Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.935
Filter
1.
Int J Mycobacteriol ; 13(1): 73-82, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38771283

ABSTRACT

BACKGROUND: Tuberculosis (TB) remains a prominent global health challenge, distinguished by substantial occurrences of infection and death. The upsurge of drug-resistant TB strains underscores the urgency to identify novel therapeutic targets and repurpose existing compounds. Rv0295c is a potentially druggable enzyme involved in cell wall biosynthesis and virulence. We evaluated the inhibitory activity of Food and Drug Administration (FDA)-approved compounds against Rv0295c of Mycobacterium tuberculosis, employing molecular docking, ADME evaluation, and dynamics simulations. METHODS: The study screened 1800 FDA-approved compounds and selected the top five compounds with the highest docking scores. Following this, we subjected the initially screened ligands to ADME analysis based on their dock scores. In addition, the compound exhibited the highest binding affinity chosen for molecular dynamics (MD) simulation to investigate the dynamic behavior of the ligand-receptor complex. RESULTS: Dihydroergotamine (CHEMBL1732) exhibited the highest binding affinity (-12.8 kcal/mol) for Rv0295c within this set of compounds. We evaluated the stability and binding modes of the complex over extended simulation trajectories. CONCLUSION: Our in silico analysis demonstrates that FDA-approved drugs can serve as potential Rv0295c inhibitors through repurposing. The combination of molecular docking and MD simulation offers a comprehensive understanding of the interactions between ligands and the protein target, providing valuable guidance for further experimental validation. Identifying Rv0295c inhibitors may contribute to new anti-TB drugs.


Subject(s)
Antitubercular Agents , Molecular Docking Simulation , Molecular Dynamics Simulation , Mycobacterium tuberculosis , United States Food and Drug Administration , Mycobacterium tuberculosis/enzymology , Mycobacterium tuberculosis/drug effects , Antitubercular Agents/pharmacology , Antitubercular Agents/chemistry , United States , Sulfotransferases/metabolism , Sulfotransferases/chemistry , Sulfotransferases/antagonists & inhibitors , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Drug Approval , Humans , Ligands , Tuberculosis/microbiology , Tuberculosis/drug therapy
2.
Carbohydr Polym ; 337: 122158, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38710555

ABSTRACT

Chondroitin sulfate (CS) stands as a pivotal compound in dietary supplements for osteoarthritis treatment, propelling significant interest in the biotechnological pursuit of environmentally friendly and safe CS production. Enzymatic synthesis of CS for instance CSA has been considered as one of the most promising methods. However, the bottleneck consistently encountered is the active expression of chondroitin 4-O-sulfotransferase (C4ST) during CSA biosynthesis. This study meticulously delved into optimizing C4ST expression through systematic enhancements in transcription, translation, and secretion mechanisms via modifications in the 5' untranslated region, the N-terminal encoding sequence, and the Komagataella phaffii chassis. Ultimately, the active C4ST expression escalated to 2713.1 U/L, representing a striking 43.7-fold increase. By applying the culture broth supernatant of C4ST and integrating the 3'-phosphoadenosine-5'-phosphosulfate (PAPS) biosynthesis module, we constructed a one-pot enzymatic system for CSA biosynthesis, achieving a remarkable sulfonation degree of up to 97.0 %. The substantial enhancement in C4ST expression and the development of an engineered one-pot enzymatic synthesis system promises to expedite large-scale CSA biosynthesis with customizable sulfonation degrees.


Subject(s)
Chondroitin Sulfates , Sulfotransferases , Chondroitin Sulfates/chemistry , Chondroitin Sulfates/biosynthesis , Chondroitin Sulfates/metabolism , Sulfotransferases/metabolism , Sulfotransferases/genetics , Saccharomycetales/enzymology , Saccharomycetales/metabolism , Saccharomycetales/genetics
3.
BMJ Case Rep ; 17(5)2024 May 08.
Article in English | MEDLINE | ID: mdl-38719268

ABSTRACT

A young a presented with painless, progressive diminution of vision in both eyes (BE). Slit lamp examination revealed the presence of a single central corneal opacity in the right eye and multiple corneal opacities of varying sizes in the left eye (LE), limited to the anterior-mid corneal stroma. Microcornea with reduced central corneal thickness and complete inferonasal iris coloboma along with inferior fundal coloboma, sparing both the disc and macula, were noted in BE. A diagnosis of BE macular corneal dystrophy (MCD) and iridofundal coloboma (IFC) was made. The patient underwent LE sutureless anterior lamellar therapeutic keratoplasty. On histopathological examination, the excised corneal tissue revealed stromal lamellar disarray with positive colloidal iron staining, strongly suggestive of MCD. Whole-exome sequencing revealed the presence of a likely pathogenic carbohydrate sulfotransferase 6 (CHST6) mutation, confirming the diagnosis of MCD. This concurrent presence of IFC with a corneal stromal dystrophy is previously unreported in the literature, to the best of our knowledge.


Subject(s)
Coloboma , Corneal Dystrophies, Hereditary , Humans , Coloboma/genetics , Coloboma/diagnosis , Coloboma/complications , Corneal Dystrophies, Hereditary/genetics , Corneal Dystrophies, Hereditary/diagnosis , Corneal Dystrophies, Hereditary/complications , Corneal Dystrophies, Hereditary/surgery , Male , Iris/abnormalities , Iris/pathology , Carbohydrate Sulfotransferases , Sulfotransferases/genetics , Corneal Transplantation/methods , Corneal Opacity/genetics , Corneal Opacity/diagnosis , Corneal Opacity/complications , Cornea/abnormalities , Cornea/pathology
4.
Biol Lett ; 20(5): 20230585, 2024 May.
Article in English | MEDLINE | ID: mdl-38746983

ABSTRACT

Genes from ancient families are sometimes involved in the convergent evolutionary origins of similar traits, even across vast phylogenetic distances. Sulfotransferases are an ancient family of enzymes that transfer sulfate from a donor to a wide variety of substrates, including probable roles in some bioluminescence systems. Here, we demonstrate multiple sulfotransferases, highly expressed in light organs of the bioluminescent ostracod Vargula tsujii, transfer sulfate in vitro to the luciferin substrate, vargulin. We find luciferin sulfotransferases (LSTs) of ostracods are not orthologous to known LSTs of fireflies or sea pansies; animals with distinct and convergently evolved bioluminescence systems compared to ostracods. Therefore, distantly related sulfotransferases were independently recruited at least three times, leading to parallel evolution of luciferin metabolism in three highly diverged organisms. Reuse of homologous genes is surprising in these bioluminescence systems because the other components, including luciferins and luciferases, are completely distinct. Whether convergently evolved traits incorporate ancient genes with similar functions or instead use distinct, often newer, genes may be constrained by how many genetic solutions exist for a particular function. When fewer solutions exist, as in genetic sulfation of small molecules, evolution may be more constrained to use the same genes time and again.


Subject(s)
Crustacea , Sulfotransferases , Animals , Sulfotransferases/metabolism , Sulfotransferases/genetics , Crustacea/enzymology , Crustacea/genetics , Crustacea/metabolism , Phylogeny , Evolution, Molecular , Luminescence
5.
Nat Commun ; 15(1): 3755, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38704385

ABSTRACT

Heparin is an important anticoagulant drug, and microbial heparin biosynthesis is a potential alternative to animal-derived heparin production. However, effectively using heparin synthesis enzymes faces challenges, especially with microbial recombinant expression of active heparan sulfate N-deacetylase/N-sulfotransferase. Here, we introduce the monosaccharide N-trifluoroacetylglucosamine into Escherichia coli K5 to facilitate sulfation modification. The Protein Repair One-Stop Service-Focused Rational Iterative Site-specific Mutagenesis (PROSS-FRISM) platform is used to enhance sulfotransferase efficiency, resulting in the engineered NST-M8 enzyme with significantly improved stability (11.32-fold) and activity (2.53-fold) compared to the wild-type N-sulfotransferase. This approach can be applied to engineering various sulfotransferases. The multienzyme cascade reaction enables the production of active heparin from bioengineered heparosan, demonstrating anti-FXa (246.09 IU/mg) and anti-FIIa (48.62 IU/mg) activities. This study offers insights into overcoming challenges in heparin synthesis and modification, paving the way for the future development of animal-free heparins using a cellular system-based semisynthetic strategy.


Subject(s)
Anticoagulants , Escherichia coli , Heparin , Sulfotransferases , Sulfotransferases/metabolism , Sulfotransferases/genetics , Heparin/metabolism , Heparin/biosynthesis , Anticoagulants/metabolism , Anticoagulants/chemistry , Escherichia coli/genetics , Escherichia coli/metabolism , Metabolic Engineering/methods , Humans , Polysaccharides/metabolism , Polysaccharides/biosynthesis , Polysaccharides/chemistry , Mutagenesis, Site-Directed , Protein Engineering/methods , Disaccharides/metabolism , Disaccharides/biosynthesis , Disaccharides/chemistry , Recombinant Proteins/metabolism , Recombinant Proteins/genetics
6.
Int J Nanomedicine ; 19: 3827-3846, 2024.
Article in English | MEDLINE | ID: mdl-38708180

ABSTRACT

Background: New treatment modalities for hepatocellular carcinoma (HCC) are desperately critically needed, given the lack of specificity, severe side effects, and drug resistance with single chemotherapy. Engineered bacteria can target and accumulate in tumor tissues, induce an immune response, and act as drug delivery vehicles. However, conventional bacterial therapy has limitations, such as drug loading capacity and difficult cargo release, resulting in inadequate therapeutic outcomes. Synthetic biotechnology can enhance the precision and efficacy of bacteria-based delivery systems. This enables the selective release of therapeutic payloads in vivo. Methods: In this study, we constructed a non-pathogenic Escherichia coli (E. coli) with a synchronized lysis circuit as both a drug/gene delivery vehicle and an in-situ (hepatitis B surface antigen) Ag (ASEc) producer. Polyethylene glycol (CHO-PEG2000-CHO)-poly(ethyleneimine) (PEI25k)-citraconic anhydride (CA)-doxorubicin (DOX) nanoparticles loaded with plasmid encoded human sulfatase 1 (hsulf-1) enzyme (PNPs) were anchored on the surface of ASEc (ASEc@PNPs). The composites were synthesized and characterized. The in vitro and in vivo anti-tumor effect of ASEc@PNPs was tested in HepG2 cell lines and a mouse subcutaneous tumor model. Results: The results demonstrated that upon intravenous injection into tumor-bearing mice, ASEc can actively target and colonise tumor sites. The lytic genes to achieve blast and concentrated release of Ag significantly increased cytokine secretion and the intratumoral infiltration of CD4/CD8+T cells, initiated a specific immune response. Simultaneously, the PNPs system releases hsulf-1 and DOX into the tumor cell resulting in rapid tumor regression and metastasis prevention. Conclusion: The novel drug delivery system significantly suppressed HCC in vivo with reduced side effects, indicating a potential strategy for clinical HCC therapy.


Subject(s)
Carcinoma, Hepatocellular , Doxorubicin , Escherichia coli , Liver Neoplasms , Animals , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/therapy , Liver Neoplasms/drug therapy , Liver Neoplasms/therapy , Humans , Doxorubicin/pharmacology , Doxorubicin/chemistry , Doxorubicin/administration & dosage , Hep G2 Cells , Mice , Escherichia coli/drug effects , Hepatitis B Surface Antigens , Sulfotransferases/genetics , Nanoparticles/chemistry , Mice, Inbred BALB C , Drug Delivery Systems/methods , Xenograft Model Antitumor Assays
7.
Sci Rep ; 14(1): 7704, 2024 04 02.
Article in English | MEDLINE | ID: mdl-38565604

ABSTRACT

Clear cell renal cell carcinoma (ccRCC) is a common malignant tumor, and the role of carbohydrate sulfotransferase 11 (CHST11) in this cancer remains unclear. Here, by using bioinformatics methods, we comprehensively analyzed the relationship between CHST11 and clinical significance, immune infiltration, functional enrichment, m6A methylation, and protein-protein interaction networks. We found that CHST11 expression was significantly higher in ccRCC samples than in normal tissues. Additionally, CHST11 levels correlated with the clinicopathological features of ccRCC patients and functioned as a prognostic factor for patient survival. Functional analysis revealed the involvement of CHST11 in metabolic pathways. Immune infiltration and m6A methylation analysis suggested the association of CHST11 with immune cell abundance in the tumor microenvironment and specific methylation patterns in ccRCC. The in vitro analysis of the clinical samples and ccRCC cell lines demonstrated that the overexpression of CHST11 promotes ccRCC cell proliferation, migration, and invasion, while its suppression has the opposite effect. Thus, CHST11 may play a remarkable role in the occurrence and progression of ccRCC. Functionally, CHST11 promotes the aggressiveness of ccRCC cells. These findings provide insights into the role of CHST11 in ccRCC progression.Registry and the Registration No. of the study/trial: No. 2021K034.


Subject(s)
Carcinoma, Renal Cell , Carcinoma , Kidney Neoplasms , Humans , Carcinoma, Renal Cell/genetics , Aggression , Biomarkers , Kidney Neoplasms/genetics , Prognosis , Tumor Microenvironment , Sulfotransferases/genetics
8.
Int J Mol Sci ; 25(8)2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38674142

ABSTRACT

The gradual deterioration of articular cartilage was thought to be the central event in osteoarthritis (OA), but recent studies demonstrated the importance of low-grade synovitis in the progression of OA. The Syndecan (SDC) family of membrane proteoglycans is known to be involved in the regulation of inflammation, but there is limited evidence considering the role of syndecans in OA synovitis. Our study aimed to investigate the hip OA synovial membrane expression patterns of SDC1, SDC2 and SDC4, as well as exostosins and sulfotransferases (enzymes involved in the polymerisation and modification of syndecans' heparan sulphate chains). Synovial membrane samples of patients with OA (24) were divided into two groups according to their Krenn synovitis score severity. The immunohistochemical expressions of SDC1, SDC2, SDC4, EXT1, EXT2, NDST1 and NDST2 in synovial intima and subintima were then analysed and compared with the control group (patients with femoral neck fracture). According to our study, the immunoexpression of SDC1, NDST1 and EXT2 is significantly increased in the intimal cells of OA synovial membrane in patients with lower histological synovitis scores and SDC4 in patients with higher synovitis scores, in comparison with non-OA controls. The difference in the expression of SDC2 among the OA and non-OA groups was insignificant. SDC1, SDC4, NDST1 and EXT2 seem to be involved as inflammation moderators in low-grade OA synovitis and, therefore, should be further investigated as potential markers of disease progression and therapeutic goals.


Subject(s)
Biomarkers , Osteoarthritis, Hip , Sulfotransferases , Syndecans , Synovitis , Aged , Female , Humans , Male , Middle Aged , Inflammation/metabolism , Inflammation/pathology , N-Acetylglucosaminyltransferases , Osteoarthritis, Hip/metabolism , Osteoarthritis, Hip/pathology , Sulfotransferases/metabolism , Syndecans/metabolism , Synovial Membrane/metabolism , Synovial Membrane/pathology , Synovitis/metabolism , Synovitis/pathology , Biomarkers/analysis
9.
Biochem Biophys Res Commun ; 711: 149891, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38621346

ABSTRACT

Microorganisms synthesize a plethora of complex secondary metabolites, many of which are beneficial to human health, such as anticancer agents and antibiotics. Among these, the Sungeidines are a distinct class of secondary metabolites known for their bulky and intricate structures. They are produced by a specific biosynthetic gene cluster within the genome of the soil-dwelling actinomycete Micromonospora sp. MD118. A notable enzyme in the Sungeidine biosynthetic pathway is the activating sulfotransferase SgdX2. In this pathway, SgdX2 mediates a key sulfation step, after which the product undergoes spontaneous dehydration to yield a Sungeidine compound. To delineate the structural basis for SgdX2's substrate recognition and catalytic action, we have determined the crystal structure of SgdX2 in complex with its sulfate donor product, 3'-phosphoadenosine 5'-phosphate (PAP), at a resolution of 1.6 Å. Although SgdX2 presents a compact overall structure, its core elements are conserved among other activating sulfotransferases. Our structural analysis reveals a unique substrate-binding pocket that accommodates bulky, complex substrates, suggesting a specialized adaptation for Sungeidine synthesis. Moreover, we have constructed a substrate docking model that provides insights into the molecular interactions between SgdX2 and Sungeidine F, enhancing our understanding of the enzyme's specificity and catalytic mechanism. The model supports a general acid-base catalysis mechanism, akin to other sulfotransferases, and underscores the minor role of disordered regions in substrate recognition. This integrative study of crystallography and computational modeling advances our knowledge of microbial secondary metabolite biosynthesis and may facilitate the development of novel biotechnological applications.


Subject(s)
Sulfotransferases , Sulfotransferases/metabolism , Sulfotransferases/chemistry , Sulfotransferases/genetics , Crystallography, X-Ray , Models, Molecular , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Protein Conformation , Substrate Specificity , Catalytic Domain
10.
Sci Rep ; 14(1): 8050, 2024 04 05.
Article in English | MEDLINE | ID: mdl-38580665

ABSTRACT

Pregnenolone is a key intermediate in the biosynthesis of many steroid hormones and neuroprotective steroids. Sulfotransferase family cytosolic 2B member 1 (SULT2B1a) has been reported to be highly selective to sulfate pregnenolone. This study aimed to clarify the effect of missense single nucleotide polymorphisms (SNPs) of the human SULT2B1 gene on the sulfating activity of coded SULT2B1a allozymes toward Pregnenolone. To investigate the effects of single nucleotide polymorphisms of the SULT2B1 gene on the sulfation of pregnenolone by SULT2B1a allozymes, 13 recombinant SULT2B1a allozymes were generated, expressed, and purified using established procedures. Human SULT2B1a SNPs were identified by a comprehensive database search. 13 SULT2B1a nonsynonymous missense coding SNPs (cSNPs) were selected, and site-directed mutagenesis was used to generate the corresponding cDNAs, packaged in pGEX-2TK expression vector, encoding these 13 SULT2B1a allozymes, which were bacterially expressed in BL21 E. coli cells and purified by glutathione-Sepharose affinity chromatography. Purified SULT2B1a allozymes were analyzed for sulfating activities towards pregnenolone. In comparison with the wild-type SULT2B1a, of the 13 allozymes, 11 showed reduced activity toward pregnenolone at 0.1 µM. Specifically, P134L and R259Q allozymes, reported to be involved in autosomal-recessive congenital ichthyosis, displayed low activity (1-10%) toward pregnenolone. The findings of this study may demonstrate the impact of genetic polymorphism on the sulfation of pregnenolone in individuals with different SULT2B1 genotypes.


Subject(s)
Isoenzymes , Pregnenolone , Humans , Isoenzymes/metabolism , Escherichia coli/metabolism , Sulfotransferases/metabolism , Polymorphism, Single Nucleotide
11.
Int J Mol Sci ; 25(5)2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38474230

ABSTRACT

Sulfonation, primarily facilitated by sulfotransferases, plays a crucial role in the detoxification pathways of endogenous substances and xenobiotics, promoting metabolism and elimination. Traditionally, this bioconversion has been attributed to a family of human cytosolic sulfotransferases (hSULTs) known for their high sequence similarity and dependence on 3'-phosphoadenosine 5'-phosphosulfate (PAPS) as a sulfo donor. However, recent studies have revealed the presence of PAPS-dependent sulfotransferases within gut commensals, indicating that the gut microbiome may harbor a diverse array of sulfotransferase enzymes and contribute to detoxification processes via sulfation. In this study, we investigated the prevalence of sulfotransferases in members of the human gut microbiome. Interestingly, we stumbled upon PAPS-independent sulfotransferases, known as aryl-sulfate sulfotransferases (ASSTs). Our bioinformatics analyses revealed that members of the gut microbial genus Sutterella harbor multiple asst genes, possibly encoding multiple ASST enzymes within its members. Fluctuations in the microbes of the genus Sutterella have been associated with various health conditions. For this reason, we characterized 17 different ASSTs from Sutterella wadsworthensis 3_1_45B. Our findings reveal that SwASSTs share similarities with E. coli ASST but also exhibit significant structural variations and sequence diversity. These differences might drive potential functional diversification and likely reflect an evolutionary divergence from their PAPS-dependent counterparts.


Subject(s)
Burkholderiales , Gastrointestinal Microbiome , Humans , Escherichia coli/metabolism , Sulfotransferases/metabolism
12.
Arch Toxicol ; 98(6): 1581-1628, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38520539

ABSTRACT

Data are presented on the formation of potentially toxic metabolites of drugs that are substrates of human drug metabolizing enzymes. The tabular data lists the formation of potentially toxic/reactive products. The data were obtained from in vitro experiments and showed that the oxidative reactions predominate (with 96% of the total potential toxication reactions). Reductive reactions (e.g., reduction of nitro to amino group and reductive dehalogenation) participate to the extent of 4%. Of the enzymes, cytochrome P450 (P450, CYP) enzymes catalyzed 72% of the reactions, myeloperoxidase (MPO) 7%, flavin-containing monooxygenase (FMO) 3%, aldehyde oxidase (AOX) 4%, sulfotransferase (SULT) 5%, and a group of minor participating enzymes to the extent of 9%. Within the P450 Superfamily, P450 Subfamily 3A (P450 3A4 and 3A5) participates to the extent of 27% and the Subfamily 2C (P450 2C9 and P450 2C19) to the extent of 16%, together catalyzing 43% of the reactions, followed by P450 Subfamily 1A (P450 1A1 and P450 1A2) with 15%. The P450 2D6 enzyme participated in an extent of 8%, P450 2E1 in 10%, and P450 2B6 in 6% of the reactions. All other enzymes participate to the extent of 14%. The data show that, of the human enzymes analyzed, P450 enzymes were dominant in catalyzing potential toxication reactions of drugs and their metabolites, with the major role assigned to the P450 Subfamily 3A and significant participation of the P450 Subfamilies 2C and 1A, plus the 2D6, 2E1 and 2B6 enzymes contributing. Selected examples of drugs that are activated or proposed to form toxic species are discussed.


Subject(s)
Cytochrome P-450 Enzyme System , Humans , Cytochrome P-450 Enzyme System/metabolism , Pharmaceutical Preparations/metabolism , Sulfotransferases/metabolism , Oxidation-Reduction , Aldehyde Oxidase/metabolism , Peroxidase/metabolism , Oxygenases
13.
Clin Transl Med ; 14(2): e1587, 2024 02.
Article in English | MEDLINE | ID: mdl-38372484

ABSTRACT

Metastasis is responsible for at least 90% of colon cancer (CC)-related deaths. Lipid metabolism is a critical factor in cancer metastasis, yet the underlying mechanism requires further investigation. Herein, through the utilisation of single-cell sequencing and proteomics, we identified sulfotransferase SULT2B1 as a novel metastatic tumour marker of CC, which was associated with poor prognosis. CC orthotopic model and in vitro assays showed that SULT2B1 promoted lipid metabolism and metastasis. Moreover, SULT2B1 directly interacted with SCD1 to facilitate lipid metabolism and promoted metastasis of CC cells. And the combined application of SCD1 inhibitor CAY with SULT2B1- konockout (KO) demonstrated a more robust inhibitory effect on lipid metabolism and metastasis of CC cells in comparison to sole application of SULT2B1-KO. Notably, we revealed that lovastatin can block the SULT2B1-induced promotion of lipid metabolism and distant metastasis in vivo. Further evidence showed that SMC1A transcriptionally upregulated the expression of SULT2B1. Our findings unveiled the critical role of SULT2B1 in CC metastasis and provided a new perspective for the treatment of CC patients with distant metastasis.


Subject(s)
Colonic Neoplasms , Lipid Metabolism , Humans , Lipid Metabolism/genetics , Colonic Neoplasms/drug therapy , Colonic Neoplasms/genetics , Colonic Neoplasms/pathology , Sulfotransferases/genetics , Sulfotransferases/metabolism , Stearoyl-CoA Desaturase/metabolism
14.
Dev Growth Differ ; 66(3): 248-255, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38326088

ABSTRACT

Wnt is a family of secreted signaling proteins involved in the regulation of cellular processes, including maintenance of stem cells, carcinogenesis, and cell differentiation. In the context of early vertebrate embryogenesis, graded distribution of Wnt proteins has been thought to regulate positional information along the antero-posterior axis. However, understanding of the molecular basis for Wnt spatial distribution remains poor. Modified states of heparan sulfate (HS) proteoglycans are essential for Wnt8 localization, because depletion of N-deacetylase/N-sulfotransferase 1 (NDST1), a modification enzyme of HS chains, decreases Wnt8 levels and NDST1 overexpression increases Wnt8 levels on the cell surface. Since overexpression of NDST1 increases both deacetylation and N-sulfation of HS chains, it is not clear which function of NDST1 is actually involved in Wnt8 localization. In the present study, we generated an NDST1 mutant that specifically increases deacetylation, but not N-sulfation, of HS chains in Xenopus embryos. Unlike wild-type NDST1, this mutant did not increase Wnt8 accumulation on the cell surface, but it reduced canonical Wnt signaling, as determined with the TOP-Flash reporter assay. These results suggest that N-sulfation of HS chains is responsible for localization of Wnt8 and Wnt8 signaling, whereas deacetylation has an inhibitory effect on canonical Wnt signaling. Consistently, overexpression of wild-type NDST1, but not the mutant, resulted in small eyes in Xenopus embryos. Thus, our NDST1 mutant enables us to dissect the regulation of Wnt8 localization and signaling by HS proteoglycans by specifically manipulating the enzymatic activities of NDST1.


Subject(s)
Heparitin Sulfate , Wnt Proteins , Wnt Signaling Pathway , Animals , Heparitin Sulfate/metabolism , Proteoglycans , Sulfotransferases/genetics , Sulfotransferases/metabolism , Xenopus laevis/metabolism , Amidohydrolases/genetics , Amidohydrolases/metabolism , Wnt Proteins/metabolism , Xenopus Proteins/genetics , Xenopus Proteins/metabolism
15.
Int Immunol ; 36(6): 303-316, 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38387051

ABSTRACT

Lymphocyte homing to peripheral lymph nodes (PLN) is critical for immune surveillance. However, autoimmune diseases such as multiple sclerosis (MS) can occur due to excessive immune responses in the PLN. Here we show that 6-sulfo sialyl Lewis X (6-sulfo sLex) glycans on high endothelial venules that function as ligands for l-selectin on lymphocytes play a critical role in the pathogenesis of experimental autoimmune encephalomyelitis (EAE), an animal model of MS. In N-acetylglucosamine-6-O-sulfotransferase (GlcNAc6ST)-1 and GlcNAc6ST-2 double-knockout mice lacking the expression of 6-sulfo sLeX glycans, the EAE symptoms and the numbers of effector Th1 and Th17 cells in the draining lymph nodes (dLN) and spinal cords (SC) were significantly reduced. To determine whether 6-sulfo sLeX could serve as a target for MS, we also examined the effects of anti-glycan monoclonal antibody (mAb) SF1 against 6-sulfo sLeX in EAE. Administration of mAb SF1 significantly reduced EAE symptoms and the numbers of antigen-specific effector T cells in the dLN and SC in association with suppression of critical genes including Il17a and Il17f that are involved in the pathogenesis of EAE. Taken together, these results suggest that 6-sulfo sLeX glycan would serve as a novel target for MS.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Mice, Inbred C57BL , Mice, Knockout , Sialyl Lewis X Antigen , Sialyl Lewis X Antigen/analogs & derivatives , Th17 Cells , Animals , Encephalomyelitis, Autoimmune, Experimental/immunology , Mice , Th17 Cells/immunology , Sialyl Lewis X Antigen/metabolism , Polysaccharides/metabolism , Interleukin-17/metabolism , Interleukin-17/immunology , Oligosaccharides , Carbohydrate Sulfotransferases , Th1 Cells/immunology , Sulfotransferases/metabolism , Sulfotransferases/genetics , Sulfotransferases/immunology , Lymph Nodes/immunology , Lymph Nodes/metabolism , Female , Multiple Sclerosis/immunology , Multiple Sclerosis/metabolism , Spinal Cord/immunology , Spinal Cord/metabolism , Cell Movement/immunology
16.
Nat Commun ; 15(1): 1326, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38351061

ABSTRACT

Heparan sulfate (HS) polysaccharides are major constituents of the extracellular matrix, which are involved in myriad structural and signaling processes. Mature HS polysaccharides contain complex, non-templated patterns of sulfation and epimerization, which mediate interactions with diverse protein partners. Complex HS modifications form around initial clusters of glucosamine-N-sulfate (GlcNS) on nascent polysaccharide chains, but the mechanistic basis underpinning incorporation of GlcNS itself into HS remains unclear. Here, we determine cryo-electron microscopy structures of human N-deacetylase-N-sulfotransferase (NDST)1, the bifunctional enzyme primarily responsible for initial GlcNS modification of HS. Our structures reveal the architecture of both NDST1 deacetylase and sulfotransferase catalytic domains, alongside a non-catalytic N-terminal domain. The two catalytic domains of NDST1 adopt a distinct back-to-back topology that limits direct cooperativity. Binding analyses, aided by activity-modulating nanobodies, suggest that anchoring of the substrate at the sulfotransferase domain initiates the NDST1 catalytic cycle, providing a plausible mechanism for cooperativity despite spatial domain separation. Our data shed light on key determinants of NDST1 activity, and describe tools to probe NDST1 function in vitro and in vivo.


Subject(s)
Heparitin Sulfate , Sulfotransferases , Humans , Cryoelectron Microscopy , Heparitin Sulfate/metabolism , Catalytic Domain , Sulfotransferases/metabolism , Extracellular Matrix/metabolism
17.
Int J Mol Sci ; 25(4)2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38396748

ABSTRACT

Dehydroepiandrosterone (DHEA), a precursor of steroid sex hormones, is synthesized by steroid 17-alpha-hydroxylase/17,20-lyase (CYP17A1) with the participation of microsomal cytochrome b5 (CYB5A) and cytochrome P450 reductase (CPR), followed by sulfation by two cytosolic sulfotransferases, SULT1E1 and SULT2A1, for storage and transport to tissues in which its synthesis is not available. The involvement of CYP17A1 and SULTs in these successive reactions led us to consider the possible interaction of SULTs with DHEA-producing CYP17A1 and its redox partners. Text mining analysis, protein-protein network analysis, and gene co-expression analysis were performed to determine the relationships between SULTs and microsomal CYP isoforms. For the first time, using surface plasmon resonance, we detected interactions between CYP17A1 and SULT2A1 or SULT1E1. SULTs also interacted with CYB5A and CPR. The interaction parameters of SULT2A1/CYP17A1 and SULT2A1/CYB5A complexes seemed to be modulated by 3'-phosphoadenosine-5'-phosphosulfate (PAPS). Affinity purification, combined with mass spectrometry (AP-MS), allowed us to identify a spectrum of SULT1E1 potential protein partners, including CYB5A. We showed that the enzymatic activity of SULTs increased in the presence of only CYP17A1 or CYP17A1 and CYB5A mixture. The structures of CYP17A1/SULT1E1 and CYB5A/SULT1E1 complexes were predicted. Our data provide novel fundamental information about the organization of microsomal CYP-dependent macromolecular complexes.


Subject(s)
Multienzyme Complexes , Steroid 17-alpha-Hydroxylase , Dehydroepiandrosterone Sulfate , Multienzyme Complexes/metabolism , Steroid 17-alpha-Hydroxylase/metabolism , Oxidation-Reduction , Steroids , Surface Plasmon Resonance , Sulfotransferases/genetics , Sulfotransferases/metabolism
18.
J Biol Chem ; 300(3): 105748, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38354785

ABSTRACT

Ticks pose a substantial public health risk as they transmit various pathogens. This concern is related to the adept blood-sucking strategy of ticks, underscored by the action of the anticoagulant, madanin, which is known to exhibit an approximately 1000-fold increase in anticoagulant activity following sulfation of its two tyrosine residues, Tyr51 and Tyr54. Despite this knowledge, the molecular mechanism underlying sulfation by tick tyrosylprotein sulfotransferase (TPST) remains unclear. In this study, we successfully prepared tick TPST as a soluble recombinant enzyme. We clarified the method by which this enzyme proficiently sulfates tyrosine residues in madanin. Biochemical analysis using a substrate peptide based on madanin and tick TPST, along with the analysis of the crystal structure of the complex and docking simulations, revealed a sequential sulfation process. Initial sulfation at the Tyr51 site augments binding, thereby facilitating efficient sulfation at Tyr54. Beyond direct biochemical implications, these findings considerably improve our understanding of tick blood-sucking strategies. Furthermore, combined with the utility of modified tick TPST, our findings may lead to the development of novel anticoagulants, promising avenues for thrombotic disease intervention and advancements in the field of public health.


Subject(s)
Anticoagulants , Arthropod Proteins , Sulfotransferases , Ticks , Animals , Anticoagulants/chemistry , Sulfotransferases/chemistry , Tyrosine/metabolism , Arthropod Proteins/chemistry , Crystallization
19.
Apoptosis ; 29(5-6): 898-919, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38411862

ABSTRACT

The cytosolic sulfotransferases (SULTs) are phase II conjugating enzymes, which are widely expressed in the liver and mainly mediate the sulfation of numerous xenobiotics and endogenous compounds. However, the role of various SULTs genes has not been reported in hepatocellular carcinoma (HCC). This study aims to analyze the expression and potential functional roles of SULTs genes in HCC and to identify the role of SULT2A1 in HCC stemness as well as the possible mechanism. We found that all of the 12 SULTs genes were differentially expressed in HCC. Moreover, clinicopathological features and survival rates were also investigated. Multivariate regression analysis showed that SULT2A1 and SULT1C2 could be used as independent prognostic factors in HCC. SULT1C4, SULT1E1, and SULT2A1 were significantly associated with immune infiltration. SULT2A1 deficiency in HCC promoted chemotherapy resistance and stemness maintenance. Mechanistically, silencing of SULT2A1 activated the AKT signaling pathway, on the one hand, promoted the expression of downstream stemness gene c-Myc, on the other hand, facilitated the NRF2 expression to reduce the accumulation of ROS, and jointly increased HCC stemness. Moreover, knockdown NR1I3 was involved in the transcriptional regulation of SULT2A1 in stemness maintenance. In addition, SULT2A1 knockdown HCC cells promoted the proliferation and activation of hepatic stellate cells (HSCs), thereby exerting a potential stroma remodeling effect. Our study revealed the expression and role of SULTs genes in HCC and identified the contribution of SULT2A1 to the initiation and progression of HCC.


Subject(s)
Arylsulfotransferase , Carcinoma, Hepatocellular , Liver Neoplasms , Neoplastic Stem Cells , Sulfotransferases , Humans , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/enzymology , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Liver Neoplasms/enzymology , Sulfotransferases/genetics , Sulfotransferases/metabolism , Neoplastic Stem Cells/pathology , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/enzymology , Male , Gene Expression Regulation, Neoplastic , Female , Cell Line, Tumor , Middle Aged , Animals , Mice , Cell Proliferation/genetics , Prognosis , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/genetics , Signal Transduction , Drug Resistance, Neoplasm/genetics
20.
Transl Res ; 268: 13-27, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38286358

ABSTRACT

Inflammation is a crucial pathophysiological mechanism in atherosclerosis (AS). This study aims to investigate the impact of sulfotransferase family 2b member 1 (SULT2B1) on the inflammatory response of macrophages and the progression of AS. Here, we reported that SULT2B1 expression increased with the progression of AS. In AS model mice, knockdown of Sult2b1 led to remission of AS and reduced inflammation levels. Further exploration of the downstream molecular mechanisms of SULT2B1 revealed that suppressing Sult2b1 in macrophages resulted in decreased levels of 25HC3S in the nucleus, elevated expression of Lxr, and increased the transcription of Lncgga3-204. In vivo, knockdown of Lncgga3-204 aggravated the inflammatory response and AS progression, while the simultaneous knockdown of both Sult2b1 and Lncgga3-204 exacerbated AS and the inflammatory response compared with knockdown of Sult2b1 alone. Increased binding of Lncgga3-204 to SMAD4 in response to oxidized-low density lipoprotein (ox-LDL) stimulation facilitated SMAD4 entry into the nucleus and regulated Smad7 transcription, which elevated SMAD7 expression, suppressed NF-κB entry into the nucleus, and ultimately attenuated the macrophage inflammatory response. Finally, we identified the presence of a single nucleotide polymorphism (SNP), rs2665580, in the SULT2B1 promoter region in monocytes from coronary artery disease (CAD) patients. The predominant GG/AG/AA genotypes were observed in the Asian population. Elevated SULT2B1 expression in monocytes with GG corresponded to elevated inflammatory factor levels and more unstable coronary plaques. To summarize, our study demonstrated that the critical role of SULT2B1/Lncgga3-204/SMAD4/NF-κB in AS progression. SULT2B1 serves as a novel biomarker indicating inflammatory status, thereby offering insights into potential therapeutic strategies for AS.


Subject(s)
Atherosclerosis , Disease Progression , Inflammation , Macrophages , Smad4 Protein , Sulfotransferases , Atherosclerosis/metabolism , Atherosclerosis/genetics , Atherosclerosis/pathology , Sulfotransferases/genetics , Sulfotransferases/metabolism , Animals , Mice , Macrophages/metabolism , Humans , Inflammation/metabolism , Inflammation/pathology , Smad4 Protein/metabolism , Smad4 Protein/genetics , Male , Mice, Inbred C57BL , Female
SELECTION OF CITATIONS
SEARCH DETAIL
...