subject(s)
Fluorescence Resonance Energy Transfer , Fluorescent Dyes , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Viscosity , Humans , Sulfur Dioxide/analysis , Sulfites/analysis , Sulfites/chemistry , Limit of Detection , Quinolinium Compounds/chemistry
13.
Methods ; 225: 100-105, 2024 May.
Article in English | MEDLINE | ID: mdl-38565390

ABSTRACT

The development of reliable probe technology for the detection of bisulfite (HSO3-) in situ in food and biological samples is contributing significantly to food quality and safety assurance as well as community health. In this work, a responsive probe, EHDI, is developed for ratiometric fluorescence detection of HSO3- in aqueous solution, meat samples, and living cells. The probe is designed based on the HSO3- triggered 1,4-addition of electron deficit C = C bond of EHDI. As a result of this specific 1,4-addition, the π-conjugation system was destructed, resulting in blue shifts of the emission from 687 to 440 nm and absorption from 577 to 355 nm. The probe has good water solubility, high sensitivity and selectivity, allowing it to be used for imaging of HSO3- internalization and production endogenously. The capability of probe EHDI for HSO3- was then validated by traditional HPLC technology, enabling accurately detect HSO3- in beef samples. The successful development of this probe thus offers a new tool for investigating HSO3- in situ in food and biological conditions.


Subject(s)
Fluorescent Dyes , Meat , Sulfites , Sulfites/analysis , Sulfites/chemistry , Fluorescent Dyes/chemistry , Animals , Humans , Meat/analysis , Spectrometry, Fluorescence/methods , Cattle , Red Meat/analysis
14.
J Colloid Interface Sci ; 666: 512-528, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38613974

ABSTRACT

Metronidazole (MNZ), a commonly used antibiotic, poses risks to water bodies and human health due to its potential carcinogenic, mutagenic, and genotoxic effects. In this study, mesoporous cobalt-manganese layered double hydroxides (CoxMny-LDH) with abundant oxygen vacancies (Ov) were successfully synthesized using the co-precipitation method and used to activate calcium sulfite (CaSO3) with slight soluble in water for MNZ degradation. The characterization results revealed that Co2Mn-LDH had higher specific areas and exhibited good crystallinity. Co2Mn-LDH/CaSO3 exhibited the best catalytic performance under optimal conditions, achieving a remarkable MNZ degradation efficiency of up to 98.1 % in only 8 min. Quenching experiments and electron paramagnetic resonance (EPR) tests showed that SO4•- and 1O2 played pivotal roles in the MNZ degradation process by activated CaSO3, while the redox cycles of Co2+/Co3+ and Mn3+/Mn4+ on the catalyst surface accelerated electron transfer, promoting radical generation. Three MNZ degradation routes were put forward based on the density functional theory (DFT) and liquid chromatography-mass spectrometer (LC-MS) analysis. Meanwhile, the toxicity analysis result demonstrated that the toxicity of intermediates post-catalytic reaction was decreased. Furthermore, the Co2Mn-LDH/CaSO3 system displayed excellent stability, reusability, and anti-interference capability, and achieved a comparably high removal efficiency across various organic pollutant water bodies. This study provides valuable insights into the development and optimization of effective heterogeneous catalysts for treating antibiotic-contaminated wastewater.


Subject(s)
Cobalt , Hydroxides , Manganese , Metronidazole , Cobalt/chemistry , Metronidazole/chemistry , Hydroxides/chemistry , Manganese/chemistry , Porosity , Surface Properties , Sulfites/chemistry , Catalysis , Particle Size , Density Functional Theory , Water Pollutants, Chemical/chemistry
15.
Food Chem ; 449: 138944, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38613993

ABSTRACT

Sulfite addition is a common tool for ensuring wines' oxidative stability via the activity of its free and weakly bound molecular fraction. As a nucleophile, bisulfite forms covalent adducts with wine's most relevant electrophiles, such as carbonyls, polyphenols, and thiols. The equilibrium in these reactions is often represented as dissociation rather than formation. Recent studies from our laboratory demonstrate, first, the acetaldehyde sulfonate dissociation, and second, the chemical stability of cysteine and epicatechin sulfonates under wine aging conditions. Thus, the objective of this study was to monitor by 1H NMR the binding specificity of known carbonyl-derived SO2 binders (acetaldehyde and pyruvic acid) in the presence of S-containing compounds (cysteine and glutathione). We report that during simulated wine aging, the sulfur dioxide that is rapidly bound to carbonyl compounds will be released and will bind to cysteine and glutathione, demonstrating the long-term sulfur dioxide binding potential of S-containing compounds. These results are meant to serve as a complement to existing literature reviews focused on molecular markers related to wines' oxidative stability and emphasize once more the importance of S-containing compounds in wine aging chemical mechanisms.


Subject(s)
Sulfhydryl Compounds , Wine , Wine/analysis , Kinetics , Sulfhydryl Compounds/chemistry , Oxidation-Reduction , Sulfur Dioxide/chemistry , Cysteine/chemistry , Cysteine/metabolism , Acetaldehyde/chemistry , Sulfites/chemistry , Proton Magnetic Resonance Spectroscopy , Magnetic Resonance Spectroscopy , Glutathione/chemistry , Glutathione/metabolism
16.
J Agric Food Chem ; 72(17): 10097-10105, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38630689

ABSTRACT

With the booming development of food manufacturing, developing ideal analytical tools to precisely quantify food additives is highly sought after in the food science field. Herein, a new series of quinoline-derived multifunctional fluorescent probes has been synthesized. Bearing double reactive sites, these compounds display fluorescence response toward both bisulfite (HSO3-) and hypochlorous acid (HClO). Among these compact structures, compound ethyl-2-cyano-3-(6-(methylthio)quinolin-2-yl)acrylate (QTE) was screened out. Probe QTE not only shows ratiometric variation toward HSO3- with little cross talk but also performs turn-off signal toward HClO. In addition, probe QTE has been utilized for bioimaging of HClO in living cells. Furthermore, the HSO3- content in dried food samples has been appraised by QTE with satisfactory results. Meanwhile, relying on the apparent chromaticity change, a flexible dark-box device has been elaborated for chromatic analysis, promoting visualization of HSO3- in the field.


Subject(s)
Fluorescent Dyes , Hypochlorous Acid , Quinolines , Sulfites , Fluorescent Dyes/chemistry , Quinolines/chemistry , Hypochlorous Acid/analysis , Humans , Sulfites/analysis , Sulfites/chemistry , Food Analysis/methods
17.
Article in English | MEDLINE | ID: mdl-38648105

ABSTRACT

Sprouts of black beans (Phaseolus vulgaris L.), soybeans (Glycine max L.) and mung beans (Vigna radiata L.) are widely consumed foods containing abundant nutrients with biological activities. They are commonly treated with sulphites for the preservation and extension of shelf-life. However, our previous investigation found that immersing the bean sprouts in sulphite might convert the active components into sulphur-containing derivatives, which can affect both the quality and safety of the sprouts. This study explores the use of FTIR in conjunction with chemometric techniques to differentiate between non-immersed (NI) and sodium sulphite immersed (SI) black bean, soybean and mung bean sprouts. A total of 168 batches of raw spectra were obtained from NI and SI-bean sprouts using FTIR spectroscopy. Four pre-processing techniques, three modelling assessment techniques and four model evaluation indices were examined for differences in performance. The results show that the multiplicative scatter correction is the most effective pre-processing method. Among the models, the accuracy rate of the three models was as follows: radial basis function neural network (95%) > convolutional neural network (91%) > random forest (82%). The overall findings indicate that FTIR spectroscopy, in conjunction with appropriate chemometric approaches, has a high potential for rapidly determining the difference between NI and SI-bean sprouts.


Subject(s)
Phaseolus , Sulfites , Spectroscopy, Fourier Transform Infrared , Sulfites/analysis , Sulfites/chemistry , Phaseolus/chemistry , Chemometrics , Glycine max/chemistry , Vigna/chemistry , Fabaceae/chemistry
18.
Anal Biochem ; 691: 115532, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38609028

ABSTRACT

The bisulfite reaction with native DNA has been extensively employed in the detection of non-B DNA structures that can form spontaneously in DNA. These sequences are dynamic in that they can adopt both normal Watson-Crick paired B-DNA or unusual structures like the Triplex, G-Quadruplex, i-motif and Cruciform or Hairpin. Considerable evidence now suggests that these dynamic sequences play roles in both epigenetics and mutagenesis. The bisulfite reaction with native DNA offers a key approach to their detection. In this application whole cells, isolated nuclei or isolated DNA are treated with bisulfite under non-denaturing conditions in order to detect bisulfite accessible regions DNA that are associated with these structures. Here I review the stereochemistry of the bisulfite reaction, the electronic structure of its DNA cytosine substrates and its application in the detection of unusual structures in native DNA.


Subject(s)
Cytosine , DNA , Nucleic Acid Conformation , Sulfites , Cytosine/chemistry , DNA/chemistry , Sulfites/chemistry , Humans , G-Quadruplexes
19.
Water Res ; 256: 121611, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38640567

ABSTRACT

Natural small molecular organic matter (NSOM), ubiquitous in natural waters and distinct from humic acid or fulvic acid, is a special type of dissolved organic matter (DOM) which is characterized as strong photosensitivity and simple molecular structure. However, little study had been directed on the role of NSOM in eliminating emerging contaminants in advanced reduction process (ARP). This study took three small molecular isomeric organic acids (p-hydroxybenzoic acid, pHBA; salicylic acid, SA; m-hydroxybenzoic acid, mHBA) as the representative substances of NSOM to explore these mechanisms on promoting Ribavirin (RBV, an anti COVID-19 medicine) degradation in ultraviolet activated sulfite (UV/Sulfite) process. The results demonstrated that the observed degradation rate constant of RBV (kobs-RBV) was 7.56 × 10-6 s-1 in UV/Sulfite process, indicating that hydrated electron (eaq-) from UV/Sulfite process could not effectively degrade RBV, while it increased by 178 and 38 times when pHBA and SA were introduced into UV/Sulfite process respectively, suggesting that pHBA and SA strongly promoted RBV degradation while mHBA had no promotion on RBV abatement in UV/Sulfite process. Transient absorption spectra and reactive intermediates scavenging experiment indicated that the triplet excited state pHBA and SA (3pHBA* and 3SA*) contributed to the degradation of RBV through non-radical process. Notably, eaq- played the role of key initiator in transforming pHBA and SA into their triplet states. The difference of kobs-RBV in UV/Sulfite/pHBA and UV/Sulfite/SA process was attributed to different generation pathways of 3pHBA* and 3SA* (high molar absorptivity at the wavelength of 254 nm and photosensitive cycle, respectively) and their second order rate constants towards RBV (kRBV-3pHBA* = 8.60 × 108 M-1 s-1 and kRBV-3SA* = 6.81 × 107 M-1 s-1). mHBA could not degrade RBV for its lack of intramolecular hydrogen bond and low molar absorptivity at 254 nm to abundantly transform into its triplet state. kobs-RBV increased as pH increased from 5.0 to 11.0 in UV/Sulfite/SA process, due to the high yield of eaq- in alkaline condition which promoted the generation of 3SA* and the stable of the absorbance of SA at 254 nm. By contrast, kobs-RBV underwent a process of first increasing and then decreasing in UV/Sulfite/pHBA process as the increase of pH, and its highest value achieved in a neutral condition. This lied in the exposure of eaq- increased as the increase of pH which promoted the generation of 3pHBA*, while the molar absorptivity of pHBA at 254 nm decreased as the increase of pH in an alkaline condition which inhibited the yield of 3pHBA*. The RBV degradation pathways and products toxicity assessment indicated that UV/Sulfite/pHBA had better detoxification performance on RBV than UV/Sulfite/SA process. This study disclosed a novel mechanism of emerging contaminants abatement through non-radical process in NSOM mediated ARP, and provide a wide insight into positive profile of DOM in water treatment process, instead of only taking DOM as a quencher of reactive intermediates.


Subject(s)
Antiviral Agents , Antiviral Agents/chemistry , Ultraviolet Rays , Sulfites/chemistry
20.
Environ Sci Technol ; 58(14): 6425-6434, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38554136

ABSTRACT

Hydrated electron (eaq-) treatment processes show great potential in remediating recalcitrant water contaminants, including perfluoroalkyl and polyfluoroalkyl substances (PFAS). However, treatment efficacy depends upon many factors relating to source water composition, UV light source characteristics, and contaminant reactivity. Here, we provide critical insights into the complex roles of solution parameters on contaminant abatement through application of a UV-sulfite kinetic model that incorporates first-principles information on eaq- photogeneration and reactivity. The model accurately predicts decay profiles of short-chain perfluoroalkyl acids (PFAAs) during UV-sulfite treatment and facilitates quantitative interpretation of the effects of changing solution composition on PFAS degradation rates. Model results also confirm that the enhanced degradation of PFAAs observed under highly alkaline pH conditions results from changes in speciation of nontarget eaq- scavengers. Reverse application of the model to UV-sulfite data collected for longer chain PFAAs enabled estimation of bimolecular rate constants (k2, M-1 s-1), providing an alternative to laser flash photolysis (LFP) measurements that are not feasible due to the water solubility limitations of these compounds. The proposed model links the disparate means of investigating eaq- processes, namely, UV photolysis and LFP, and provides a framework to estimate UV-sulfite treatment efficacy of PFAS in diverse water sources.


Subject(s)
Fluorocarbons , Water Pollutants, Chemical , Ultraviolet Rays , Water Pollutants, Chemical/analysis , Sulfites/chemistry , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...